
Software Engineering for Self-Adaptive Systems:
A Second Research Roadmap
(Draft Version of May 20, 2011)

Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw
(Dagstuhl Seminar Organizer Authors)

r.delemos@kent.ac.uk, holger.giese@hpi.uni-potsdam.de, hausi@cs.uvic.ca,
mary.shaw@cs.cmu.edu

Jesper Andersson, Luciano Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ron
Desmarais, Schahram Dustdar, Gregor Engels, Kurt Geihs, Karl M. Goeschka, Alessandra
Gorla, Vincenzo Grassi, Paola Inverardi, Gabor Karsai, Jeff Kramer, Marin Litoiu, Antonia
Lopes, Jeff Magee, Sam Malek, Serge Mankovskii, Raffaela Mirandola, John Mylopoulos,

Oscar Nierstrasz, Mauro Pezzè, Christian Prehofer, Wilhelm Schäfer, Rick Schlichting, Bradley
Schmerl, Dennis B. Smith, João P. Sousa, Gabriel Tamura, Ladan Tahvildari, Norha M.

Villegas, Thomas Vogel, Danny Weyns, Kenny Wong, Jochen Wuttke
(Dagstuhl Seminar Participant Authors)

ABSTRACT
The goal of this roadmap paper is to summarize the state-
of-the-art and identify research challenges when developing,
deploying and managing self-adaptive software systems. In-
stead of dealing with a wide range of topics associated with
the field, we focus on four essential topics of self-adaptation:
design space for adaptive solutions, processes, from central-
ized to decentralized control, and practical run-time verifica-
tion and validation. For each topic, we present an overview,
suggest future directions, and focus on selected challenges.
This paper complements and extends a previous roadmap
on software engineering for self-adaptive systems published
in 2009 covering a different set of topics, and reflecting in
part on the previous paper. This roadmap is one of the
many results of the Dagstuhl Seminar 10431 on Software
Engineering for Self-Adaptive Systems, which took place in
October 2010.

1. INTRODUCTION
The complexity of current software systems has led the soft-
ware engineering community to investigate innovative ways
of developing, deploying, managing and evolving software-
intensive systems and services. In addition to the ever in-
creasing complexity, software systems must become more

This roadmap paper is a result of the Dagstuhl Seminar
10431 on Software Engineering for Self-Adaptive Systems in
October 2010.

versatile, flexible, resilient, dependable, energy-efficient, re-
coverable, customizable, configurable, and self-optimizing by
adapting to changes that may occur in their operational con-
texts, environments and system requirements. Therefore,
self-adaptation — systems that are able to modify their be-
havior and/or structure in response to their perception of
the environment and the system itself, and their require-
ments — has become an important research topic in many
diverse application areas.

It is important to emphasize that in all the many initiatives
to explore self-adaption, the common element that enables
its provision is usually software. Although software provides
the required flexibility to attain self-adaptability, the proper
realization of self-adaptation still remains a formidable in-
tellectual challenge. Moreover, only recently have the first
attempts been made to establish suitable software engineer-
ing approaches for the provision of self-adaptation. In the
long run, we need to establish the foundations that enable
the systematic development, deployment, management and
evolution of future generations of self-adaptive software sys-
tems.

The goal of this roadmap paper is to summarize the state-
of-the-art and identify research challenges when developing,
deploying, managing and evolving self-adaptive software sys-
tems. Specifically, we focus on development methods, tech-
niques, and tools that we believe are required when deal-
ing with software-intensive systems that are self-adaptive in
their nature. In contrast to merely speculative and conjec-
tural visions and ad hoc approaches for systems supporting
self-adaptability, the objective of this paper is to establish
a roadmap for research and identify the key research chal-
lenges. Instead of dealing with a wide range of topics associ-
ated with the field, we focus on four essential topics of self-
adaptation: design space of adaptive solutions, processes,
from centralized to decentralized control, and practical run-

Dagstuhl Seminar Proceedings 10431 
Software Engineering for Self-Adaptive Systems 
http://drops.dagstuhl.de/opus/volltexte/2011/3156



time verification and validation. The presentations of each
of the topic do not cover all related aspects; instead focused
theses are used as a means to identify challenges associated
with each topic. The four identified theses are the following.

• Design space for adaptive solutions — the need to de-
fine what is the design space for adaptive software sys-
tems, including the decisions the developer should ad-
dress.

• Processes — the need to define innovative generic pro-
cesses for the development, deployment, operation, main-
tenance, and evolution of self-adaptive software sys-
tems.

• From centralized to decentralized control — the need to
define a systematic engineering approach for designing
centralized or decentralized control schemes for soft-
ware adaptation.

• Practical run-time verification and validation — the
need to investigate verification and validation meth-
ods and techniques for obtaining inferential and incre-
mental assessments for the provision of confidence and
certifiable trust in self-adaptation.

The intent of this new roadmap paper is not to supersede the
previous paper on software engineering self-adaptive systems
[11], but rather to complement and extend it with additional
topics and challenges. The research challenges identified in
the previous paper are still valid. Moreover, it is too early
to re-assess the conjectures made in that paper. In order
to provide a context for this roadmap, in the following, we
summarize the most important challenges identified on the
first roadmap paper [11].

• Modeling dimensions — the challenge is to define mod-
els that can represent a wide range of system proper-
ties. The more precise the models are, the more ef-
fective they should be in supporting run-time analyses
and decision processes.

• Requirements — the challenge is to define a new lan-
guage capable of capturing uncertainty at an abstract
level. Once we consider uncertainty at the require-
ments stage, we must also find means of managing it.
Thus, we need to represent the trade-offs between the
flexibility provided by the uncertainty and the assur-
ances required by the application.

• Engineering — the challenge is to make the role of
feedback control loop more explicit. In other words,
feedback control loops must become first-class entities
throughout the lifecycle of self-adaptive systems. Ex-
plicit modeling of feedback loops will ease reifying sys-
tem properties to allow their query and modification
at run-time.

• Assurances — the challenge is how to supplement tra-
ditional V&V methods applied at requirements and de-
sign stages of development with run-time assurances.
Since system context changes dynamically at run-time,
systems must manage contexts effectively, and its mod-
els must include uncertainty.

In order to motivate and present a new set of research chal-
lenges associated with the engineering of self-adaptive soft-
ware systems, the paper is divided into four parts, each re-
lated to one of the new topics identified for this research
roadmap. For each topic, we present an overview, suggest
future directions, and focus on selected challenges. The four
topics are: design space for adaptive solutions (Section 2),
processes (Section 3), from centralized to decentralized con-
trol (Section 4), and practical run-time verification and val-
idation (Section 5). Finally, Section 6 summarizes our find-
ings.

2. DESIGN SPACE FOR ADAPTIVE SOLU-
TIONS

Designing self-adaptive software systems involves making
design decisions about observing the environment and the
system itself, selecting adaptation mechanisms, and enact-
ing those mechanisms. While most research on self-adaptive
systems deals with some subset of these decisions, to our
knowledge, there has been neither a systematic study of the
design space nor an enumeration of the decisions the devel-
oper should address.

2.1 Design Space Definitions
The design space of a system is the set of decisions, together
with the possible choices, the developer must make. A rep-
resentation of a design space is a static textual or graphical
form of a design space, or a subset of that space. Intu-
itively, a design space is a Cartesian space with dimensions
representing the design decisions and values along those di-
mensions representing the possible choices. Points in the
space represent concrete designs. In practice, most interest-
ing design spaces are too rich to represent in their entirety,
so representations of the design space capture only the prin-
cipal decisions. Typically, the design dimensions are not
independent, so making one decision may preclude, or make
irrelevant, other decisions [5, 46].

Several partial methodologies for identifying and represent-
ing design spaces have emerged. For example, Kramer and
Magee [29] outline three tiers of decisions the developer must
make — ones that pertain to goal management, change man-
agement, and component control. Dobson et al. [12] identify
four aspects of self-adaptive systems around which decisions
can be organized: collect, analyze, decide, act. Finally, Brun
et al. [6] discuss the importance of making the adaptation
control loops explicit during the development process and
outline several types of control loops that can lead to adap-
tation. Specific design spaces have also been proposed in the
form of taxonomies. For example, Brake et al. [4] introduce
(and Ghanbari et al. [17] later refine) a taxonomy for perfor-
mance monitoring of self-adaptive systems together with a
method for discovering parameters in source code. Ionescu
et al. [24] formally define controllability and observability for
web services and show that controllability can be preserved
in composition.

2.2 Key Design Space Dimensions
In this section, we outline a design space for self-adaptive
systems with five principal dimensions — clusters of design
decisions pertinent to self-adaptive systems. The clusters
are: observation, representation, control, identification, and



adaptation mechanism. Each cluster provides additional
structure in the form of questions a developer should con-
sider when designing such a system. While we hope our enu-
meration will help formalize and advance the understanding
for self-adaptive system design, it is not intended to be com-
plete and further work on expanding and refining this design
space is necessary and appropriate.

2.2.1 Representation
The representation cluster is concerned with design deci-
sions about run-time problem and system representations.
To enable adaptation, key information about the problem
and system has to be accessible at run-time.

The internal representation of the environment forms one
important design decision. Choices include explicit repre-
sentations — e.g., graph models, formulae, bounds, objec-
tive functions, etc. — or implicit representations in code.

The internal representation of the system itself forms an-
other design decision. The choices here are similar to those
for the environment representation.

2.2.2 Observation
The observation cluster is concerned with design decisions
regarding what information is observed by the self-adaptive
system and when such observations are made.

