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Abstract
We study anti-unification for unranked terms and hedges that may contain term and hedge vari-
ables. The anti-unification problem of two hedges s̃1 and s̃2 is concerned with finding their gener-
alization, a hedge q̃ such that both s̃1 and s̃2 are instances of q̃ under some substitutions. Hedge
variables help to fill in gaps in generalizations, while term variables abstract single (sub)terms
with different top function symbols. First, we design a complete and minimal algorithm to com-
pute least general generalizations. Then, we improve the efficiency of the algorithm by restricting
possible alternatives permitted in the generalizations. The restrictions are imposed with the help
of a rigidity function that is a parameter in the improved algorithm and selects certain common
subsequences from the hedges to be generalized. Finally, we indicate a possible application of
the algorithm in software engineering.
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1 Introduction

The anti-unification problem of two terms t1 and t2 is concerned with finding their gen-
eralization, a term t such that both t1 and t2 are instances of t under some substitutions.
The problem has a trivial solution, a fresh variable, that is the most general generalization
of the given terms. Interesting generalizations are the least general ones. The purpose of
anti-unification algorithms is to compute such least general generalizations. Plotkin [27] and
Reynolds [28] pioneered research on anti-unification, designing generalization algorithms for
ranked terms (where function symbols have a fixed arity) in the syntactic case. Since then, a
number of algorithms and their modifications have been developed, addressing the problem
in various theories (e.g., [1, 2, 4, 9, 15, 26]) and from different application points of view
(e.g., [3, 8, 12, 17, 25, 31]). Applications come from the areas such as reasoning by analogy,
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machine learning, inductive logic programming, software engineering, program synthesis,
analysis, transformation, verification, just to name a few.

Unranked terms differ from the ranked ones by not having fixed arity for function symbols.
Hedges are finite sequences of such terms. They are flexible structures, popular in representing
semistructured data. To take the advantage of variadicity, unranked terms and hedges use
two kinds of variables: term variables that stand for a single term and hedge variables
that stand for hedges. Solving techniques over unranked terms and hedges mostly address
unification and matching problems, see, e.g., [11, 18, 19, 20, 21, 23, 24]. Anti-unification for
these structures practically has not been studied. The only exceptions, to the best of our
knowledge, are [3, 33], where anti-unification of feature terms, and a special case of so called
simple hedges are considered, respectively.

We address this shortcoming, presenting algorithms to compute least general general-
izations for unranked terms/hedges. Hedge variables help to fill in gaps in generalizations,
while term variables abstract single (sub)terms with different top function symbols. First,
we develop a complete and minimal algorithm. Next, we improve its efficiency by restricting
possible alternatives permitted in the generalizations. The restrictions are imposed with
the help of a rigidity function that is a parameter in the improved algorithm. At each step,
the algorithm decides which subsequence of terms of the given hedges is to be (structurally)
retained in the generalization. This gives more efficient, yet pretty general algorithm for a
generic rigidity function. Instantiating the parameter with specific rigidity functions, we
obtain various special instances.

Finally, we discuss a possible application in software code clone detection. Our results
open a possibility to address the problem of searching XML clones by means of anti-unification.
Rigid hedge generalizations provide several advantages for this, combining fast textual and
precise structural techniques.

2 Preliminaries

Given pairwise disjoint countable sets of unranked function symbols F (symbols without
fixed arity), term variables VT, and hedge variables VH, we define unranked terms (terms
in short) and hedges (sequences of terms or hedge variables) over F and V = VT ∪ VH by
the grammar: t ::= x | f(s̃), s ::= t | X, s̃ ::= s1, . . . , sn, where x ∈ VT, f ∈ F, X ∈ VH,
and n ≥ 0. With this definition, terms are singleton hedges. Not all singleton hedges are
terms: some may be hedge variables. If s̃ = s1, . . . , sn and s̃′ = s′1, . . . , s

′
m, then we write

s̃, s̃′ for s1, . . . , sn, s
′
1, . . . , s

′
m. We denote by s̃|i the ith element of s̃. We denote by s̃|ji ,

where i < j, the subsequence between positions i and j excluding them, i.e., the subsequence
s̃|i+1, . . . , s̃|j−1. The length of a sequence s̃, denoted |s̃|, is the number of elements in it.

The set of terms (resp., the set of hedges) over F and V is denoted by T(F,VT,VH) (resp.,
by H(F,VT,VH)). We use the letters f, g, h, a, b, c, and d for function symbols, x, y, and z
for term variables, X,Y, Z, U, and V for hedge variables, χ for a term variable or a hedge
variable, t, l, and r for terms, s and q for a hedge variable or a term, and s̃ and q̃ for hedges.
The empty hedge is denoted by ε. The terms of the form a(ε) are written as just a.

The size of a term t is the number of occurrences of symbols (from F ∪ V) in it and is
denoted by size(t). We denote by var(t) the set of variables of a term. These definitions are
generalized for any syntactic object.

A substitution is a mapping from hedge variables to hedges and from term variables to
terms, which is identity almost everywhere. We will use the traditional finite set representation
of substitutions, writing, e.g., {x 7→ f(a), X 7→ ε, Y 7→ x, g(a, Z)} for the substitution that
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maps every variable to itself except x, X, and Y that are mapped respectively to f(a), to ε,
and to x, g(a, Z). The lower case Greek letters are used to denote substitutions, with the
exception of the identity substitution for which we write Id.

Substitutions can be applied to terms and hedges using the congruences

σ(f(s1, . . . , sn)) = f(σ(s1), . . . , σ(sn)), σ(s1, . . . , sn) = σ(s1), . . . , σ(sn).

We call σ(s) and σ(s̃) the instances of respectively s and s̃ and use postfix notation to denote
them, writing sσ and s̃σ. We also say that s̃ is more general than q̃ if q̃ is an instance
of s̃ and denote this fact by s̃ � q̃. If s̃ � q̃ and q̃ � s̃, then we write s̃ ' q̃. If s̃ � q̃

and s̃ 6' q̃, then we say that s̃ is strictly more general than q̃ and write s̃ ≺ q̃. The set
dom(σ) = {χ ∈ V | χσ 6= χ} is called the domain of σ.

