
Multi-agent Confidential Abductive Reasoning∗

Jiefei Ma1, Alessandra Russo1, Krysia Broda1, and Emil C. Lupu1

1 Department of Computing, Imperial College London
180 Queen’s Gate, London, United Kingdom
{j.ma,a.russo,k.broda,e.c.lupu}@imperial.ac.uk

Abstract
In the context of multi-agent hypothetical reasoning, agents typically have partial knowledge
about their environments, and the union of such knowledge is still incomplete to represent the
whole world. Thus, given a global query they collaborate with each other to make correct in-
ferences and hypothesis, whilst maintaining global constraints. Most collaborative reasoning
systems operate on the assumption that agents can share or communicate any information they
have. However, in application domains like multi-agent systems for healthcare or distributed
software agents for security policies in coalition networks, confidentiality of knowledge is an ad-
ditional primary concern. These agents are required to collaborately compute consistent answers
for a query whilst preserving their own private information. This paper addresses this issue show-
ing how this dichotomy between "open communication" in collaborative reasoning and protection
of confidentiality can be accommodated. We present a general-purpose distributed abductive lo-
gic programming system for multi-agent hypothetical reasoning with confidentiality. Specifically,
the system computes consistent conditional answers for a query over a set of distributed normal
logic programs with possibly unbound domains and arithmetic constraints, preserving the private
information within the logic programs. A case study on security policy analysis in distributed
coalition networks is described, as an example of many applications of this system.

1998 ACM Subject Classification I.2.11 Distributed Artificial Intelligence

Keywords and phrases Abductive Logic Programming, Coordination, Agents

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.175

1 Introduction

In the context of multi-agent reasoning, each agent has its own partial knowledge about the
world together with local and/or global constraints. Given a reasoning task, agents interact
and compute answers that are consistent with respect to the global constraints. When the
union of all the agent knowledge is still incomplete to represent the whole world, hypothetical
reasoning is needed, and agents need to collaborate to make correct inferences and hypotheses
given a global query. Previously, a general-purpose system called DAREC has been developed,
which combines distributed problem solving and abductive logic programming, for multi-agent
hypothetical reasoning. In DAREC, agent knowledge is represented as a normal logic program,
and a distributed abductive logic programming algorithm is used to coordinate the agents’
local reasoning tasks. Through this algorithm, agents compute local conditional answers, by
assuming undefined knowledge needed to maintain their (global) constraints, and coordinate
their proofs through consistency checks over their respective assumptions. DAREC is the first

∗ This research is continuing through participation in the International Technology Alliance sponsored by
the U.S. Army Research Laboratory and the U.K. Ministry of Defence.

© Jiefei Ma, Alessandra Russo, Krysia Broda, Emil C. Lupu;
licensed under Creative Commons License NC-ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 175–186

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.175
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

176 Multi-agent Confidential Abductive Reasoning

distributed abductive system that can compute non-ground answers and handle arithmetic
constraints. In DAREC, all knowledge is considered public, so, during collaboration, agents
can communicate any information they may have. However, in application domains such as
simulation of policy-based distributed systems for decentralised policy analysis, confidentiality
is an additional primary concern – agents may contain private information that cannot be
shared with others during, or after, the collaborative reasoning. This concern imposes an
extra challenge to agent interactions during the reasoning process, as agents must decide
what to disclose between their communications.