A key design decision about self-adaptive systems is “what
information will the system observe?” In particular, “what
information about the external environment and about the
system itself will need to be measured and represented in-
ternally?” To make these measurements, the system will
need some set of sensors. Some of the measurements can
be made implicitly, e.g., by inferring them from the state
of the system or success or failure of an action. Choices
include different aspects of goals, domain knowledge, envi-
ronment, and the system itself necessary to make decisions
about adaptation toward meeting the adaptation goals.

Given the set of information the system observes, another
important design decision is “how will the system determine
that information?” The system could make direct measure-
ments with sensors, infer information from a proxy, extrap-
olate based on earlier measurements, aggregate knowledge,
etc.

Given a way to observe, there are two important decisions
that relate to timing: “what triggers observation?”and“what
triggers adaptation?” The system could be continuously ob-
serving or observation could be triggered by an external
event, a timer, an inference from a previous observation,
deviation or error from expected behavior, etc. Thus, the
observation can happen at a fixed delay, on-demand, or em-
ploy a best-effort strategy. The same decisions relate to
when the adaptation triggers, which is also relevant to the
control cluster.

Handling uncertainty in the measurements is another de-
cision related to observation. Filtering, smoothing, and re-
dundancy are just some of the solutions to dealing with noise
and uncertainty.

2.2.3 Control
The control cluster is concerned with the system’s run-time
decision making toward self-adaptation.

How to compute how much change to enact forms one design
decision in this cluster. Possible choices include the change
being a predefined constant value or proportional to the de-
viation from the desired behavior. The PID technique adds
three values to determine the amount of change: a value
proportional to the control error, a value proportional to
the derivative of the error, and a value proportional to the
integral of the error.

Feedback loops play an integral role in adaptation decisions.
Thus, key decisions about a self-adaptive system’s control
are: “what are the involved control loops?” and “how do
those control loops interact?” The choices depend on the
structure of the system and the complexity of the adaptation
goals. Control loops can be composed in series, parallel,
multi-level (hierarchical), nested, or independent patterns.
Brun at al. [6] have further discussed the choices and impact
of control loops on the design of self-adaptive systems.

What aspects of the system can be adapted form another
design decision. Systems can change parameters, repre-
sentations, and resource allocations, choose among precon-
structed components and connectors, synthesize new com-
ponents and connectors, and augment the system with new
sensors and actuators.

The possible adaptations those aspects can undergo form an-
other design decision. Choices include aborting, modifying
data, calling procedures, starting new processes, etc.

The design decision from the observation cluster that deals
with what triggers adaptation is closely related to the control
cluster.

2.2.4 Identification
At every moment in time, the self-adaptive system is in
one instantiation. The self-adaptation process consists of
traversing the space of such instantiations. The identifica-
tion cluster is concerned with identifying those instantiations
the system may take on at run-time. Instantiations can de-
scribe system structure, behavior, or both.

For each goal, there is a decision about which instantiations
could satisfy that goal. The main concern of this decision is
enumerating concrete sets of possible structures, behaviors,
states, parameter values, etc. It is likely that not all identi-
fied instantiations will be supported at run-time. Selecting
those that will be supported is another design decision.

Identifying the relevant domain assumptions and contexts
for each instantiation is another design decision in this clus-
ter. The system can then recognize the context and enact
the relevant instantiations.

Finally, identifying the transition cost between instantia-
tions informs the system of the run-time costs of certain
types of self-adaptation.

2.2.5 Adaptation Mechanisms



The choice of adaptation mechanisms the self-adaptive sys-
tem employs is an important cluster of design decisions.

The mechanisms can be represented explicitly or implicitly
in the system. For example, self-managing systems with
autonomic components typically have explicit adaptation
mechanisms. Meanwhile, self-organizing systems often ex-
hibit self-adaptation as an emergent property and do not
explicitly define the adaptation mechanisms. The decision
concerning control loops from the control cluster is closely
related to this decision. Some control loops can be explicitly
expressed in the design, whereas others are emergent. It is
also possible to create hybrid explicit-implicit self-adaptive
systems.

Support of the self-adaptation forms another design deci-
sion. Support can be enacted through plugin architectures,
component substitution, web services, etc. Related to this
decision is what to do when adaptation fails. Choices in-
clude trying again, trying a different adaptation mechanism
or strategy, observing the environment and the system itself
to update internal representations, etc.

In selecting the adaptation mechanisms, it is important to
consider the causes of adaptation. Examples of causes in-
clude not satisfying goals that relate to non-functional re-
quirements (e.g., response time, throughput, energy con-
sumption, reliability, fault tolerance), behavior, undesirable
events, state maintenance, anticipated change, and unantic-
ipated change.

2.3 Design Space Challenges
The design space described above can help formalize and
advance the understanding of self-adaptive system design.
However, it is not complete and further exploration and ex-
pansion is necessary to aid self-adaptive system developers.
A more complete list can help ensure designers avoid leaving
out critical decisions.

The main challenge of understanding the design space is to
infuse a systematic understanding of the options for self-
adaptive control into the design process. The developer
should understand the trade-offs among different options
and the quantitative and qualitative implications of the de-
sign choices. Further, we need to understand the effects of
these design decisions, and their order, on the quality of the
resulting system.

Each cluster we outlined above needs to be further expanded
and refined. Further, validation of the decisions against real-
world examples can serve as the framework for describing
options. Dimensions in the self-adaptive design space are
not independent and the interactions between the decisions
in those clusters need to be explored. Understanding the de-
cision relationships can narrow the search space and reduce
the complexity of the design and of the design process.

An important challenge to consider is bridging the gap be-
tween the design and the implementation of self-adaptive
systems. Frameworks and middleware (e.g., [13, 35]) can
help bridge that gap, providing developers with automati-
cally generated code and reusable models for their specific
design decisions. This challenge is even more difficult in the

case of reengineering existing non-self-adaptive systems or
integrating self-adaptive and non-self-adaptive systems.

Finally, of particular importance is the understanding of in-
teractions of control loops and self-adaptation mechanisms.
If we are to build complex systems, and systems-of-systems
with self-adaptive components, we must understand how
these mechanisms and their relevant control loops interact
and affect one another.

3. PROCESSES
Traditionally, software engineering (SE) research primarily
focuses on principles for developing high quality software,
rather than post-deployment activities, such as maintenance
or evolution [37]. Meanwhile, it has been commonly ac-
cepted in the SE community that software implementing
real world applications must continually evolve according
to changes; otherwise, the software does not fulfill its ever
changing requirements and therefore, will become outdated
earlier than expected [32, 33]. This awareness has produced
different software process models that address the inherent
need for change and evolution by following iterative, in-
cremental and evolutionary approaches to software devel-
opment rather than strictly separating sequenced phases of
requirements engineering, design, implementation, and test-
ing [31, 37].

In the last decade, software evolution and maintenance have
emerged as a key research field in SE [37] that separates the
time before and the time after the software is delivered, or in
other words, between development-time, deployment-time,
and run-time in the software lifecycle. Post-delivery changes
are typically done by re-entering the development stages of
requirements engineering, design, implementation, and test-
ing, which results in a new version of a software product or
a patch. This is released to replace or enhance the currently
running version [28]. Such releases are usually performed
during scheduled down-times of the system compromising
the system’s availability. Thus, the whole maintenance pro-
cess has been mainly done off-line guided by human-driven
change management activities and decoupled from the run-
ning system.

However, such a lifecycle does not meet the requirements
of self-adaptive software [11] that we are envisioning. A
self-adaptive software system operating in a highly dynamic
world must adjust its behavior automatically in response to
changing environments or requirements while shifting the
human role from operational to strategic. Humans define
adaptation goals and new application or domain require-
ments, and the system performs all necessary adaptations
autonomously at run-time. Throughout the system’s life-
cycle including adaptation periods, the system needs to be
available and provide functionality to users or other systems
keeping acceptable levels of quality of services (QoS).

Different researchers [1, 2, 22, 23] argue that we have to
reconceptualize the whole SE process for modern software
systems and particularly for the case of self-adaptive sys-
tems.

The problem we address is concerned with certain software
evolution activities [8], more specifically their timing in the



process. This problem has three dimensions:

1. Software lifecycle phases [39] (e.g., development, de-
ployment, operation, maintenance, and evolution).

2. Software engineering disciplines [39] (e.g., requirements
engineering, design, implementation, validation, verifi-
cation, etc.), and activities included in the disciplines
(e.g., requirements elicitation, prioritization, and vali-
dation).

3. Software evolution activities timeline [8], that is, when
change takes place (development-time, deployment-time,
run-time).

The rationale is that in a self-adaptive software system life-
cycle evolution activities are not bound to the traditional
timeline (e.g., development-time), but are shifted to run-
time. However, such shifts may introduce new process re-
quirements in a different phase, for instance, that additional
activities are performed during development. One example
of changed timing for activities in self-adaptive systems is
verification and validation. The dynamic nature of running
self-adaptive systems and their environments requires con-
tinuous validation and verification to assess the system at
run-time, which is traditionally done at development-time
and which, however, requires new and efficient techniques
for the run-time case (cf. Section 5). The consequence is
a different and more dynamic SE process for self-adaptive
systems that we want to understand and elaborate.

3.1 Example: Migrating Evolution Activities
To illustrate the specifics of SE processes for self-adaptive
software systems and their differences to traditional software
development and evolution activities, we compare the tradi-
tional approach to fix faults with the automatic workarounds
approach [9, 10]. Automatic workarounds aim to mask func-
tional faults at run-time by automatically looking for and
executing alternative ways to perform actions that lead to
failures.

Besides the implementation of new or changing requirements,
the evolution of software systems may include corrective
maintenance activities [47]. Traditionally, users experience
failures and report them to developers who are then in charge
of analyzing the failure report, identifying the root cause of
the problem, implementing the changes, and releasing the
new fixed version of the software. Traditionally these activ-
ities are done off-line.