The composition of two substitutions σ and ϑ, written as σϑ, is defined as the composition
of two mappings: We have s(σϑ) = (sσ)ϑ for all s. A substitution σ1 is more general than
σ2 with respect to a set of variables X ⊆ V, written σ1 �X σ2, if there exists ϑ such that
χσ1ϑ = χσ2, for each χ ∈ X . The relations ' and ≺ are extended to substitutions: σ1 'X σ2
means σ1 �X σ2 and σ2 �X σ1, and σ1 ≺X σ2 means σ1 �X σ2 and σ1 6'X σ2.

The top symbol of a term is defined as top(x) = x and top(f(s̃)) = f . We extend this
notion to hedges, defining it as the sequence of symbols as follows: top(ε) = ε, top(X, s̃) =
Xtop(s̃), and top(t, s̃) = top(t)top(s̃). Notice that we write these sequences as words, e.g.,
top(f(a), a,X, x) = faXx. The letter w will be used for those words.

A hedge s̃ is called a generalization or an anti-instance of two hedges s̃1 and s̃2 if s̃ � s̃1
and s̃ � s̃2. That means, there exist substitutions σ1 and σ2 such that s̃1 = s̃σ1 and s̃2 = s̃σ2.
We say that a hedge s̃ is a least general generalization (lgg in short), aka a most specific
anti-instance, of s̃1 and s̃2 if s̃ is a generalization of s̃1 and s̃2 and there is no generalization
q̃ of s̃1 and s̃2 that satisfies s̃ ≺ q̃. That means, there are no generalizations of s̃1 and s̃2
that are strictly less general than their least general generalization.

An anti-unification problem (or equation), AUP in short, is a triple χ : s̃1 , s̃2, where
χ does not occur in s̃1 and s̃2. Intuitively, χ is a variable that stands for the most general
generalization of s̃1 and s̃2. An anti-unifier of χ : s̃1 , s̃2 is a substitution σ such that
dom(σ) ⊆ {χ} and χσ is a generalization of both s̃1 and s̃2. An anti-unifier σ of an AUP
χ : s̃1 , s̃2 is least general (or most specific) if there is no anti-unifier of ϑ of the same
problem that satisfies σ ≺X ϑ. Obviously, if σ is a least general anti-unifier of an AUP
χ : s̃1 , s̃2, then χσ is a least general generalization of s̃1 and s̃2.

A complete set of generalizations of two hedges s̃1 and s̃2 is a set G of hedges that satisfies
the properties:
Soundness: Each q̃ ∈ G is a generalization of both s̃1 and s̃2.
Completeness: For each generalization s̃ of s̃1 and s̃2, there exists q̃ ∈ G such that s̃ � q̃.

G is a minimal complete set of generalizations of s̃1 and s̃2 if it, in addition to soundness
and completeness, satisfies also the following property:
Minimality: For each q̃1, q̃2 ∈ G, if q̃1 � q̃2 then q̃1 = q̃2.

I Lemma 2.1. For any three hedges s̃1, s̃2 and q̃, and any pair of substitutions σ1 and σ2
satisfying s̃1 = q̃σ1 and s̃2 = q̃σ2, if size(q̃) ≥ size(s̃1) + size(s̃2) then there exists a hedge
variable X occurring in q̃ such that Xσ1 = Xσ2 = ε.

Proof. The hedge q̃ can not contain more function symbols than s̃1 and s̃2 do. It also can
not contain more term variables than there are subterms in s̃1 or s̃2. Violation of any of
these conditions would forbid s̃1 or s̃2 to be an instance of q̃. Hence, the only reason why
size(q̃) ≥ size(s̃1) + size(s̃2) is that q̃ may contain extra hedge variables that are mapped to
ε by both σ1 and σ2. J
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222 Anti-Unification for Unranked Terms and Hedges

I Lemma 2.2. For any hedges s̃1 and s̃2 there exists their minimal complete set of general-
izations that, modulo ', is unique and finite.

Proof. For classical first-order anti-unification this property is trivial, because instantiation
does not decrease the size of terms. This means that anti-unifiers of two terms are smaller
than each of those terms, hence finite modulo variable renaming. For hedges the property is
not so simple to prove because instantiating a hedge variable by ε, the size of a term may
decrease. However, by Lemma 2.1 we have that for any anti-unifier q̃ of s̃1 and s̃2 with
size(q̃) ≥ size(s̃1) + size(s̃2) there exists another anti-unifier less general than q̃ (that we can
obtain by replacing those extra hedge variables in q̃ by ε). The set of anti-unifiers smaller
than the sum of the sizes of both hedges is a complete set of anti-unifiers, and it is finite and
unique modulo '. J

We denote the minimal complete set of generalizations of s̃1 and s̃2 by mcg(s̃1, s̃2). Its
elements are lggs of s̃1 and s̃2.

Like unification problems, anti-unification problems may be classified as unitary (if
minimal complete sets of generalizations always exist and are singletons), finitary (if they
always exist, are finite, and the problem is not unitary), infinitary (if they always exist and
may be infinite), and nullary (if they may not exist). Hence, Lemma 2.2 implies that hedge
anti-unification is finitary.

An anti-unification problem always has an anti-unifier. The empty substitution is a
trivial example that represents the most general generalization. Our goal is to compute less
general generalizations. In the next section, we design an algorithm that computes (the set
of anti-unifiers that represents) the mcg of a given AUP. It requires some care to properly
address the issues that arise because of hedge variables in generalizations.

Quiz 1: Given two hedges s̃ = f(a), f(a) and q̃ = f(a), f , what is the set mcg(s̃, q̃)?
Hint: There are three elements in mcg(s̃, q̃).

Below we assume that the hedges to be generalized are variable disjoint.

3 Complete and Minimal Algorithm

We present our anti-unification algorithm as a rule-based algorithm that works on triples
A;S;σ. Here A is a set of AUPs of the form {X1 : s̃1 , q̃1, . . . , Xn : s̃n , q̃n} where each Xi
occurs in the problem only once, S is a set of already solved anti-unification equations (the
store), and σ is a substitution (computed so far)1. We call such a triple a system. The rules
transform systems into systems:

T-H: Trivial Hedge
{X : ε , ε} ∪A; S; σ =⇒ A; S; σ{X 7→ ε}.

Dec-T: Decomposition for Terms
{X : f(s̃) , f(q̃)} ∪A; S; σ =⇒ {Y : s̃ , q̃} ∪A; S; σ{X 7→ f(Y )}

where Y is a fresh variable.
Dec1-H: Decomposition 1 for Hedges
{X : s, s̃ , q, q̃} ∪A; S; σ =⇒ {Y : s , q, Z : s̃ , q̃} ∪A; S; σ{X 7→ Y, Z},

where U : s, s̃ , q, q̃ /∈ S for all U ∈ VH, the variables Y and Z are fresh, and s̃ 6= ε or q̃ 6= ε.