This paper addresses the new challenge by extending the DAREC system to support multi-
agent hypothetical reasoning with confidentiality. It provides two main contributions. At
knowledge representation level the logical language and the distributed abductive framework
have been extended to allow modelling of private agent knowledge. At algorithmic level, the
distributed proof procedure has been customised with a safe yet efficient agent interaction
protocol, which prevents private knowledge being passed between agents and allows some
degree of concurrent computation. From the operational point of view, our new distributed
abductive algorithm, called DAREC2 is a coordinated state rewriting process, consisting
of local abductive inferences by the agents and coordination of these local inferences. The
local inference is a goal-directed reasoning process, where a current agent (i) solves as many
sub-goals of the query as possible, using its own knowledge, and (ii) collects those sub-goals
solvable only by other agents, and the constraints that must be satisfied by all agents to
guarantee global consistency of the final answer. The latter are generated from constructive
negations and arithmetic constraints during the local inference process. They can be reduced
to a set of inequalities and arithmetic constraints and be handled by external Constraint Logic
Programming (CLP) solvers, enabling also reasoning over unbounded domains. The collected
sub-goals and constraints, together with the hypotheses made during the local inference,
are encapsulated into a token state, which is then passed around to other agents for further
processing once all private sub-goals of the current agent have been solved by the agent. This
guarantees that confidential information is not included in the token state and not passed to
other agents. The coordination of state-passing implements synchronised backtracking, whilst
enabling concurrent computation between local inferences. The coordination allows two types
of agent interaction: positive and negative. In the case of a positive interaction, the token
state is directed to a suitable agent (i.e. who may help to solve some pending sub-goals),
whereas for negative interactions, the token state is passed among all agents enforcing each
to check the pending constraints. Application dependent strategies may be adopted to
interleave/combine such interactions in order to reduce communication overheads. The new
system is implemented in Prolog together with a benchmarking test-bed environment. The
main intended use of DAREC2 is as a decoupleable multi-purpose tool for larger multi-agent
systems (MAS). For example, each DAREC2 agent could be implemented as a reactive
reasoning module of an agent in a larger MAS to support other agent/system functionalities
(e.g., distributed reasoning over BDI agents’ belief stores [12]). Alternatively, the whole
DAREC2 system could be implemented as a “simulator” to verify properties of a target MAS,
such as the case study example described in this paper for decentralised policy analysis.

The paper is organised as follows. Section 2 discusses related work, Section 3 formalises the
notion of a multi-agent abductive reasoning problem, and Section 4 describes the DAREC2

algorithm. A case study in the context of distributed policy analysis to exemplify the
confidentiality aspect in real-world applications is described in Section 5. Finally, conclusion
and future work are given in Section 6.

J. Ma, A. Russo, K. Broda, E.C. Lupu 177

2 Related Work

Distributed abductive reasoning has previously been studied, such as in the ALIAS system [2],
the DARE system [7], MARS [1] and DAREC [8]. ALIAS focuses on local consistency, i.e.,
the global answer is consistent with each agent’s knowledge individually, where the other
three systems focus on global consistency, i.e, the global answer is consistent with the union
of all the agent knowledge. Both ALIAS and DARE deploy distributed abductive algorithms
that are based on the Kakas-Mancarella proof procedure [5], and can only compute ground
proofs/answers. MARS uses the consequence finding algorithm [9] for local computation, and
is mainly for computing a consistent superset of the agents’ existing hypotheses. DAREC,
whose distributed abductive algorithm is based on ASystem [10], is the first system that
can compute non-ground proofs/answers for possibly unbound domains and with arithmetic
constraint satisfaction support. None of these systems considers the confidential aspect of
agent knowledge. Our system extends DAREC. In addition to the inherited features, it allows
private and public agent knowledge to be explicitly expressed, and guarantees confidentiality
during collaborative reasoning. Specifically, the new system introduces askable literals that
can be shared between agents (i.e., to represent public knowledge), and new local inference
rules for solving askable sub-goals. An agent interaction protocol, consisting of special goal
selection and agent selection strategies, is enforced to preserve confidentiality while reducing
communications and increasing concurrent computation.

In DAREC2, an askable literal is A@S where A is an atom and S is an agent identifier
indicating where the askable sub-goal should be solved. This language feature is most closed
to one proposed in speculative computation [11]. However, whereas in speculative computation
when an askable sub-goal is selected, the agent identifier must be ground, in our system it
can also be a variable with quantifier.

3 Knowledge Representation

Standard logic programming notations are employed throughout the paper. We use ~t
to represent a vector of arguments. Constraint atoms are those formed with constraint
predicates from CLP for a particular domain, such as {∈, <,≤, >,≥}. A clause is either a
rule φ← φ1, . . . , φn with n ≥ 0, or a denial ← φ1, . . . , φn with n > 0, where φ1, . . . , φn is a
conjunction of literals called the body, and in the case of a rule φ is an atom called the head.
All variables appearing in a clause are universally quantified with the scope the whole clause
implicitly, unless stated otherwise. A query is a conjunction of literals, whose variables are
existentially quantified with the scope the whole conjunction implicitly.