In contrast, the automatic workarounds mechanism exploits
the intrinsic redundancy of “equivalent operations” usually
offered by software systems for different needs, but for ob-
taining the same functionality. Consider for example a con-
tainer component that implements an operation to add a
single element, and another operation to add several ele-
ments at the same time. To add two elements, it is possible
to add one element after the other, or as an equivalent al-
ternative to add them both at the same time. If adding two
elements in sequence causes a failure at run-time, the auto-
matic workarounds mechanism tries to execute the equiva-
lent operation instead, as an attempt to avoid the problem.

Thus, the automatic workarounds approach partially moves
corrective maintenance activities to run-time. Once the user
reports a failure, and based on that information, the auto-
matic workarounds mechanism tries to find a workaround.
It checks whether the failure has been experienced by other
users, and a workaround has already been found. If so, it
first tries to execute the known valid workaround. If no
workaround is known, or the known workaround no longer
works, the mechanism scans the list of equivalent operations,
and checks whether they serve as workarounds.

The automatic workaround mechanism illustrates how some
activities that were previously performed off-line in the main-
tenance phase by software developers are now performed at
run-time by a self-adaptive mechanism. One such activity is
failure analysis, were the causes for a failure are analyzed.
In traditional maintenance, the failure report is analyzed
by the developers while the self-adaptive behavior performs
the analysis in the automatic workaround mechanism. In
general, compared to traditional SE processes, adding self-
adaptive behavior to a system will impact how processes
supporting lifecycle phases are defined and connected. The
automatic workarounds approach exemplifies three interest-
ing characteristics of a process for self-adaptive systems

• Migrating activities from one phase to another — The
analyzing failure reports activity is (partially) moved
from the development-time (maintenance) phase to run-
time. This (partially) delegates the developer’s respon-
sibility for this activity to a self-adaptation mechanism
in the self-adaptive system.

• Introducing new activities in other lifecycle phases —
Introducing the automatic workaround mechanism re-
quires that additional activities are performed in the
development and maintenance phases. One example is
the identification of equivalent operations. Whenever
some behavior is“assigned”to the automatic workaround
mechanism, equivalent operations for this behavior must
be identified.

• Defining new lifecycle phase inter-dependencies — The
automatic workaround mechanism searches for equiva-
lent operations, executes them, and lets the users eval-
uate the results. This goes on until the user approves
the results, and thus the workaround, or until no more
equivalent operations could be found. If this is the
case, the mechanism is not able to provide a solution
to the problem. T he only fallback available is to gen-
erate a failure report and send it to the maintenance
organization where it will be dealt within the tradi-
tional maintenance activity. This exemplifies how tra-
ditional maintenance activities integrate with run-time
activities, for instance, as information providers or as
fallback activities if run-time activities do not succeed.

3.2 Understanding a Self-Adaptive Software
System’s Lifecycle

Understanding how software is best developed, operated,
and maintained is an ever-present research challenge in the
SE field. During the last two decades we have witnessed
the development of ultra-large-scale, integrated, embedded,



and pervasive software systems that have introduced new
challenges concerned with system operations: dynamic en-
vironments may change the goals of the system, the lack of
intuitive interfaces makes it difficult for an external party to
be responsible for the operation, and finally, the vast num-
ber of systems makes the operations task too complex for
a single centralized machine or system operator. One an-
swer to these advances is to instrument software systems
with functionality that makes them more autonomous. This
autonomy means that systems take over some of the respon-
sibilities previously performed by other roles in the software
lifecycle, such as sensing failures and automatically recover-
ing from them.

An SE process is a workflow of activities that are performed
by roles and that use and produce artifacts in order to de-
velop, operate, and evolve a software system. In general, we
conceive two extreme poles of SE processes [22, 23]. One
pole corresponds to the traditional process creating a sys-
tem that is frozen or static with respect to adaptation and
evolution at run-time. In contrast, the other pole describes
a process with almost all activities performed at run-time,
which enables sophisticated self-adaptation capabilities. In
practice, a process for a self-adaptive software system is po-
sitioned as a trade-off in between these two extreme poles.

Our goal is a generic process engineering framework for self-
adaptive software systems that considers influential factors
by providing a library of reusable process, activity, role, and
artifact definitions. The framework guides and supports an
engineer in understanding, specifying, tuning, and enact-
ing an SE process for a concrete self-adaptive system. The
framework is based on process models specifying how pro-
cesses are carried out, because such descriptions material-
ize how a self-adaptive software system is developed and
evolved. In addition they promote discussions, reuse, and
even automated analysis [41], which in turn supports under-
standing the lifecycle of a self-adaptive system.

The key issue is the design of the process engineering frame-
work for self-adaptive software systems, which includes three
main components supporting process comprehension, spec-
ification, optimization, and enactment. The three compo-
nents are (1) the library containing definitions of reusable
process elements, (2) the specification of a concrete process
for a specific self-adaptive software system, and (3) the anal-
ysis and tuning of process specifications.

Definitions of process elements for the library as well as pro-
cess specifications should be based on an existing framework,
like the Software & Systems Process Engineering Metamodel
Specification (SPEM) [39]. SPEM provides a modeling lan-
guage for process specifications including lifecycle phases,
milestones, roles, activities, and work products. We need
to identify required extensions to SPEM in order to model
specifics of processes for self-adaptive systems, like the phases
when process elements are employed and their relationships
to other phases. For example, in the automatic workarounds
approach, we identified one activity (analyze failure report)
that may be performed as part of a regular maintenance
phase or at run-time. Another example is to model depen-
dencies between phases, e.g., an activity can only be per-
formed at run-time if another activity has been performed

at development-time. Extending SPEM will result in a lan-
guage for the process engineering framework to define pro-
cess elements for the library, to model concrete processes
for self-adaptive software systems, and to analyze and tune
these processes.

The first framework component, defining reusable elements
for the generic library, requires a basic understanding of SE
processes, self-adaptive systems, and the influential factors
between a process and a self-adaptive system. This un-
derstanding is materialized by those elements that define
processes, activities, roles, or artifacts, and it is persisted
and shared as knowledge, like best-practices, in the library.
Thus, the library supports the understanding and specifica-
tion of concrete processes by reusing the library’s knowledge
and element definitions, which is addressed by the second
component.

Starting with a vague mental model of the self-adaptive sys-
tem as the product to be developed, the goals and the envi-
ronments of the system, an engineer instantiates the library
to create a process model for this specific product. The pro-
cess engineering framework provides methods for decision
support and product/process analysis that will assist an en-
gineer in this instantiation task. Self-adaptive behavior in-
troduces a complicated bi-directional dependency relation
between process modeling and software design. The frame-
work’s methods will have to take several factors into con-
sideration including the type of adaptation that is required
at run-time, the associated cost, and the consequences for
other lifecycle activities. In our example, there is a design
decision (to use the automatic workaround mechanism) that
introduces additional activities as part of the development
activities (defining the scope of the mechanism, i.e., which
operations should be covered by the mechanism, and iden-
tifying equivalent operations for this defined scope).

The third framework component explicitly addresses the
product/process analysis and tuning to obtain an enactable
process specification that appropriately fits the specific prod-
uct and the product’s goals and environments. A typical
sensitivity point is the degree of adaptation and evolution
support at run-time. Any design decision concerned with
self-adaptive behavior must analyze, for instance, the over-
head it introduces. Is the overhead acceptable or not? If
not, are pre-computed adaptations possible to tune the pro-
cess by reducing the overhead? As stated in [1] run-time
validation and verification may not match the requirements
of efficiency to allow the systems to timely react accord-
ing to changes. This exemplifies that software design and
process analysis/tuning are not isolated activities, and it
promotes the continuous integration of design decisions and
process analysis/tuning throughout a self-adaptive software
system’s lifecycle.

Finally, it is likely that an engineer uses the three compo-
nents of the process engineering framework iteratively and
concurrently rather than sequentially. For example, while
specifying a process, an engineer does not find a suitable
process element definition in the library, and thus, new def-
initions will be created and added to the library. Or dur-
ing product/process analysis, an engineer identifies the need
for process optimization, and searches the library for more



suitable process elements definitions that could be used to
tune the process. Like software development processes, the
process of using the framework itself is characterized by in-
cremental, iterative, and evolutionary principles.

Another dimension that should be considered from the be-
ginning when setting up a process engineering framework is
the degree of automation. The process uses or is based on
models throughout the lifecycle. Since the system evolves
at run-time, the models have to evolve as well (model evolu-
tion) and models need to be accessible at run-time, either on-
line or off-line [2]. The availability of run-time models makes
it possible to use them as interfaces for monitoring [51] and
adapting [50] a running system, and to perform what-if anal-
ysis and consultation [2], e.g., to test adaptations at the level
of models before actually adapting the system. In addi-
tion, process activities must be based on up-to-date models.
Changes in a run-time model allow the dynamic derivation
of new capabilities to respond to situations unforeseen in
the original design. Not all need to be new, we envisage the
use of a library of model transformation strategies [1] to de-
rive system models as well as keeping the process up-to-date
with respect to the running system and vice versa. As an
initial step, model synchronization techniques have already
been applied at run-time to keep multiple system models
providing different views on a running system up-to-date
and consistent to each other [50, 51].

3.3 Research Challenges
The different problems and dimensions highlighted in the
previous sections can be summarized by the following re-
search challenges.

First of all, since dynamic environments may change the
goals of the system, we need proper means to fully under-
stand the nature of these systems and the key characteristics
of their lifecycles to enhance the comprehension, specifica-
tion, optimization, and enactment of the software process.
More autonomy calls for the capability of self-reacting to
anomalous situations. Both probing and reacting must be
properly planned, designed, and implemented, and they also
require that some activities, which were traditionally per-
formed before releasing the system, be shifted at run-time.