1 Such a representation was first proposed in [1] for equational anti-unification.
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Dec2-H: Decomposition 2 for Hedges
{X : s, s̃ , q̃} ∪A; S; σ =⇒ {Y : s , ε, Z : s̃ , q̃} ∪A; S; σ{X 7→ Y,Z},

where χ : s, s̃ , q̃ /∈ S for all χ, the variables Y and Z are fresh, and s̃ 6= ε or q̃ 6= ε.

Dec3-H: Decomposition 3 for Hedges
{X : s̃ , q, q̃} ∪A; S; σ =⇒ {Y : ε , q, Z : s̃ , q̃} ∪A; S; σ{X 7→ Y,Z},

where χ : s̃ , q, q̃ /∈ S for all χ, the variables Y and Z are fresh, and s̃ 6= ε or q̃ 6= ε.

Sol1-H: Solve 1 for Hedges
{X : s , ε} ∪A; S; σ =⇒ A; {X : s , ε} ∪ S; σ, if Y : s , ε /∈ S for all Y .

Sol2-H: Solve 2 for Hedges
{X : ε , q} ∪A; S; σ =⇒ A; {X : ε , q} ∪ S; σ, if Y : ε , q /∈ S for all Y .

Sol3-H: Solve 3 for Hedges
{X : s , q} ∪A; S; σ =⇒ A; {X : s , q} ∪ S; σ,

if s 6= q, s ∈ VH or q ∈ VH, and Y : s , q /∈ S for all Y .

Sol-T: Solve for Terms
{X : l , r} ∪A; S; σ =⇒ A; {y : l , r} ∪ S; σ{X 7→ y},

if top(l) 6= top(r), χ : l , r /∈ S for all χ, and y is fresh.

Rec: Recover
{X : s̃ , q̃} ∪A; {χ : s̃ , q̃} ∪ S; σ =⇒ A; {χ : s̃ , q̃} ∪ S; σ{X 7→ χ}.

The idea of the store is to keep track of already solved AUPs in order to generalize the
same pair of hedges with the same variable, as it is illustrated in the Rec rule: The already
solved AUP χ : s̃ , q̃ from the store helps to reuse χ instead of X as a generalization of s̃
and q̃. This is important, since we aim at computing lggs.

In the condition of Dec1-H we use a hedge variable U while in Dec2-H and Dec3-H in the
same role χ appears. The reason is that in Dec1-H, the hedge s, s̃ or the hedge q, q̃ is not
a term and, hence, we can not have a term variable in place of U . On the other hand, in
Dec2-H and Dec3-H it can happen that the AUP in the condition is between terms with χ
being a term variable.

Notice that there is no rule for AUPs of the form X : x , x. This is because we assume
the hedges to be generalized are variable disjoint and, hence, such problems do not appear.

To compute generalizations for hedges s̃ and q̃, the procedure starts with {X : s̃ , q̃}; ∅; Id
where X is a fresh hedge variable and applies the rules on each selected anti-unification
equation in all possible ways. We denote this procedure by G. To show that the process
terminates, we define a complexity measure of the triple A;S;σ as a multiset M(A) :=
{size(s̃ , q̃) + 1 | X : s̃ , q̃ ∈ A}. We order complexity measures by the multiset extension
>m of the standard ordering on natural numbers. It is easy to check that the theorem below
holds, which immediately implies termination:

I Theorem 3.1. If A1;S1;σ1 =⇒ A2;S2;σ2 in G, then M(A1) >m M(A2).

Hence, starting from {X : s̃ , q̃}; ∅; Id, each sequence of transformations by G necessarily
terminates with a triple of the form ∅;S;σ.

I Theorem 3.2 (Soundness of G). If {X : s̃ , q̃}; ∅; Id =⇒∗ ∅;S;σ is a derivation in G,
then Xσ � s̃ and Xσ � q̃.
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Proof. The theorem follows from the straightforward fact that if Xσ � s̃ and Xσ � q̃

and {X : s̃ , q̃} ∪ A;S;σ =⇒ A′, S′, σ′ is a transformation step in G, then Xσ′ � s̃ and
Xσ′ � q̃. J

If {X : s̃ , q̃}; ∅; Id =⇒∗ ∅;S;σ is a derivation in G, then we say that
σ is a substitution computed by G for X : s̃ , q̃;
the restriction of σ on X, denoted by σ|X , is a anti-unifier of X : s̃ , q̃ computed by G;
the hedge Xσ is a generalization of s̃ and q̃ computed by G.

The proof of completeness of the algorithm requires auxiliary definitions and lemmas. We
start generalizing the notion of anti-unifier for sets of equations.

I Definition 3.3. A set of AUPs is a set A = {χ1 : s̃1 , q̃1, . . . , χn : s̃n , q̃n}, where each of
the variables χ1, . . . , χn does not occur more than once. We define the set of generalization
variables gvar(A) = {χ1, . . . , χn}.

I Definition 3.4. A substitution σ is called an anti-unifier of a set of AUPs A, if dom(σ) ⊆
gvar(A) and for each (χ : s̃ , q̃) ∈ A, χσ is a generalization of both s̃ and q̃.

Similarly, least general anti-unifiers are also generalized for sets of AUPs.

I Definition 3.5. We say that a set of AUPs A is unsimplifiable if any anti-unifier of A is
equal to Id modulo variable renaming.

Notice that if A is unsimplifiable then A cannot contain equations with pairs of terms
with the same top symbol x : f(s̃) , f(q̃), equations between equal sequences χ : s̃ , s̃,
equations between terms X : f(s̃) , g(q̃) where X ∈ VH, nor pairs of identical equations
χ : s̃ , q̃, χ′ : s̃ , q̃.

I Lemma 3.6. Let A be a set of AUPs satisfying gvar(A) ⊆ VH. Let S be an unsimplifiable
set of AUPs. Let ϑ be an anti-unifier of A. Then, there exists a sequence of transformations
A;S; Id =⇒∗ ∅;S′;σ where ϑ �gvar(A) σ.

This lemma is crucial for showing completeness of G. Its proof is quite long and proceeds
by structural induction on A and by detailed case analysis on the form of a selected AUP in
transformations. The interested reader can find it in the technical report [22].