In abductive logic programming, predicates of atoms that are not equality or constraint are
divided into abducible predicate and non-abducible predicate. An atom with (non-)abducible
predicate is called an (non-)abducible (atom). An abductive (logic programming) framework
is a tuple 〈Π,AB, IC〉, where Π is a finite set of rules called the background knowledge, AB is
a set of abducible predicates, and IC is a finite set of denials, each of which contains at least
one positive abducible, called the integrity constraints. Sometimes AB represents the set of
all abducible atoms. Without loss of generality, it is often assumed that no abducible appears
in the head of a rule in Π. Therefore, non-abducibles are also called defined atoms (or defined
in brief). Given a query Q, an abductive logic programming task consists of computing an
abductive answer 〈∆, θ〉, where ∆ is a set of abducibles, θ is a set of variable substitutions,
such that (1) Π ∪∆θ |= Q, (2) Π ∪∆θ |= IC, where |= is logical entailment under a selected
semantics. ∆ is called the hypotheses, or explanation, for the given query (i.e. observation).

ICLP 2011

178 Multi-agent Confidential Abductive Reasoning

3.1 Multi-agent Confidential Abductive Framework
In this work, we focus on MAS’s with a fixed set of agents satisfying the following assumptions:

Each agent has a unique ID and has an abductive framework.
Agents have the same set of abducible predicates, which ensures they can only generate
hypotheses that are not defined or provable by others.
Agents can send peer-to-peer messages, i.e., the MAS communication channels form a
fully connected graph, eliminating the need for considering message routing.

As our current main focus is on the correctness of multi-agent hypothetical reasoning, we
further assume that the agents and the communication channels are reliable (i.e. no corruption
or loss of messages).

Let’s denote an agent’s abductive framework with the tuple F= 〈Π,AB, IC〉, where Π
and IC constitute together the agent’s local knowledge. We may use an agent’s identifier,
say i, to suffix the agent’s abductive framework and its components, i.e., Fi, Πi, ABi and
ICi. Non-abducible predicates of an agent can be private or public (askable). The former are
defined only in the agent background knowledge and cannot appear in the body of a rule of
any other agent1. Public predicates can only be defined in the agent background knowledge,
but can appear in the body of rules of other agents.

I Definition 1. An askable atom is p(~u)@ID where p(~u) is a non-abducible atom and ID
is the agent identifier where the predicate is defined.

Askable atoms p(~u)@ID that appear as the head of a rule in an agent’s background knowledge
have their ID ground with the agent’s identifier. Askable atoms that appear in the body of
a rule may have an unground agent identifier. The ID of an askable atom is therefore more
than just a syntactic alias. It denotes a variable that can be (appropriately) existentially
and universally quantified. Syntactically, an askable can be seen as a non-abducible with an
extra agent identifier argument. The negation of an askable ¬p(~u)@ag is read as ¬(p(~u)@ag),
meaning “p(~u) should not be provable by agent ag”.

I Definition 2. The global abductive framework is 〈Σ, F̂〉, where Σ is the set of all
agent identifiers and F̂ is the set of agent abductive frameworks, i.e. {Fi | i ∈ Σ}. For any
pair of agents i, j ∈ Σ, ABi = ABj .

I Definition 3. Global Abductive Answer Given a global abductive framework 〈Σ, F̂〉
and a query Q, let Π̂ =

⋃
i∈Σ Πi, let ÎC =

⋃
i∈Σ ICi, and let ÂB =

⋃
i∈ΣABi. A pair 〈∆, θ〉

is a global abductive answer for Q if and only if:
(1) ∆θ ⊆ AB; (2) Π̂ ∪∆θ |= Qθ; (3) Π̂ ∪∆θ |= ÎC

where θ is the variable substitutions over the variables in Q, and |= is the logical entailment
of a selected semantics for the logic program formed by Π̂ ∪ ÎC.