Understanding how software processes change when devel-
oping a self-adaptive system also requires that influential
factors be identified and understood. Particular factors im-
pose specific self-* capabilities and also the degree of auton-
omy the system must embed. A clear identification of these
factors is essential for designing a suitable process, identi-
fying the required degree of automation, and positioning it
between the two aforementioned poles. Some mild capa-
bilities can be guaranteed through slightly static processes,
while more advanced, extreme capabilities call for dynamic
processes.

These two challenges impose a proper formalization of the
software processes to allow involved parties to fully under-
stand the roles, activities, and artifacts at each stage, but
also to increase knowledge and foster reuse. Since some
solutions for process definition already exists, and SPEM
is imposing as one of the most interesting/promising one,
one should analyze it to understand what can be defined

through the standard model, and identify the extensions re-
quired to take into account of the specifics of processes for
self-adaptive systems

A SPEM-like solution is the enabler for defining a suitable
library of generic, reusable components. The availability of
these elements would turn the definition of suitable software
processes, for the different self-adaptive systems, into the as-
sembly of pre-existing blocks with a significant gain in terms
of quality, speed, and accuracy of delivered solutions. Or-
thogonally, it would also allow for the analysis and tuning
of designed processes to obtain enactable solutions that ap-
propriately fit the different products, the goals of involved
stakeholders, and the environments in which they operate.
Accurate analysis and optimization capabilities are manda-
tory to oversee the actual release of these processes, but
they are also important to govern their evolution since it is
foreseeable that these processes must evolve in parallel with
developed systems, and they must remain aligned and con-
sistent with them and with the environment in which they
operate.

4. FROM CENTRALIZED TO DECENTRAL-
IZED CONTROL

Control loops have been identified as crucial elements to re-
alize the adaptation of software systems [12, 26, 45]. As
outlined in the the former road map [11], a single central-
ized control component may realize the adaptation of a soft-
ware system, or multiple control components may realize the
adaptation of a composite of software systems in a decentral-
ized manner. In a decentralized setting, the overall system
behavior emerges from the localized decisions and interac-
tions. These two cases of self-adaptive behavior, in the form
centralized and decentralized control of adaptation are two
extreme poles. In practice, the line between the two is rather
blurred, and development may result in a compromise. We
illustrate this with a number of examples.

Adaptation control can be realized by a simple sequence of
four activities: monitor, analyze, plan, and execute (MAPE).
Together, these activities form a feedback control system
from control theory [44]. A prominent example of such adap-
tation control is realized in the Rainbow framework [14].
Hierarchical control schemes allow management or the com-
plexity of adaptation when multiple concerns (self-healing,
self-protection, etc.) have to be taken into account. In this
setting, higher level adaptation controllers determine the set
values for the subordinated controllers. A prominent exam-
ple of a hierarchical control schema is the IBM architectural
blueprint [20]. In a fully decentralized adaptation control
schema, relatively independent system components coordi-
nate with one another and adapt the system when needed.
An example of this approach is discussed in [16] in which
component managers on different nodes automatically con-
figure the system’s components according to the overall ar-
chitectural specification.

These examples show that a variety of control schemas for
self-adaptive systems are available. Our interest in this sec-
tion is twofold: first, we are interested in understanding the
drivers to select a particular control schema for adaptation;
and second, we are interested in getting better insight in
the possible solutions to control adaptation in self-adaptive



systems. Both the drivers and solutions are important for
software engineers of self-adaptive system to choose the right
solution concerning centralized or decentralized control. In
the remainder of this section, we report on our findings con-
cerning this endeavor and outline some of the major research
questions we see to achieve that a systematic engineering
approach for designing centralized or decentralized control
schemes for software adaptation.

4.1 Distribution versus Decentralization
Before we elaborate on the problems and possible solutions
of different control schemas in self-adaptive systems, we first
clarify terminology. In particular, we want to clarify the
terms distribution and decentralization, two terms that are
often mixed by software engineers in the community of self-
adaptive systems, leading to a lot of confusion.

Textbooks on distributed systems (e.g., [48]) typically differ-
entiate between centralized data (in contrast to distributed,
partitioned, and replicated data), centralized services (in
contrast to distributed, partitioned, and replicated services)
and centralized algorithms (in contrast to decentralized al-
gorithms).

Our main focus with respect to decentralization is on the
algorithmic aspect. In particular, with decentralization we
refer to a particular type of control in a self-adaptive soft-
ware system. With control, we mean the decision making
process that results in actions that are executed by the self-
adaptive system. In a decentralized system there is no single
component that has the complete system state information,
and the processes make adaptation decisions based only on
local information. (Traditional textbooks typically also con-
sider the lack of a global clock as an essential property of a
decentralized algorithm.) In a centralized self-adaptive sys-
tem on the other hand, decisions regarding the adaptations
are made by a single component.

With distribution, we refer to the deployment of a software
system to the hardware. Our particular focus of distribution
here is on the deployment of the managed software system.
A distributed software system consists of multiple software
components that are deployed on multiple processors that
are connected via some kind of network. The opposite of
a distributed software system is a system consisting of soft-
ware that is deployed on a single processor.

From this perspective, control in a self-adaptive software
system can be centralized or decentralized, independent of
whether the managed software is distributed. In practice,
however, when the software is deployed on a single proces-
sor, the adaptation control is typically centralized. Similarly,
decentralized control often goes hand in hand with distribu-
tion of the managed software system.

The existing self-adaptive literature and research, in par-
ticular those with a software engineering perspective, have
by and large tackled the problem of managing either lo-
cal or distributed software systems in a centralized fashion
(e.g., [14, 20, 40]). While promising work is emerging in de-
centralized control of self-adaptive software (e.g., [7, 16, 36,
52, 53]), we believe that there is a dearth of practical and
effective techniques to build systems in this fashion.

It is important to highlight that the adaptation control schema
we consider here (from centralized to decentralized control)
is just one dimension of the design space of a distributed
self-adaptive system. Other aspects of the design space in-
clude the actual distribution of the MAPE components, the
distribution of the data and supporting services required to
realize adaptation, the mechanisms for communication and
coordination, etc.

4.2 Drivers for Selecting a Control Schema for
Adaptation

Two key drivers for selecting the right control schema for
adaptation in self-adaptive systems are the characteristics
of the domain and the requirements of the problem at hand.

4.2.1 Domain Characteristics
Specific properties of the domain may put constraints on the
selection of a particular control schema for adaptation. We
give a number of example scenarios.

• In open systems, it might be the case that no trustwor-
thy authority exists that can realize central control.

• When all information that is required for realizing adap-
tations is available at the single node, a centralized
control schema may be easy to realize. However, in
other settings, it might be very difficult or even infea-
sible to get centralized access to all the information
that is required to perform an adaptation.

• The communication network may be unreliable causing
network disruptions that require decision making for
adaptations based on local information only.

4.2.2 Requirements of the Problem at Hand
Stakeholder requirements may exclude particular solutions
to realize adaptations.

If optimization is high on the priority list of requirements, a
centralized approach may be easier to develop and enables
optimization to be rather straightforward. On the other
hand, in a decentralized approach, meeting global goals is
known to be a complex problem. Hence, we have to com-
promise on the overall optimality in most cases.

For systems in which guarantees about system wide prop-
erties are crucial, fully decentralized solutions can be very
problematic. Decentralized control imposes difficult chal-
lenges concerning consistency, in particular in distributed
settings with unreliable network infrastructures. However,
if reaction time is a priority, exchanging all monitored data
that is required for an adaptation may be too slow (or too
costly) in a centralized setting.

When scalability is a key concern, a decentralized solution
may be preferable. Control systems with local information
scale well in terms of size, and also regarding performance
as the collection of information and control implementation
are local. In contrast, scalability in a centralized setting
is limited as all control information must be collected and
processed at the single control point.



A central control scheme is also less robust as it results in a
single point of failure. In a decentralized setting, when sub-
systems get disconnected, they may be able to operate and
make decisions based on the local information only, hence
increasing robustness.

4.3 Patterns for Interacting Control Loops
Ideally, we would like to have a list of problem character-
istics/requirements and then match solutions against these.
However, in practice, as stakeholders typically have multi-
ple, often conflicting requirements, any solution will imply
tradeoffs.

We have identified different solutions in the form of patterns
of interacting control loops in self-adaptive systems. Pat-
terns are an established way to capture design knowledge
fostering comprehension of complex systems, and serving as
the basis for engineering such systems. Each pattern can
be considered as a particular way to orchestrate the con-
trol loops of complex self-adaptive software systems, as we
explained in Section 2.2.3.

In order to describe the different patterns, we consider the
interactions among the different phases of control loops re-
alized by the MAPE components. Typically only the M and
E phases interact with the managed system (to observe and
adapt the system respectively). Furthermore, we consider
possible peer interactions among phases of any particular
type (e.g., interactions between P phases), and interactions
among phases that are responsible for subsequent phases
(e.g., an A phase interacts with a P phase, or a P phase
that interacts with an E phase). According to the different
interaction ways we have identified five different patterns
that we briefly illustrate in the following.

Pattern 1: Hierarchical Control In the hierarchical con-
trol pattern, the overall system is controlled by a hierarchical
control structure where complete MAPE loops are present
at all levels of the hierarchy. Generally, different levels op-
erate at different time scales. Lower levels loops operate
at a short time scale, to guarantee timely adaptation con-
cerning the part of the system under their direct control.
Higher levels operate at a longer time scale and with a more
global vision. MAPE loops at different levels interact with
each other by exchanging information. The MAPE loop at
a given level may pass to the level above information it has
collected, possibly filtered or aggregated, together with in-
formation about locally planned actions, and may issue to
the level below directives about adaptation plans that should
be refined into corresponding actions.