I Theorem 3.7 (Completeness of G). Let ϑ be an anti-unifier of X : s̃ , q̃. Then G computes
a substitution σ such that Xϑ � Xσ.

Proof. Immediate consequence of Lemma 3.6 with A = {X : s̃ , q̃} and S = ∅. J

Hence, collecting all the hedges Xσ such that {X : s̃ , q̃}; ∅; Id =⇒∗ ∅;S;σ, we obtain a
finite complete set of generalizations of s̃ and q̃. In general, this set is not minimal. Even for
such a simple input as {X : f(a) , f(b)}; ∅; Id, the algorithm G produces five generalizations:
two hedges Y1, Y2 and Z1, Z2 and three terms f(U1, U2), f(V1, V2), and f(x). The last term
is an instance of the other four generalizations.

Nevertheless, this redundancy is not trivially avoidable because rules allowing apparently
useless alignments are needed for completeness:

Answer to Quiz 1. Besides the “expected” lgg f(a), f(X), the set mcg(s̃, q̃) for
s̃ = f(a), f(a) and q̃ = f(a), f also contains two less obvious ones: f(X,Y ), f(X) and
f(X,Y ), f(Y ).

We need a minimization step to keep only least general generalizations. Minimization
involves a matchability test between two hedges. If two hedges s̃ and q̃ are in the set we are
going to minimize, then we proceed as follows:
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If s̃ ' q̃, then we delete one of them and keep the other (e.g., with the smaller size).
If one of them is strictly more general than the other one, we delete the more general
hedge and keep the more specific one.

For matchability, one could, in principle, use the hedge matching algorithm from [18],
but there is a subtlety one should take into account: The hedges that are to be matched, in
general, are not ground. Therefore, when trying to match, e.g., s̃ = X,X to q̃ = X, a, we
should rename X in q̃ into a new constant. Furthermore, we should introduce a restriction
that no term variable matches such new constants. Thus, the matchability test should fail
for the problems like X,X � X, a and x� X.

Hence, combining G with minimization, we can compute mcg(s̃1, s̃2) for each s̃1 and s̃2.

I Example 3.8. For the terms f(g(a,X), a,X, b) and f(g(b), b), G computes the mcg:
{f(g(x, Y ), Z, Y, b), f(g(x, Y ), x, Y, Z), f(g(U, Y, Z), Y, Z, b), f(g(U, Y, Z), U, Y, b)}. These
four lggs are selected from 169 generalizations computed in the first step of the algorithm.

The drawback of the algorithm G is that it is highly nondeterministic. It computes O(3n)
generalizations2, where n is the size of the input. (For instance, for f(a1, a2, a3, a4, a5) and
f(b1, b2, b3, b4, b5) it computes 11685 generalizations, most of them several times, until it
selects a single one, e.g., f(x1, x2, x3, x4, x5), on the minimization step.) The minimization
step involves NP-complete hedge matching algorithm (see [18, 21]) performed on the pairs
of elements of the generalization set. Hence, this algorithm is only of theoretical interest
and falls short of being practically useful. Our goal is to impose requirements on the set
of generalizations such that, on the one hand, it is still “interesting”, on the other hand, it
can be computed faster in many cases. This leads us to the notion of rigid generalization,
described in the next section.

4 Computing Rigid Generalizations

The main intuition behind rigid generalizations is to capture the structure (modulo a given
rigidity property) of as many nonvariable terms in the input hedges as possible. It is
parameterized by a binary rigidity function R that computes a finite set of alignments for
strings, defined as follows:

I Definition 4.1 (Alignment and Rigidity Function). Let w1 and w2 be strings of symbols.
Then the sequence a1[i1, j1] · · · an[in, jn], for n ≥ 0, is an alignment if

i’s and j’s are positive integers such that i1 < · · · < in and j1 < · · · < jn, and
ak = w1|ik = w2|jk , for all 1 ≤ k ≤ n.

A rigidity function R is a function that returns, for every pair of strings of symbols w1
and w2, a set of alignments of w1 and w2.

I Example 4.2. We give some examples of rigidity functions. Here and below, instead of
saying that the rigidity function R returns “the set of alignments of ...”, we just say that it
returns “the set of ...”.
R returns the set of all longest common subsequences of its arguments: R(abc, dd) = {ε},
R(abcda, bcad) = {b[2, 1]c[3, 2]a[5, 3], b[2, 1]c[3, 2]d[4, 4]}.
R returns the set of all those longest common subsequences whose length is at least 4:
R(abcda, bca) = ∅, R(abcda, bcacda) = {a[1, 3]c[3, 4]d[4, 5]a[5, 6], b[2, 1]c[3, 4]d[4, 5]a[5, 6]}.

2 Notice that the hedge decomposition rule has three non-deterministic choices.
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226 Anti-Unification for Unranked Terms and Hedges

R returns the set of all longest common substrings of its arguments: R(abcda, bcad) =
{b[2, 1]c[3, 2]}, R(abcda, bcada) = {b[2, 1]c[3, 2], d[4, 4]a[5, 5]}, R(abc, dd) = {ε}.

I Definition 4.3 (R-Generalization). Given two (variable disjoint) hedges s̃1 and s̃2 and the
rigidity functionR, we say that a hedge s̃ that generalizes both s̃1 and s̃2 is their generalization
with respect to R, or, in short, an R-generalization, if either R(top(s̃1), top(s̃2)) = ∅ and s̃
is a hedge variable, or there exists an alignment f1[i1, j1] · · · fn[in, jn] ∈ R(top(s̃1), top(s̃2)),
such that the following conditions are fulfilled:
1. The sequence s̃ does not contain pairs of consecutive hedge variables.
2. If we remove all hedge variables that occur as elements of s̃, we get a sequence of the

form f1(q̃1), . . . , fn(q̃n).
3. For every 1 ≤ k ≤ n, there exists a pair of sequences s̃′1 and s̃′2 such that s̃1|ik = fk(s̃′1),

s̃2|jk = fk(s̃′2) and q̃k is an R-generalization of s̃′1 and s̃′2.

Under this definition, R-generalizations do not contain term variables. The minimal
complete set of R-generalizations of s̃1 and s̃2 is denoted by mcgR(s̃1, s̃2). An R-anti-unifier
of X : s̃1 , s̃2 is a substitution σ such that Xσ is an R-generalization of s̃1 and s̃2.