4 Distributed Algorithm

Given a global abductive framework (of a MAS) and a query, agents must collaborate to
compute global abductive answers, while keeping there private information confidential.

1 Name clashes between private predicates of different agents are assumed to have been resolved.

J. Ma, A. Russo, K. Broda, E.C. Lupu 179

I Definition 4. The collaboration of agents to compute global abductive answers for a given
query is a confidential reasoning if and only if no private predicate and its definitions of any
agent can be seen or inferred by another agent during or after the collaboration.

The DAREC2 distributed abductive algorithm satisfies this property. Operationally, the
distributed computation is a sequence of coordinated local abductive computations, i.e.,
distributed abduction = local abduction + coordination.

4.1 Local Abduction
Local abduction is a top-down (goal-directed) abductive inference, which can be described
as a state rewriting process. A state contains intermediate computational results, and
has four components: (1) a remaining goals store – a goal is either a literal or a denial
“∀ ~X ← φ1, . . . , φn” (n > 0), where ~X is the set of variables in the φ1, . . . , φn that are
universally quantified with the scope the whole denial, (2) a hypotheses store containing a
set of collected abducibles, (3) a constraints store containing a set of collected and consistent
inequalities and arithmetic constraints, and (4) a denials store containing collected denial
goals whose left-most literal in the body is an abducible. These denials represent the
conditions for collecting the instances of their left-most abducibles and are collected during
the inference. A state also contains abducible tagging information – an abducible in the
hypotheses store is tagged by an agent’s identifier if the agent has not checked it against its
integrity constraints. All free variables in a state are existentially quantified with the scope
the whole state implicitly. A solved state is one that has no remaining goal and no tagged
abducible. At each inference step, a goal is selected from a non-solved state, and a literal is
selected from the goal if the goal is a denial. Safe goal selection strategies are adopted, in
which the current agent (i.e. the one performing the local abduction) can select:

an askable goal, only if its agent ID is the current agent’s ID or a variable;
an askable from a denial goal, only if its agent ID is the current agent’s ID or a variable;
an abducible from a denial goal, only if there is no private non-abducible literal in the
denial goal;
inequalities, arithmetic constraints and negative literals, only if they do not contain
universally quantified variables;

The first three requirements guarantee the confidentiality (see later), whereas the last
requirement avoids floundering. The next state is obtained after applying a local inference
rule to the selected goal. These rules are based on the ASystem [6] inference rules, with
extensions to handle askables and tagging information, where ag is the current agent’s ID:

if an askable goal p(~u)@ID is selected:
if ID is ag, it is resolved with a rule in the agent’s background knowledge;
otherwise, ID must be an existentially quantified variable, and the goal can be replaced
with either p(~u)@ag, if ID = ag is satisfiable, or with ID 6= ag, p(~u)@ID. Semantically,
this means that the askable can be either solved by the current agent, or by a different
agent (later).

if an askable p(~u)@ID in a denial goal is selected:
if ID is ag, it is reduced as being non-abducible in a denial goal;
if ID is an existentially quantified variable, then either the denial goal is replaced with
one obtained by replacing the askable with p(~u)@ag if ID = ag is satisfiable, or the
denial goal is kept but an inequality goal ID 6= ag is added. Semantically, this means
that the denial can be either solved by the current agent on p(~u)@ag, or by a different
agent ag′ on p(~u)@ag′ (later);

ICLP 2011

180 Multi-agent Confidential Abductive Reasoning

if ID is a universally quantified variable with the scope the denial, then the denial
goal is replaced by the set of denial goals obtained by binding ID to all the agent
identifiers. Semantically, this means the denial goal must be solved by all the agents.

if an abducible is collected to the hypotheses store by the current agent, it is tagged with
all other agents’ identifiers;
if there is an abducible in the hypotheses store that is tagged by the current agent’s
identifier, the set of denial goals generated by resolving the abducible with the current
agent’s integrity constraints is added to the remaining goals store, and the tag is removed.