This pattern naturally fits systems with a hierarchical ar-
chitecture. However, independently of the actual system
architecture, hierarchical organization of the control system
has been proposed (e.g., in [30]) to get a better separation
of concerns among different control levels.

Pattern 2: Master/Slave The master/slave pattern cre-
ates a hierarchical relationship between one master that is
responsible for the analysis and planning part of the adapta-
tion and multiple slaves that are responsible for monitoring
and execution. Figure 1 shows a concrete instance of the
pattern with two slaves.

Figure 1: Master-slave pattern

In this case, the monitor components M of the slaves moni-
tor the status of the local managed subsystems and possibly
their execution environment and send the relevant informa-
tion to the analysis component A of the master. A, in turn,
examines the collected information and coordinates with the
plan component P, when a problem arises that requires an
adaptation of the managed system. The plan component
then puts together a plan to resolve the problem and coor-
dinates with the execute components (E) on the slaves to
execute the actions to the local managed subsystems.

The master/slave pattern is a suitable solution for appli-
cation scenarios in which slaves are willing to share the
required information to allow centralized decision making.
However, sending the collected information to the master
node and distributing the adaptation plans may impose a
significant communication overhead. Moreover, the solution
may be problematic in case of large-scale distributed systems
where the master may become a bottleneck.

Pattern 3: Regional Planner In the regional planner
pattern, a (varying) number of local hosts are hierarchically
related to a single regional host. The local hosts are respon-
sible for monitoring, analyzing and executing, while the re-
gional host is in charge of the planning part. In this case,
the monitor component M of each local host monitors the
status of the managed subsystem and possibly its execution
environment, and the local analysis component A analyzes
the collected information, and reports the analysis results
to the associated regional plan component P. P collects this
information from all the hosts under its direct supervision,
thus acquiring a global knowledge of their status. The re-
gional P is in charge to evaluate the need of adaptation of
the managed system and, in case, to elaborate an adaptation
plan to resolve the problem, coordinating its decisions with
other peer regional plan components. The plan can then be
put in action activating the execute components E on the
local hosts involved in the adaptation.

Regional planner is a possible solution to the scalability
problems with master/slave. Regions may also map to own-
ership domains where each planner is responsible for the



planning of adaptations of its region.

Pattern 4: Fully Decentralized In this pattern, each
host implements a complete MAPE loop, whose local M, A,
P and E components coordinate their operation with corre-
sponding peer components of the other hosts. Ideally, this
should lead to a flexible sharing of information about the sta-
tus of the managed systems, as well as the results of the anal-
ysis. The triggering of possible adaptation actions is then
agreed on and managed by the local P components, which
then activate their local E components to execute the actions
to the local managed subsystems. In practice, achieving a
globally consistent view on the system status, and reaching
a global consensus about suitable adaptation actions is not
an easy task. In this case, it could be preferable to limit the
interaction among peer control components to get some par-
tial information sharing and some kind of lose coordination.
Generally, this may lead to sub-optimal adaptation actions,
from the overall system viewpoint. However, depending on
the system at hand and the corresponding adaptation goals,
even local adaptation actions based on partial knowledge of
the global system status may lead to achieve globally opti-
mal goals (TCP adaptive control flow is a typical example
of this).

Figure 2: Decentralized pattern

Pattern 5: Information Sharing In this pattern, each
host owns local M, A, P and E components, but only the
monitor components M communicates with the correspond-
ing peer components. Therefore the information collected
about the status of the managed systems is shared among
the various monitors, while the analysis of the collected data
and the decision about possible adaptation actions taken by
the plan components P are performed without any coordi-
nation action with the other hosts.

Information sharing is for example useful in peer-to-peer sys-
tems where peers can perform local adaptations but require
some global information. One possible approach to share
such global information is by using a gossip approach.

4.4 Outlook
So far, the research community on self-adaptive and auto-
nomic systems has spent little effort in studying the inter-

actions among components of MAPE loops. Our position of
making the control loops explicit underlines the need for a
disciplined engineering practice in this area. Besides the con-
solidation of architecture knowledge in the form of different
MAPE configurations as patterns, we also need practical in-
terface definitions (signatures and APIs), message formats,
and protocols. The necessity of such definitions has par-
tially already been appreciated in the past, e.g., in [34] the
authors standardize the communication from the A to the
P component by using standard BPEL (Business Process
Execution Language) as the data exchange format, but no
comprehensive approach exists so far.

In terms of future research, there are a number of interesting
challenges that need to be investigated when considering
different self-adaptive control schemes, including:

• Pattern applicability — in what circumstances and for
what systems are the different patterns of control ap-
plicable? Which quality attribute requirements hinder
or encourage which patterns? What styles and do-
mains of software are more easily managed with which
patterns?

• Pattern completeness — what is the complete set of
patterns that could be applied to self-management?

• Quality of service analysis — for decentralized ap-
proaches, what techniques can we use to guarantee
system-wide quality goals? What are the coordination
schemes that can enable guaranteeing these qualities?

We already mentioned the need for studying other aspects
of the design space of adaptation in self-adaptive software
systems, including distribution of the MAPE components,
distribution of the data and supporting services required to
realize adaptation, etc.

Finally, there may be a relationship between the architecture
of the managed system and the architecture of the manage-
ment system. How do we characterize this relationship and
help us to choose the appropriate management patterns for
the appropriate systems?

5. CONTROL SCIENCE FOR RUN-TIME V&V
FOR SELF-ADAPTIVE SYSTEMS

In an impressive research report published in 2010, US Air
Force (USAF) chief scientist Werner Dahm identified “con-
trol science” as as a top priority for the USAF science and
technology research agenda for the next 20 years [54]. Con-
trol science develops verification and validation tools and
techniques to allow humans to trust decisions made by au-
tonomous or self-adaptive systems. According Dahm, the
major barrier preventing the USAF from gaining more ca-
pability from autonomous systems is the lack of validation
and verification (V&V) methods and tools. In other words
run-time V&V methods and tools are critical for the suc-
cess of autonomous, autonomic, smart, self-adaptive and
self-managing systems.

To be able to establish “certifiable trust” when adapting to
contextual and environmental changes at run-time we need



powerful and versatile V&V methods, techniques, and tools.
One research approach is to adapt traditional development-
time V&V methods to work at run-time — model checking is
a good candidate in this realm. A complementary research
direction is to ease or relax the traditional software engi-
neering approach where we satisfy requirements outright to
a more control engineering approach where we regulate func-
tional and particularly non-functional requirements to stay
within their viability zones using feedback loops [38]. To rea-
son about viability zones effectively requires rich semantic
models for run-time decision-making. The Models@Runtime
community is particularly concerned with this research av-
enue and uses model-driven techniques for validating and
monitoring run-time behavior [2].One of the most promising
approaches is to develop hybrid approaches that combine
these three key strategies. The term control science is an
appropriate term to characterize this research realm.

State space explosion has long been a huge challenge in the
design and implementation of practical V&V techniques.
With the event of software-intensive systems with high levels
of adaptability the problems of very large state spaces are
greatly exacerbated. However, hybrid approaches that com-
bine the regulation of viability zones, model-based reason-
ing, and practical V&V techniques are particularly promis-
ing in alleviating the large state space problem. These re-
search directions constitute formidable challenges for the
software engineering for adaptive and self-managing systems
(SEAMS) community.

Software validation and verification (V&V) concerns the qual-
ity assessment of software systems throughout their lifecycle.
The goal is to ensure that the software system satisfies its
functional requirements and meets its expected quality at-
tributes [3, 21]. As mentioned in Section 3, the realization of
self-adaptation has gradually blurred the boundaries among
the different software lifecycle phases in all of their dimen-
sions. Thus, not only V&V tasks are amenable, or even
required, to be performed in different phases (i.e., at run-
and load-time instead of just design- and development-time),
but also different, more efficient and refined V&V methods
are needed in this setting (e.g., regulating the satisfaction of
requirements).

While high levels of adaptability and autonomy result in
obvious benefits to the stakeholders of software systems, re-
alizing these abilities with confidence is hard. Designing and
deploying certifiable V&V methods for highly adaptive sys-
tems is one of the major challenges facing the entire field.
Understanding the underlying theoretical principles and the
specific properties that govern dynamic adaptation and the
various ways in which they can be realized may require a
large part of this decade, if not more [54].

As mentioned above, one of the key problems related to tra-
ditional V&V approaches is the explosion of the state space.
The number of possible input states that such systems can
assume is so large that not only is it unattainable to check
all of them directly but also infeasible to check more than
a small fraction of them. Another key problem is the fact
that it is impossible to verify a requirements specification,
given the evolving nature of software requirements and their
context-dependencies in self-adaptive systems [25]. The un-

predictable nature of context changes that can affect adap-
tive software behavior is yet another key problem.

Therefore, the SEAMS community ought to develop a con-
trol science involving design-time and run-time V&V meth-
ods and techniques for self-adaptive and self-managing sys-
tems with inferential, incremental and compositional charac-
teristics to provide adequate confidence levels and certifiable
trust in self-adaptation of such systems.

5.1 Adaptation Goals and Requirements: V&V
Starting Points

Traditionally, software quality assessment has been realized
through a variety of strategies to cover the wide concept
of “quality”, defined in terms of the degree in which soft-
ware conforms to its requirements and fulfills its intended
goals [3]. These requirements and goals are expressed us-
ing different notations and formalisms, which are the actual
starting points for V&V tasks. Nonetheless, self-adaptation
goals and specific requirements introduce the necessity of
classifying requirements into two system levels, according to
the separation of concerns implied by the general MAPE-
loop model [26]. The first level corresponds to the man-
aged system to be dynamically adapted according to context
changes, while the second, to the adaptation mechanism it-
self. In the first level, requirements express the main rea-
son for the system to be self-adaptive, usually in terms of
adaptation goals. These goals can be any of the self-* prop-
erties, as well as the continued satisfaction or regulation of
functional, quality of service (QoS) or quality of experience
(QoE) requirements, such as performance, availability, secu-
rity, and user satisfaction. In the second level, the adapta-
tion mechanism, the requirements are identified mainly on
the preservation of adaptation properties such as robustness,
stability, accuracy, settling-time, and overshoot.