I Example 4.4. Let R(w1, w2) be the set of all longest common subsequences of w1 and w2.
The terms t1 = f(g(a,X), a,X, b) and t2 = f(g(b), b) have a single least general R-
generalization f(g(Y ), Z, b). Note that this term does not belong to mcg(t1, t2) computed
in Example 3.8.
f(g(a, a), a,X, b) and f(g(b, b), g(Y ), b) have two R-generalizations: f(g(U), Z, b) and
f(V, g(U), Z, b). The first one is less general than the second one.
The hedges a, b and b, c have a single R-generalization: X, b, Y .

I Example 4.5. Let R(w1, w2) be the set of all longest common substrings of w1 and w2.
The least general R-generalization of a, a, b, f, f, f(a, a, b) and a, a, c, f, f, f(a, a, c) is the
hedge X, f, f, f(a, a, Y ).
The least general R-generalization of a, a, b, b, f, f, f(a, a, b, b) and a, a, c, f, f, f(a, a, c) is
the hedge X, f, f, f(a, a, Y ).

Quiz 2: What is the mcgR(s̃, q̃) for two identical hedges s̃ = f(a, b, c), g(a), h(a) and q̃ =
f(a, b, c), g(a), h(a), where R is a function that computes the set of all common subsequences
of the minimal length 3 of its arguments?

Our goal is to compute a minimal complete set of R-generalizations. For this, we design
a new set of transformation rules. It consists of only four rules shown below:

R-Dec-H: R-Rigid Decomposition for Hedges
{X : s̃ , q̃} ∪A; S; σ =⇒
{Zk : s̃k , q̃k | 1 ≤ k ≤ n} ∪A;
{Y0 : s̃|i10 , q̃|j10 } ∪ {Yk : s̃|ik+1

ik
, q̃|jk+1

jk
| 1 ≤ k ≤ n− 1} ∪ {Yn : s̃||s̃|+1

in
, q̃||q̃|+1

jn
} ∪S;

σ{X 7→ Y0, f1(Z1), Y1, . . . , Yn−1, fn(Zn), Yn},
if R(top(s̃), top(q̃)) contains a sequence f1[i1, j1] · · · fn[in, jn] such that for all 1 ≤ k ≤ n,
s̃|ik = fk(s̃k), q̃|jk = fk(q̃k), and Y0, Yk’s and Zk’s are fresh.

R-S-H: R-Rigid Solve for Hedges
{X : s̃ , q̃} ∪A; S; σ =⇒ A; {X : s̃ , q̃} ∪ S; σ,

if R(top(s̃), top(q̃)) = ∅. (Notice that this transformation is equivalent to rule R-Dec-H where
R(top(s̃), top(q̃)) = {ε}).
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R-CS1: R-Rigid Clean Store 1
A; {X1 : s̃ , q̃, X2 : s̃ , q̃} ∪ S; σ =⇒ A; {X1 : s̃ , q̃} ∪ S; σ{X2 7→ X1}, if X1 6= X2.

R-CS2: R-Rigid Clean Store 2
A; {X : ε , ε} ∪ S; σ =⇒ A; S; σ{X 7→ ε}

To compute R-generalizations of s̃ and q̃, we start with {X : s̃ , q̃}; ∅; Id and apply the
rules on the selected anti-unification equation(s) in all possible ways. The obtained procedure
is denoted by G(R). To show that it terminates, we define the complexity measure for
A;S;σ as a pair (M(A),M(S)), where M is defined as in the termination proof of G. The
measures are compared lexicographically. Each rule strictly reduces it, therefore there can
be no infinite transformation chains. All the rules, except R-Dec-H, transform the selected
equation(s) uniquely. R-Dec-H can introduce only finitely many branchings, because R
returns a finite set. Hence, the following theorem holds:

I Theorem 4.6. The procedure G(R) terminates on any input and produces a system ∅;S;σ
where S is irreducible with respect to the store cleaning rules.

The intuition behind the R-Dec-H rule is that, once R gives the set of alignments of
the strings top(s̃) and top(q̃), we choose one alignment from it, and rigid decomposition is
not permitted to be performed on the equations formed by the remaining subsequences of s̃
and q̃ (i.e, the ones that are generalized by Y ’s in R-Dec-H). Otherwise, the generalization
might violate the restrictions of Definition 4.3. Therefore, we move these equations to the
store where the decomposition and solve rules do not apply. However, it may introduce
certain redundancies in the store. These redundancies are dealt with the store cleaning rules.
Another interesting observation is that G(R) never introduces in the set A or S equations of
the form x : l , r where x is a term variable.

Since we generalize variable disjoint hedges, the strings in R(top(s̃), top(q̃)) (that are
common subsequences of top(s̃) and top(q̃)) do not contain variables. After application of the
rule R-Dec-H, each hedge variable in the anti-unifier gets separated from the other variables
by a nonvariable term, to obey the restriction 1 of Definition 4.3.

We did not have the store cleaning rules in our previous algorithm G, because the AUPs
they are dealing with would never appear in the store the rules in G are operating on.

Proving soundness of G(R) is quite involved, because we should show that the output of
G(R) satisfies properties of R-generalizations. We need a couple of lemmas for that:

I Lemma 4.7. Let A;S;ϑ =⇒R1 A1;S1;ϑσ1 =⇒R2 A2;S2;ϑσ1σ2 be a sequence of trans-
formations where R1 ∈ {R-CS1,R-CS2} and R2 ∈ {R-Dec-H,R-S-H}. Then there exists a
transformation sequence A;S;ϑ =⇒R2 A

′
1;S′1;ϑσ2 =⇒R1 A

′
2;S′2;ϑσ2σ1 such that A′2 = A2,

S′2 = S2, and ϑσ1σ2 = ϑσ2σ1.

Proof. Since R1 does not affect the first component in the system, we have A1 = A and
A′2 = A′1. We perform the step R2 in the second transformation sequence exactly in the same
way as in the first one, choosing the same rule, the same AUP in A, the same alignment, and
the same fresh variables. Then A′1 = A2 and, hence, A′2 = A2. As for the stores, S2 consists
of all the AUPs in S except those deleted by R1 and R2 and, in addition, it contains the
AUPs introduced by R2. In the second sequence, S′1 consists of all the AUPs in S except the
one deleted by R2 and the ones introduced by R2. In the last step, we delete from S′1 exactly
the same AUP that was deleted from S1 by R1. Therefore, we get S′2 = S2. Finally, σ1 and
σ2 commute, because their domains and ranges are disjoint. Hence, ϑσ1σ2 = ϑσ2σ1. J
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I Lemma 4.8. If A;S1;ϑ =⇒∗ ∅;S2;ϑσ is a derivation in G(R) using only R-Dec-H and
R-S-H, then for all (X : s̃ , q̃) ∈ A, the hedge Xσ is an R-generalization of s̃ and q̃.