For both levels, V&V methods and techniques, which are ap-
plied at design-, load- or run-time, must determine whether
or not the software system meets its requirements and goals.

5.2 V&V Self-Adaptation Concerns
5.2.1 Uncertainty in Self-Adaptation

Uncertainty in the system operation and maintenance phase
is possibly the most challenging concern for validation and
verification of self-adaptive software. This implies the cen-
tral role of dynamic monitoring in V&V methods and tech-
niques for this kind of systems [43, 55]. Conventional V&V
techniques have limited applicability, since they assume con-
trolled conditions and enough time and computing resources
to provide rigorous and thorough certification of “complete”
system computational states before its deployment in pro-
duction environments. However, self-adaptation targets en-
vironments with hard to predict, highly dynamic, and com-
paratively resource-constrained conditions. Moreover, these
resources must be shared in the execution of the actual
functional services provided by the managed system. Thus,
run-time validation and verification must fulfill efficiency re-
quirements not only to verify the system adaptation while
maintaining the capacity of timely reaction to context changes
without compromising system availability, but also to main-
tain the QoS or QoE requirements on the managed system
services.



Under these settings, the accurate estimation of the safety
operational region where the system operates without reach-
ing undesirable states is not only challenging but crucial for
the robustness of self-adaptive systems. The engineering of
adaptive controllers for flight control systems provides ex-
emplifying insights into this point. In particular, Schumann
and Gupta proposed a V&V tool to calculate safety regions
around the current state of an adaptive system, based on
a Bayesian statistical approach [43]. With this approach,
they can provide a measure of confidence on the probable
adequacy of the system’s model under particular situations.

5.2.2 Self-Adaptation Properties
V&V concerns for self-adaptation certification can be clas-
sified according to the two system levels introduced by self-
adaptation’s separation of concerns. The first is related to
the certification of the managed system, while the second to
the certification of the adaptation mechanism, with respect
to their corresponding requirements and goals [49].

In this context, motivated by the discussions during the 2010
Dagstuhl Seminar 10431 on Software Engineering for Self-
Adaptive Systems, and based on an extensive analysis of
several self-adaptive approaches, Villegas et al. proposed
a framework for evaluating self-adaptive systems [49]. This
framework synthesizes the different properties that have been
proposed for the managed system (i.e., adaptation goals)
and the adaptation mechanisms (i.e., adaptation proper-
ties), as well as the adaptation goals and their relationship
to quality attributes. Several of the synthesized adaptation
properties are gleaned from control theory [19, 25] and re-
interpreted for self-adaptive software. Moreover, the frame-
work classifies adaptation properties according to how and
where they are observed (cf. Table 1 [49]). Concerning
how they are observed, some properties can be evaluated
using static verification techniques while others require dy-
namic verification and run-time monitoring. With respect
to where they are observed, properties can be evaluated on
the managed system or on the adaptation controller (i.e.,
the adaptation mechanism). However, most properties can
be observed only on the managed system even when they
are used to evaluate the adaptation controller.

Table 1: Classification of adaptation properties ac-
cording to how and where they are observed.

Property Where the

Adaptation Verification Property is

Property Mechanism Observed

Stability Dynamic Managed System

Accuracy Dynamic Managed System

Settling Time Dynamic Both

Small Overshoot Dynamic Managed System

Robustness Dynamic Controller

Termination Static Controller

Consistency Both Managed System

Scalability Dynamic Both

Security Dynamic Both

5.3 Run-Time V&V Research Challenges
The fundamental problems addressed by run-time V&V for
self-adaptive systems can be argued to be identical to those

of traditional, design-time V&V [15]. That is, indepen-
dent of the self-* adaptation goals, context awareness and
even uncertainty, V&V fundamentally aims at guaranteeing
that a system meets its requirements and expected proper-
ties. However, a key differentiating factor between run-time
and design-time V&V is that resource constraints such as
time and computing power are more critical for run-time
V&V. From these constraints, non-trivial challenges arise,
and to tackle them we should depart of course from tradi-
tional V&V methods and techniques. Nonetheless, a gen-
eral discussion of different traditional V&V techniques and
their applicability to run-time V&V for self-adaptive sys-
tems may not be sensible at this level. On the one hand,
the decision of whether using one verification technique or
another should be made depending on the properties to be
verified as well as the criticality of the system (e.g., in terms
of safety). On the other hand, although fully automated
techniques (e.g., model checking) might be the first choice
for run-time V&V, there is no reason for not also using semi-
automated or even manual techniques (e.g., theorem prov-
ing) and combining them in the same or different lifecycle
phases of system development. Hence, instead of systemat-
ically analyzing the applicability of traditional V&V tech-
niques to dynamic adaptation, we focus on some properties
that these techniques could have, exemplifying them in spe-
cific techniques.

5.3.1 V&V Techniques: Desirable Properties
Even though traditional V&V techniques (e.g., testing, model
checking, formal verification, static and run-time analysis,
or program synthesis) have been used for the properties de-
scribed in Sect. 5.2.2 (cf. Table 1), an important challenge
is their integration into the self-adaptation lifecycle (i.e., at
run-time). For this, we introduce yet another kind of prop-
erties — properties on V&V techniques including sensitivity,
isolation, incrementality, and composability.

According to González et al., sensitivity and isolation refer
to the level of run-time testability that an adaptive software
system can support [18]. On the one hand, sensibility defines
the degree with which run-time testing operations interfere
with the running system service delivery. That is, the degree
with which run-time V&V may affect the accomplishment
of system requirements and adaptation goals. Instances of
factors that can affect run-time test sensitivity are (i) com-
ponent state, not only because run-time tests are influenced
by the actual state of the system but because the state of
the system could be altered as a result of test invocations;
(ii) component interactions, as the run-time testability of a
component may depend on the testability of the components
it interacts with; (iii) resource limitations, because run-time
V&V may affect non-functional requirements such as perfor-
mance at undesirable levels; and (iv) availability, as run-time
validation can be performed depending on whether testing
tasks require exclusive usage of components with high avail-
ability requirements. On the other hand, González et al.
also define isolation as the means to counteract run-time test
sensitivity. Instances of techniques for implementing test
isolation are (i) state separation (e.g., blocking the compo-
nent operation while testing has place, performing testing on
cloned components); (ii) interaction separation (e.g., block-
ing component interactions that may be propagated due to
results of test invocations); (iii) resource monitoring (e.g.,



indicating that testing must be postponed due to resources
unavailability); and (iv) scheduling (e.g., planning testing
executions when involved components are less used).

5.3.2 Requirements at Run-Time
Concerning run-time validation, adaptive systems require
suitable techniques to validate their conformance with re-
quirements after behavioral and structural changes. In light
of this, the application of run-time automatic testing tech-
niques to enable adaptive software systems with self-testing
capabilities seems to be a promising approach. An instance
of this approach is the self-testing framework for autonomic
computing systems proposed by King et al. [27]. This frame-
work dynamically validates change requests in requirements
using regression testing and customized tests to assess the
behavior of the system under the presence of new added com-
ponents. For this, autonomic managers designed for testing
are integrated into the current workflow of autonomic man-
agers designed for adaptation. Two strategies support the
validation process: (i) safe adaptation with validation and
(ii) replication with validation. In the first strategy, testing
autonomic managers apply an appropriate validation pol-
icy during the adaptation process where involved managed
resources are blocked until the validation is completed. If
the change request is accepted, the corresponding managed
resources are adapted. In the second strategy, the frame-
work maintains copies of the managed resources for valida-
tion purposes. Thus, changes are implemented on copies,
then validated and if they are accepted, the adaptation is
performed. Testing policies can be also defined by adminis-
trators and loaded into the framework at run-time. This self-
testing approach evidences the blurred boundaries among
the software lifecycle phases and the many implications for
V&V of self-adaptive software systems. Some of these im-
plications constitute challenges that arise from requirements
engineering. First, run-time specifications of system require-
ments are necessary to manage their lifecycle and its impli-
cations for run-time V&V. Second, requirements traceabil-
ity becomes a crucial fact in order to identify incrementally
what to validate, the requirements subset that has changed,
and when. Moreover, test case priority further contributes
to refine this incremental validation. Third, for context-
aware requirements, specifications must explicitly define the
environmental conditions that must be monitored at run-
time. The Requirements@runtime research community pro-
vides valuable foundations (e.g., requirements reflection) to
support requirements variability from the perspective of run-
time V&V of self-adaptive software systems [42].

5.3.3 State Explosion and Unpredictability
Model checking has been used as an automated method
for verifying concurrent software systems to overcome the
multiple limitations and shortcomings of testing techniques.
Given a correctness specification for a software system be-
havior in temporal logic (or any of its variants), the method
uses efficient search procedures to systematically check the
finite states graph representation of the system. The well
known practical problem of this method is the state explo-
sion that implies the representation of all of the states of
system behavior.

In self-adaptive software, this problem is augmented given
that, from the structural point of view, the changing nature

of self-adaptive software can be abstracted in terms of its
architecture (i.e., its elements and their relationships) re-
configuration. Thus, in contrast to the one structural static
configuration of traditional software, model checking must
be applied to each of the possible new configurations.