Proof. We proceed by induction on the length of the derivation. If it is 1, then the derivation
has the form {X : s̃ , q̃};S;ϑ =⇒∗ ∅; {X : s̃ , q̃}∪S;ϑσ, where σ = {X 7→ Y0} for a fresh Y0
if the used rule isR-Dec-H, and σ = Id if the used rule isR-S-H. SinceR(top(s̃), top(q̃)) ⊆ {ε},
Xσ is an R-generalization of s̃ and q̃.

Now we assume that the lemma holds for all derivations with the length less than m > 1
and prove it for m. Let the system to be transformed be {X : s̃ , q̃} ∪ A′;S;ϑ. If it is
transformed by the rule R-S-H then R(top(s̃), top(q̃)) = ∅, σ = Id, and we obtain a new
system A′; {X : s̃ , q̃} ∪ S;ϑ. By the induction hypothesis, X ′σ is an R-generalization of s̃′
and q̃′ for all (X ′ : s̃′ , q̃′) ∈ A′. By the definition of R-generalization, the same holds for
Xσ, s̃, and q̃ because R(top(s̃), top(q̃)) = ∅.

If the ruleR-Dec-H is used to transform {X : s̃ , q̃}∪A′;S;ϑ, then the new system is {Zk :
s̃k , q̃k | 1 ≤ k ≤ n} ∪ A′;S′;ϑσ′, where σ′ = {X 7→ Y0, f1(Z1), Y1, . . . , Yn−1, fn(Zn), Yn}
and the conditions of R-Dec-H are satisfied. By the induction hypothesis, We have a
derivation {Zk : s̃k , q̃k | 1 ≤ k ≤ n} ∪ A′;S′;ϑσ′ =⇒∗ ∅;S′′;ϑσ′σ′′ using only the rules
R-Dec-H and R-S-H such that for all (X ′ : s̃′ , q̃′) ∈ {Zk : s̃k , q̃k | 1 ≤ k ≤ n} ∪ A′, the
hedge X ′σ′′ is an R-generalization of s̃′ and q̃′. In particular, this holds for Z’s. Therefore,
Xσ′σ′′ is an R-generalization of s̃ and q̃. This finishes the proof. J

I Lemma 4.9. If {X : s̃1 , s̃2}; ∅; Id =⇒∗ ∅;S1;ϑ =⇒R ∅;S2;ϑσ is a derivation in G(R)
such that Xϑ is an R-generalization of s̃1 and s̃2 and R ∈ {R-CS1,R-CS2}. Then Xϑσ is
an R-generalization of s̃1 and s̃2.

Proof. Let R be R-CS1, transforming {X1 : s̃′1 , s̃′2, X2 : s̃′1 , s̃′2} ⊆ S1 into {X1 : s̃′1 ,
s̃′2} ⊆ S2 with the substitution σ = {X2 7→ X1}. The hedges s̃′1 and s̃′2 occur in s̃1 and s̃2,
respectively, so that the corresponding occurrences are abstracted by the same variable in
Xϑ. This variable for some pairs of occurrences of s̃′1 and s̃′2 is X1 and for some others X2.
Hence, if we replace X2 with X1 in Xϑ, the obtained hedge Xϑσ will be a generalization of
s̃1 and s̃2.

To prove that after this replacement we still have an R-generalization of s̃1 and s̃2, we
proceed by induction on the maximal depth d of the occurrences of X2 in Xϑ. It is enough to
show that replacing only one occurrence of X2 with X1 retains the R-generalization property.

Let first d = 0. Then Xϑ has a form q̃1, X2, q̃2. Replacing X2 with X1 gives q̃1, X1, q̃2,
that keeps the same alignment from R(top(s̃1), top(s̃2)) that was in Xϑ and satisfies all three
conditions of the definition of R-generalization. Hence, q̃1, X1, q̃2 is an R-generalization of
s̃1 and s̃2.

Now assume that d > 0. It means that there exists a term f(q̃) in Xϑ, such that X2
occurs at depth d− 1 in q̃. Then there are terms f(s̃′′1) in s̃1 and f(s̃′′2) in s̃2 such that q̃ is an
R-generalization of s̃′′1 and s̃′′2 . By the induction hypothesis, replacing an occurrence of X2
in q̃ with X1 gives a hedge that is again an R-generalization of s̃′′1 and s̃′′2 . Hence, the hedge
obtained from Xϑ by replacing one occurrence of X2 with X1 is an R-generalization of s̃1
and s̃2, because we just showed that the third condition of the definition of R-generalization
is satisfied, while the other two conditions were not affected.

Repeating the process of replacement of one occurrence of X2 by X1 iteratively until
there are no more X2’s in Xϑ, we prove that Xϑσ is an R-generalization of s̃1 and s̃2.

Proof for R = R-CS2 is straightforward. J

Now we can prove the soundness theorem for G(R):
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I Theorem 4.10 (Soundness of G(R)). If {X : s̃1 , s̃2}; ∅; Id =⇒∗ ∅;S;σ is a derivation in
G(R), then Xσ is an R-generalization of s̃1 and s̃2.

Proof. By Lemma 4.7, every derivation in G(R) can be reordered so that first only the
rules R-Dec-H and R-S-H are applied until the set of AUPs becomes empty, and then the
store is cleaned. The substitutions computed by the original derivation and by the reordered
derivation coincide. Let σ′ be the substitution obtained at the end of the subderivation
with R-Dec-H and R-S-H. By Lemma 4.8, Xσ′ is an R-generalization of s̃1 and s̃2. By
Lemma 4.9, substitutions introduced by the store cleaning rules keep the R-generalization
property. Hence, Xσ is an R-generalization of s̃1 and s̃2. J

The algorithm G(R) is complete, as the following theorem shows.

I Theorem 4.11 (Completeness of G(R)). Let q̃ be an R-generalization of s̃1 and s̃2. Then
G(R) computes an R-anti-unifier σ for X : s̃1 , s̃2 such that q̃ � Xσ.

The proof of this theorem is rather long, proceeding by induction on the size of q̃ and by
case analysis on its form. It can be found in the technical report [22].