Some proposals can be used to guide the way to address the
state explosion problem. For instance, [15] observes that
software behavior in one state is not generally independent
of previous states, for a given (structural) configuration.
Therefore, for a given system property of interest, equiv-
alence classes could be formed by grouping sets of a number
of states representing the same information with respect to
this property, thus reducing the state space to be checked.
On the probabilistic side, the already mentioned proposal
of Schumann and Gupta [43] could be used as inspiration
to reduce this space by calculating the most probable set of
next states around the current state of an adaptive system.
Furthermore, if these techniques are composable and incre-
mental, they could be used together to pave the way to cope
with the problems of state explosion and unpredictability in
V&V for self-adaptive software.

5.4 Outlook
The validation and verification of self-adaptive software sys-
tems at run-time is an urgent necessity and a huge challenge
to be able to establish “certifiable trust” in practical adap-
tation mechanisms. While development V&V methods are
necessary and play an important role in the quest towards
achieving effective run-time V&V, but they are not suffi-
cient. To reason effectively and provide assurances about
the behavior of self-adaptive systems at run-time we need to
resort control theory which deals with dynamical systems.
The combination of theories and principles from software
engineering and control theory used to establish certifiable
trust in highly adaptive software intensive systems is called
control science.

In this section, we discussed important challenges and pos-
sible roadblocks for run-time validation and verification of
self-adaptive systems. First, the traceability of evolving re-
quirements is crucial for the identification of what to val-
idate, when, and the most appropriate V&V method for
a particular requirement change. Second, run-time V&V
techniques must exhibit desirable properties thus increas-
ing their complexity. Third, dynamic instrumentation such
as dynamic monitoring is also required to realize run-time
V&V techniques.

The assessment of research approaches on self-adaptive soft-
ware systems constitutes an important starting point for
the development of standardized and objective certification
methods. For this, we believe that the evaluation frame-
work proposed by Villegas et al. provides useful guidance
and insights [49]. The SEAMS community is ideally posi-
tioned to develop control science towards certifiable trust in
self-adaptation.

6. LESSONS AND CHALLENGES
In this section, we present the overall conclusions of the re-
search roadmap paper in the context of the lessons learned
and the major ensuing challenges for our community. First
and foremost, we must point out that this exercise had no



intention of being exhaustive. We made the choice to fo-
cus on the four major topics identified as key to software
engineering of self-adaptive systems: design space for self-
adaptive solutions, processes, from centralized to decentral-
ized control, and practical run-time verification and valida-
tion. We now summarize the most important challenges for
each topic.

• Design space for adaptive solutions — a major chal-
lenge associated with design space is to infuse a sys-
tematic understanding of the alternatives for adaptive
control into the design process. Since the alternatives
could be represented as clusters of design decisions,
another challenge should be the detailed refinement
of dimensions that characterize these clusters in order
to provide a complete set of choices to the developer.
Moreover, since dimensions should not be dependent,
the search space for the solution can be reduced by
identifying the dependencies between the different di-
mensions. Another identified challenge is how to map
a generalized design space into an implementation.

• Processes — there are two key challenges related to
processes, first, to have a full understanding of the
nature of system, its goals and lifecycle in order to es-
tablish appropriate software processes, and second, to
understand how processes changes and what are the
factors affecting these changes. Another major chal-
lenge is the formalization of processes for understand-
ing the roles, activities, and artifacts at each stage of
the process This formalization would enable the defi-
nition of library of generic and reusable entities that
could be used across different self-adaptive software
systems, and would also facilitate the analysis and tun-
ing of processes according to the system.

• From centralized to decentralized control — since the
direction taken in this topic was the identification of
patterns for capturing the interaction of control loops
in self-adaptive systems, most of the challenges iden-
tified are associated with patterns. For example, con-
cerning pattern applicability, what are the circumstances
that decide the applicability of patterns, and what ap-
plication domains or architectural styles that are bet-
ter managed by patterns? Also there is the challenge
of identifying a complete set of patterns that could be
applied to the management of self-adaptive systems.
Outside the context of patterns, when considering de-
centralized approach, a major challenge would be to
identify techniques that can be used for guarantee-
ing system-wide quality goals, and the coordination
schemes that enable guaranteeing these qualities.

• Practical run-time verification and validation — three
key challenges related to the run-time verification and
validation of self-adaptive software systems were iden-
tified. The first challenge is associated with the need
to trace the evolution of requirements in order to iden-
tify what and when to validate, and the V&V method
to be employed. The second challenge is to control
the inevitable complexity that is expected from run-
time V&V techniques, and final challenge is related to
the need of providing appropriate dynamic monitoring
when employing run-time V&V techniques.

There are several topics related to software engineering of
self-adaptive systems that we did not cover, some of which
we now mention. First, how to design self-adaptive system
to handle change. For example, designs should provide some
elasticity in order to be robust against some kinds of change,
or they should be able to manage change by generating alter-
native solutions. Another issue related to system design is
whether adaptation should be reactive or proactive. Further,
how should competition and cooperation be managed? One
of the key activities of feedback control loops in self-adaptive
software systems is decision making, and its associated adap-
tation techniques and criteria for balancing, for example,
quality of services, over-provisioning, and cost of ownership.
We also did not cover technologies like model-driven devel-
opment, aspect-oriented programming, and software prod-
uct lines. These technologies might offer new opportunities
and approaches in the development of self-adaptive software
systems. Finally, we did not discuss exemplars — canon-
ical problems and accompanying self-adaptive solutions —
which are a likely stepping stone to the necessary bench-
marks, methods, techniques, and tools to solve the chal-
lenges of engineering self-adaptive software systems.

The four topics discussed in this paper outline challenges
that our community must face in engineering self-adapting
software systems. All these challenges result from the dy-
namic nature of self-adaptation, which brings uncertainty.
It is this uncertainty that restricts the applicability of tra-
ditional software engineering principles and practices, but
motivates the search for new approaches for developing, de-
ploying, managing and evolving self-adaptive software sys-
tems.

7. REFERENCES
[1] L. Baresi and C. Ghezzi. The disappearing boundary

between development-time and run-time. In
Proceedings of the FSE/SDP workshop on Future of
software engineering research (FoSER ’10), pages
17–22, New York, NY, USA, 2010. ACM.

[2] G. Blair, N. Bencomo, and R. B. France.
Models@run.time: Guest Editors’ Introduction. IEEE
Computer, 42(10):22–27, 2009.

[3] P. Bourque and R. Dupuis. Guide to the Software
Engineering Body of Knowledge (SWEBOK). IEEE
Computer Society, 2005.

[4] N. Brake, J. R. Cordy, E. Dancy, M. Litoiu, and
V. Popescu. Automating discovery of software tuning
parameters. In Proceedings of the 2008 international
workshop on Software engineering for adaptive and
self-managing systems, SEAMS ’08, pages 65–72, New
York, NY, USA, 2008. ACM.

[5] F. P. Brooks. The Design of Design: Essays from a
Computer Scientist. Addison-Wesley Professional, 1st
edition, 2010.

[6] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese,
H. Kienle, M. Litoiu, H. Müller, M. Pezzè, and
M. Shaw. Engineering self-adaptive systems through
feedback loops. In B. Cheng, R. de Lemos, H. Giese,
P. Inverardi, and J. Magee, editors, Software
Engineering for Self-Adaptive Systems, volume 5525 of
Lecture Notes in Computer Science, pages 48–70.
Springer Berlin / Heidelberg, 2009.



10.1007/978-3-642-02161-9-3.

[7] Y. Brun and N. Medvidovic. An architectural style for
solving computationally intensive problems on large
networks. In Proceedings of Software Engineering for
Adaptive and Self-Managing Systems (SEAMS07),
Minneapolis, MN, USA, May 2007.

[8] J. Buckley, T. Mens, M. Zenger, A. Rashid, and
G. Kniesel. Towards a taxonomy of software change.
Journal of Software Maintenance and Evolution:
Research and Practice, 17(5):309–332, 2005.

[9] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè.
Automatic workarounds for web applications. In
FSE’10: Proceedings of the 2010 Foundations of
Software Engineering conference, pages 237–246, New
York, NY, USA, 2010. ACM.

[10] A. Carzaniga, A. Gorla, and M. Pezzè. Self-healing by
means of automatic workarounds. In SEAMS’08:
Proceedings of the 2008 International Workshop on
Software Engineering for Adaptive and Self-Managing
Systems, pages 17–24, New York, NY, USA, 2008.
ACM.

[11] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi,
J. Magee, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, G. D. M. Serugendo, S. Dustdar,
A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,
G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu,
S. Malek, R. Mirandola, H. A. Müller, S. Park,
M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and
J. Whittle. Software Engineering for Self-Adaptive
Systems: A Research Roadmap. In B. H. Cheng,
R. Lemos, H. Giese, P. Inverardi, and J. Magee,
editors, Software Engineering for Self-Adaptive
Systems, volume 5525 of Lecture Notes in Computer
Science, pages 1–26. Springer, 2009.

[12] S. Dobson, S. Denazis, A. Fernández, D. Gäıti,
E. Gelenbe, F. Massacci, P. Nixon, F. Saffre,
N. Schmidt, and F. Zambonelli. A survey of
autonomic communications. ACM Transactions on
Autonomous and Adaptive Systems (TAAS),
1:223–259, December 2006.

[13] A. Elkhodary, N. Esfahani, and S. Malek. FUSION: A
framework for engineering self-tuning self-adaptive
software systems. In Proceedings of the 18th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering (FSE ’10), pages 7–16, Santa
Fe, NM, USA, 2010.

[14] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. IEEE
Computer, 37:46–54, October 2004.

[15] E. Gat. Autonomy software verification and validation
might not be as hard as it seems. In Proceedings 2004
IEEE Aerospace Conference, pages 3123–3128, 2004.

[16] I. Georgiadis, J. Magee, and J. Kramer.
Self-Organising Software Architectures for Distributed
Systems. In 1st Workshop on Self-Healing Systems,
New York, 2002. ACM.

[17] H. Ghanbari and M. Litoiu. Identifying implicitly
declared self-tuning behavior through dynamic
analysis. Software Engineering for Adaptive and
Self-Managing Systems, International Workshop on,
0:48–57, 2009.

[18] A. González, E. Piel, and H.-G. Gross. A model for
the measurement of the runtime testability of
component-based systems. In Proceedings of 2009
International Conference on Software Testing
Verification and Validation Workshops, pages 19–28.
IEEE, 2009.

[19] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M.
Tilbury. Feedback Control of Computing Systems. John
Wiley & Sons, 2004.

[20] IBM. An architectural blueprint for autonomic
computing. Technical report, IBM, Jan 2006.

[21] IEEE. Industry implementation of international
standard ISO/IEC 12207:95, standard for information
technology-software life cycle processes. Technical
report, IEEE, 1996.

[22] P. Inverardi. Software of the Future Is the Future of
Software? In U. Montanari, D. Sannella, and R. Bruni,
editors, Trustworthy Global Computing, volume 4661
of Lecture Notes in Computer Science (LNCS), pages
69–85. Springer Berlin / Heidelberg, 2007.

[23] P. Inverardi and M. Tivoli. The Future of Software:
Adaptation and Dependability. In Software
Engineering, volume 5413 of Lecture Notes in
Computer Science (LNCS), pages 1–31. Springer
Berlin / Heidelberg, 2009.

[24] D. Ionescu, B. Solomon, M. Litoiu, and G. Iszlai.
Observability and controllability of autonomic
computing systems for composed web services. In 6th
IEEE International Symposium on Applied
Computational Intelligence and Informatics (SACI
2011), 2011.

[25] S. A. Jacklin, M. R. Lowry, J. M. Schumann, P. P.
Gupta, J. T. Bosworth, E. Zavala, and J. W. Kelly.
Verification, validation, and certification challenges for
adaptive flight-critical control system software. In
Proceedings of American Institute of Aeronautics and
Astronautics AIAA Guidance Navigation and Control
Conference and Exhibit. American Institute of
Aeronautics and Astronautics, 2004.

[26] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[27] T. M. King, A. E. Ramirez, R. Cruz, and P. J. Clarke.
An integrated self-testing framework for autonomic
computing systems. Journal of Computers, 2(9):37–49,
2007.

[28] B. A. Kitchenham, G. H. Travassos, A. von
Mayrhauser, F. Niessink, N. F. Schneidewind,
J. Singer, S. Takada, R. Vehvilainen, and H. Yang.
Towards an ontology of software maintenance. Journal
of Software Maintenance: Research and Practice,
11(6):365–389, 1999.

[29] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In Future of Software
Engineering, pages 259–268, 2007.

[30] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In FOSE ’07: 2007 Future of
Software Engineering, pages 259–268, Washington,
DC, USA, 2007. IEEE Computer Society.

[31] C. Larman and V. R. Basili. Iterative and Incremental
Development: A Brief History. IEEE Computer,
36(6):47–56, June 2003.

[32] M. M. Lehman. Software’s Future: Managing



Evolution. IEEE Software, 15(01):40–44, 1998.

[33] M. M. Lehman and L. A. Belady, editors. Program
evolution: processes of software change. Academic
Press Professional, Inc., San Diego, CA, USA, 1985.

[34] F. Leymann. Combining Web Services and the Grid:
Towards Adaptive Enterprise Applications. In
J. Castro and E. Teniente, editors, First International
Workshop on Adaptive and Self-Managing Enterprise
Applications (ASMEA’05) - CAiSE workshop, pages
9–21. FEUP Edi cões, June 2005.

[35] S. Malek, G. Edwards, Y. Brun, H. Tajalli, J. Garcia,
I. Krka, N. Medvidovic, M. Mikic-Rakic, and
G. Sukhatme. An architecture-driven software
mobility framework. Journal of Systems and Software,
83(6):972–989, June 2010.

[36] S. Malek, M. Mikic-rakic, and N. Medvidovic. A
decentralized redeployment algorithm for improving
the availability of distributed systems. In 3rd
International Conference on Component Deployment,
Grenoble, France, 2005.

[37] T. Mens. Introduction and Roadmap: History and
Challenges of Software Evolution, chapter 1. Software
Evolution. Springer, 2008.

[38] H. Müller, M. Pezzè, and M. Shaw. Visibility of
control in adaptive systems. In Proceedings of Second
International Workshop on Ultra-Large-Scale
Software-Intensive Systems (ULSSIS 2008, pages
23–27. ACM/IEEE, 2008.

[39] Object Management Group (OMG). Software &
Systems Process Engineering Meta-Model
Specification (SPEM), Version 2.0, 2008.

[40] P. Oreizy, M. M. Gorlick, R. N. Taylor,
D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D. S. Rosenblum, and A. L. Wolf. An
architecture-based approach to self-adaptive software.
IEEE Intelligent Systems, 14:54–62, May 1999.

[41] L. J. Osterweil. Software processes are software too. In
Proceedings of the 9th international conference on
Software Engineering (ICSE ’87), pages 2–13, Los
Alamitos, CA, USA, 1987. IEEE Computer Society
Press.

[42] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and
A. Finkelstein. Requirements-aware systems. a
research agenda for RE for self-adaptive systems. In
Proceedings of 18th International Requirements
Engineering Conference, pages 95–103. IEEE, 2010.

[43] J. Schumann and P. Gupta. Bayesian verification &
validation tools for adaptive systems: Report on
principle of operation and prototypical
implementation of bayesian envelope tool for neural
networks. Technical report, National Aeronautics and
Space Administration (NASA), 2006.

[44] D. E. Seborg, T. F. Edgar, D. A. Mellichamp, and
F. J. Doyle III. Process Dynamics and Control. John
Wiley & Sons, 3 edition, 1989.

[45] M. Shaw. Beyond objects. ACM SIGSOFT Software
Engineering Notes (SEN), 20(1):27–38, January 1995.

[46] M. Shaw. The role of design spaces in software design.
(Submitted for publication), 2011.

[47] E. B. Swanson. The dimensions of maintenance. In
Proceedings of the 2nd international conference on
Software engineering (ICSE ’76), pages 492–497.

IEEE Computer Society Press, 1976.

[48] A. S. Tanenbaum and M. van Steen. Distributed
Systems: Principles and Paradigms. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 2 edition, 2006.

[49] N. Villegas, H. Müller, G. Tamura, L. Duchien, and
R. Casallas. A framework for evaluating quality-driven
self-adaptive software systems. In Proceedings of 6th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2011).
ACM, 2011. To appear.

[50] T. Vogel and H. Giese. Adaptation and Abstract
Runtime Models. In Proceedings of the 5th ICSE
Workshop on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2010), pages 39–48.
ACM, 2010.

[51] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and
B. Becker. Incremental Model Synchronization for
Efficient Run-Time Monitoring. In S. Ghosh, editor,
Models in Software Engineering, Workshops and
Symposia at MODELS 2009, Denver, CO, USA,
October 4-9, 2009, Reports and Revised Selected
Papers, volume 6002 of LNCS, pages 124–139.
Springer Berlin / Heidelberg, 2010.

[52] P. Vromant, D. Weyns, S. Malek, and J. Andersson.
On interacting control loops in self-adaptive systems.
In Proceedings of Software Engineering for Adaptive
and Self-Managing Systems (SEAMS11), Honolulu,
Hawaii, 2011.

[53] D. Weyns, S. Malek, and J. Andersson. On
decentralized self-adaptation: lessons from the
trenches and challenges for the future. In Proceedings
of the 2010 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS ’10,
pages 84–93, New York, NY, USA, 2010. ACM.

[54] W.J.A. Dahm United States Air Force Chief Scientist
(AF/ST). Technology Horizons a Vision for Air Force
Science & Technology During 2010-2030. Technical
report, U.S. Air Force, 2010.

[55] S. Yerramalla, Y. Liu, E. Fuller, B. Cukic, and
S. Gururajan. An approach to V&V of embedded
adaptive systems. In M. Hinchey, J. Rash,
W. Truszkowski, and C. Rouff, editors, Formal
Approaches to Agent-Based Systems, volume 3228 of
LNCS, pages 173–188. Springer Berlin / Heidelberg,
2005.


	1 Introduction
	2 Design Space for Adaptive Solutions
	2.1 Design Space Definitions
	2.2 Key Design Space Dimensions
	2.2.1 Representation
	2.2.2 Observation
	2.2.3 Control
	2.2.4 Identification
	2.2.5 Adaptation Mechanisms

	2.3 Design Space Challenges

	3 Processes
	3.1 Example: Migrating Evolution Activities 
	3.2 Understanding a Self-Adaptive Software System's Lifecycle
	3.3 Research Challenges

	4 From Centralized to Decentralized Control
	4.1 Distribution versus Decentralization
	4.2 Drivers for Selecting a Control Schema for Adaptation
	4.2.1 Domain Characteristics
	4.2.2 Requirements of the Problem at Hand

	4.3 Patterns for Interacting Control Loops
	4.4 Outlook

	5 Control Science for Run-Time V&V for Self-Adaptive Systems
	5.1 Adaptation Goals and Requirements: V&V Starting Points
	5.2 V&V Self-Adaptation Concerns
	5.2.1 Uncertainty in Self-Adaptation
	5.2.2 Self-Adaptation Properties

	5.3 Run-Time V&V Research Challenges
	5.3.1 V&V Techniques: Desirable Properties
	5.3.2 Requirements at Run-Time
	5.3.3 State Explosion and Unpredictability

	5.4 Outlook

	6 Lessons and Challenges
	7 References