We may prune the search space of the algorithm G(R), giving priority to the rules R-CS1
and R-CS2. If they are applicable to a system, no other rule should apply to it. It can
prevent re-computing equivalent R-generalizations on different branches without violating
completeness. In addition, we may forbid the rule R-Dec-H to add to the set A the AUPs
of the form Zk : ε , ε for 1 ≤ k ≤ n, and to the set S the AUPs of the form Ym : ε , ε for
0 ≤ m ≤ n. Respectively, such Zk’s and Ym’s are replaced by ε in the substitution computed
by R-Dec-H. These simplifications can be justified by the fact that those AUPs, anyway,
eventually will be eliminated by the R-CS2 rule. Therefore, they do not affect completeness.
In the examples below we assume G(R) to be optimized in such ways. The length of each
derivation under the optimized G(R) does not exceed the size of the input problem.

To compute minimal complete set of R-generalizations, we still need to perform the
minimization step, unless the cardinality of the set that R computes is not greater than 1.
In the latter case the G(R) computes a single R-generalization of the input hedges.

Hence, combining G(R) with the minimization step, we can compute mcgR(s̃1, s̃2) for
any hedges s̃1, s̃2, and the rigidity function R.

I Example 4.12. Given two terms f(g(a, a), a,X, b) and f(g(b, b), g(Y ), b), and R being the
function computing the set of all longest common subsequences, the algorithm G(R) gives
two R-generalizations: f(V, g(U), Z, b) and f(g(U), Z, b). After the minimization step, only
the last one is retained. We illustrate how G(R) computes f(g(U), Z, b):

{X0 : f(g(a, a), a,X, b) , f(g(b, b), g(Y ), b)}; ∅; Id =⇒R-Dec-H

{X1 : g(a, a), a,X, b , g(b, b), g(Y ), b}; ∅; {X0 7→ f(X1)}.

This problem is transformed by the R-Dec-H rule with the alignment g[1, 1]b[4, 3]:

{U : a, a , b, b, U ′ : ε , ε}; {Z : a,X , g(Y )}; {X0 7→ f(g(U), Z, b(U ′)), . . .} =⇒R-S-H

{U ′ : ε , ε}; {U : a, a , b, b, Z : a,X , g(Y )}; {X0 7→ f(g(U), Z, b(U ′)), . . .} =⇒R-Dec-H

∅; {U : a, a , b, b, Z : a,X , g(Y )}; {X0 7→ f(g(U), Z, b), . . .}.

From the final state one can get not only the R-anti-unifier {X0 7→ f(g(U), Z, b)} and the
corresponding R-generalization f(g(U), Z, b), but also the substitutions that show how the
original terms are obtained from the R-generalization. These substitutions can be extracted
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from the store: σ1 = {U 7→ a, a, Z 7→ a,X} with f(g(U), Z, b)σ1 = f(g(a, a), a,X, b) and
σ2 = {U 7→ b, b, Z 7→ g(Y )} with f(g(U), Z, b)σ2 = f(g(b, b), g(Y ), b). In this way, we can
also say that the store gives us the difference of the input terms.

I Example 4.13. Let R compute the set of all longest common substrings of its arguments
and let a, a, b, f, f, f(a, a, b) and a, a, c, f, f, f(a, a, c) be the input hedges. Their only R-
generalization X, f, f, f(a, a, Y ) can be computed by G(R) performing the following steps:

{X0 : a, a, b, f, f, f(a, a, b) , a, a, c, f, f, f(a, a, c)}; ∅; Id =⇒R-Dec-H

{Y ′ : a, a, b , a, a, c}; {X : a, a, b , a, a, c}; {X0 7→ X, f, f, f(Y ′)} =⇒R-Dec-H

∅; {X : a, a, b , a, a, c, Y : b , c}; {X0 7→ X, f, f, f(a, a, Y ), . . .}.

Answer to the Quiz 2: Given two identical hedges s̃ = f(a, b, c), g(a), h(a) and q̃ =
f(a, b, c), g(a), h(a) and R computing the set of all common subsequences of the minimal
length 3 of its arguments, mcgR(s̃, q̃) = {f(a, b, c), g(X), h(X)}. One might expect the lgg to
be the hedge f(a, b, c), g(a), h(a) itself, but it violates the condition 3 of Definition 4.3.

The example in the Quiz 2 makes it clear why among the R-generalization rules, we do
not have the one that would generalize two identical terms with the same term (the so called
Trivial Terms rule). It would simply make the G(R) algorithm unsound.

Our approach generalizes existing works on word anti-unification. To extend the word
anti-unification algorthm from [10] to hedges, one can just take as R the function that
generates the singleton set consisting of the maximal variable-free subsequence in the unique
generalization of two words computed in [10]. Similarly, ε-free anti-unification for words [6]
can be extended to hedges by taking R as the function that computes the set of all maximal
variable-free subsequences of ε-free generalizations of the input words.

Precision of rigid anti-unification can be improved, permitting term variables to occur in
rigid generalizations. The idea is to generalize AUPs between two term sequences of equal
length not with a single hedge variable, but with a sequence of term variables of the same
length. This refinement would give f(x1, x2, x3, x4, x5) (instead of f(X)) as a generalization
of f(a1, a2, a3, a4, a5) and f(b1, b2, b3, b4, b5). This can be achieved by a relatively little
computational overhead compared to the G(R) algorithm. The details can be found in [22].
Here we only remark that the standard anti-unification over ranked terms [27, 28] can be
modeled by such a refinement of R-generalization, choosing R as the function that returns
a singleton set R(w1, w2) = {a1[i1, i1] · · · an[in, in]}, where a1 · · · an is the longest common
subsequence of w1 and w2 such that all ais occur at the same positions in w1 and w2.

5 Application in Clone Detection

In this section we outline a possible application of R-generalization in software code clone
detection. Clone detection is an active research topic since clones are considered to be a
significantly problematic issue for software maintenance. Studies show that from 5 to 20% of
software systems can contain duplicated code. Due to various complications such duplicated
pieces cause, it is widely agreed and the clones should be detected. The survey papers [29, 30]
give a detailed characterization of code duplication reasons and drawbacks, introduce clone
types, describe and evaluate clone detection process and techniques, and list open problems
in clone detection research. The proposed classification distinguishes four types of clones:

Type I: Identical code fragments except for variations in whitespace, layout and comments.
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Type II: Syntactically identical fragments except for variations in identifiers, literals, types,
whitespace, layout and comments.

Type III: Copied fragments with further modifications such as changed, added or removed
statements, in addition to variations in identifiers, literals, types, whitespace, layout and
comments.

Type IV: Two or more code fragments that perform the same computation but are imple-
mented by different syntactic variants.

Complexity and sophistication in detecting such clones increases from Type I through
Type IV with Type IV being the highest. (Although it does not mean that Type IV contains
other types as special cases.) R-generalizations can help in detecting clones of types I-III.
We illustrate the idea on an example of a clone of type III.

I Example 5.1. Type III clones from [29]:

if (a >= b) { if (m >= n)
c = d + b; // Comment1 { // Comment1’
d = d + 1; } y = x + n;

else z = 1; // Added statement
c = d - a; //Comment2 x = x + 5; //Comment3 }

else
y = x - m; //Comment2’

Some clone detection techniques are based on tree representation of the code, like
parse trees, abstract syntax trees, or an XML form of abstract syntax trees; see, e.g.,
[5, 13, 16, 34, 32], for some of the works that follow this approach. We assume that the code
is represented in a structural form that can be encoded with unranked terms (or hedges).
We keep the representation abstract, without specifying what exactly this structural form is.

Usually, clone detection tools first preprocess the code, then find potential clone candidates,
and, finally, analyze them to detect actual clones. One can employ the R-generalization
algorithm in the process of finding potential code clones. Further analysis can be based on
various measures, like, e.g., on the size of the generalization, or on the maximal length of a
nonvariable hedge in the generalization, etc. Although we are not concerned with this part,
by choosing appropriate Rs we can anticipate this last filtering process. The choice of the R
depends on what is considered as interesting clone.

I Example 5.2. Unranked term form for the pieces of code in Example 5.1:

if (≥ (a, b), then(= (c,+(d, b)),= (d,+(d, 1 ))), else(= (c,−(d, a))))
if (≥ (m,n), then(= (y,+(x,n)),= (z, 1 ),= (x,+(x, 5 ))), else(= (y,−(x,m))))

Let R be the relation of longest common subsequence. We choose it to capture the idea
that the clones have a lot in common. Such an R is supposed to draw out from two pieces of
code as much common statements as possible. Then (the refinement with term variables for)
R-generalization of these terms returns three generalizations as clone candidates:

if (≥ (x1 , x2 ), then(X ,= (x3 , x4 ),= (x5 ,+(x5 , x6 ))), else(x7 ,−(x5 , x1 ))),
if (≥ (y1 , y2 ), then(= (y3 ,+(y4 , y2 )),Y ,= (y4 ,+(y4 , y5 ))), else(y3 ,−(y4 , y1 ))),
if (≥ (z1 , z2 ), then(= (z3 ,+(z4 , z2 )),= (z5 , z6 ),Z ), else(z3 ,−(z4 , z1 ))).

Among them, we say that the second one is the best generalization of the clone pieces,
because it preserves the common structure better that the other two (has a bigger size
compared to them).
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6 Discussion

The standard anti-unification [27, 28] has already been considered for computing software
clones in [8, 7], detecting mostly clones of types I and II. However, we think that parameterized
anti-unification over unranked terms offers more flexibility in finding clone candidates. First
of all, it helps to detect inserted or deleted pieces of code, which is necessary for clones of type
III. Besides, if we are interested in clones whose length (as a sequence of program statements)
is greater than a predefined threshold, we can include this measure in the definition of the
relation R, considering only sequences that are longer than the threshold number. Another
advantage of this approach is that it is modular, where most of the computations are
performed on strings. It may combine advantages of fast textual and precise structural
techniques. For many interesting string relations (e.g., longest common subsequence, longest
common substring, sequence alignment, etc.), there exist efficient algorithms that also scale
well for large data [14]. Hence, one can take advantage using these off-the-shelf methods
when computing clone candidates by R-generalization.

Yet another advantage of using R-generalizations in clone detection is that it works on
unranked terms that are natural abstractions of XML documents. How to detect clones
well in generated XML/HTML is mentioned as one of the open problems in clone detection
research in [29]. A detection technique that uses R-generalization would be an interesting
approach to this problem.

Moreover, from the clones computed by R-generalization (anti-unification, in general)
one can extract a procedure. This process has a use in code refactoring. The clones can
be replaced by the procedure calls, properly instantiated by the substitution that gives
from the computed R-generalization the clone it generalizes. As we saw in Example 4.12,
these substitutions are easily extracted from the store. In general, while anti-unifiers reflect
similarities between two inputs, the data in the store can be used to identify differences
between them (i.e., between inputs). This provides for unranked trees a functionality similar,
for instance, to one of the well-known comparison utilities (e.g., diff, cmp, fc) that compare
the contents of files, finding common contents and differences in them.

The emphasis of this paper is not, however, on clone detection by anti-unification. It can
be a topic of separate research where (a) one shows that the R-generalization approach can
cover a wide range of currently existing techniques to find similarities between different pieces
of code, and (b) presents a clone detection method (and its implementation) fully, starting
from code preprocessing till returning the actual interesting clones, where R-generalization
performs the task of selecting clone candidates. In this paper we presented the R-anti-
unification itself from the theoretical point of view and just tried to indicate some possibilities
of its application in clone detection.

We proved properties of R-generalization for a generic R, i.e., for the entire class of
rigidity functions. Specializing R with a particular function, we obtain a specific instance of
R-generalization. We saw how certain known generalization problems fall into the class of
specific instances of R-generalization in this way.
R-generalization can be made more precise by permitting to generalize term sequences of

equal length with a sequence of term variables of the same length, instead of abstracting
the original sequences by a single hedge variable. One could think of another extension, to
allow a kind of recursive rigid generalization, extending the scope of rigid decomposition rule
to the hedges that we currently move to the store, whenever possible. It would require an
appropriate revision of the definition of rigid anti-unification.
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7 Final Comments

We have presented anti-unification algorithms for unranked terms and hedges, starting from a
minimal complete one and then designing a more efficient and flexible version for computing
only rigid anti-unifiers. We indicated possible applications of this technique in software code
clone detection.

There are a couple of possible directions in future work. One option is to bring in certain
higher-order features that can help to further improve the precision of rigid generalizations.
An example of such a higher-order extension would be the introduction of function variables.
With their help, the algorithm can compute generalizations of the arguments of terms whose
heads are distinct. Other interesting directions would be to perform unranked anti-unification
in a sorted setting or on compressed terms.
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