Each inference step may result in zero or more next states. A state is called a transitional
state if any of the following conditions is satisfied: (1) it contains only askable goals, or
denial goals consist of only askables, where none of the askables has an agent ID equal to the
current agent’s identifier; (2) it has no remaining goal but at least one collected abducible is
tagged. A state is called a failure state if it is not a solved or transitional state, and no local
inference rule is applicable to a selected goal or no goal can be selected. Thanks to the safe
goal selection strategies, the whole local state rewriting process can be visualised as a local
abductive derivation tree, whose leaf states can only be failure, transitional and solved states.

4.2 Coordination
When a query is received by an agent, the agent starts a local abduction with an initial
state, whose pending goals are the literals in the query and all other stores are empty. If
a transitional state is derived, it can be passed to a suitable agent for further processing
(i.e., the recipient agent will start another local abduction with the state). If a solved state
is derived, an answer 〈∆, θ〉, where ∆ is the set of collected abducibles and θ is the set of
variable substitutions induced by the constraints store, is returned to the query issuer.

4.2.1 Transitional States and Confidentiality
A transitional state is one that can be passed between agents. It can be seen as a specification
of agent collaboration – intuitively, the hypotheses store and the constraints store record the
partial answer, the pending goals are the remaining reasoning tasks to be solved by relevant
agents, the denials store includes the global integrity constraints that must not be violated by
the agents during their reasoning, and finally the abducible tagging information is used to
ensure consistency checks on the abducibles by all the agents, which may themselves result
in new global integrity constraints. Under the safe goal selection strategies (1) an agent is
forced to process a state as much as possible, and (2) no private non-abducible predicates
can appear in transitional states, so preserving confidentiality.

4.2.2 State Recipient Agent Selection
When a transitional state is derived by an agent, a recipient agent is identified so that the
state can be passed on for further processing. This uses a helpfulness ranking algorithm.
We say “an agent ag may help with an askable p(~u)@ID” if ID is ag’s identifier or ID is a
variable and ID = ag is satisfiable; and we say “an agent ag may help with a (collected)
abducible” if the abducible is tagged with ag’s identifier. Given a transitional state, we
compute the helpfulness of each agent in the system by summing up the total number of
askable goals, denial goals (containing an askable) and abducibles that the agent may help
with, and sort the agents according to the their helpfulness. One of the agents with highest
value of helpfulness is then selected as the state recipient. However, it may occur that no

J. Ma, A. Russo, K. Broda, E.C. Lupu 181

agent can help with a transitional state (i.e., agents’ helpfulness value is 0). This may happen
when the state contains an askable goal, p(~u)@ID, with ID being a variable and has been
passed around all agents once but no agent is able to solve it by bounding ID to its own
identifier. In this case, the transitional state is treated as a failure state.

4.2.3 Backtracking with Concurrent Computation
Each local abduction constructs a local abductive derivation tree in search for solved states.
If a transitional state is derived, this is sent out and another local abduction is initiated by a
different agent. It can be shown that merging all local derivation trees would give a global
abductive derivation tree equivalent to the one that would be constructed by the ASystem
algorithm for the same query but over the merged agents’ background knowledge and integrity
constraints. This is, in fact, the formal basis for the correctness of our distributed algorithm.
However, in practice such centralised reasoning is not always feasible and from an operational
perspective we are interested in coordinations of local abductions that strike a balance
between performance and communication. In our system, after an agent sends a transitional
state to another agent, it can continue its local abduction while the recipient is working on
a different local abductive reasoning task. Agents then essentially construct and explore
different parts of the global derivation tree concurrently, providing a better performance than
a fully sequential reasoning process. Each agent may derive more than one transitional state
during its local abduction. If transitional states are sent as soon as they are derived, the
communication channels between agents may quickly “flood” and agents become overloaded,
as they may receive several states and perform several unfinished local abductions at the
same time. To address these issues without sacrificing concurrent computation, a token based
synchronised backtracking coordination strategy is adopted:
1. when the query issuer sends a query to an agent, it also sends a token. The agent creates

the initial state and starts a local abduction;
2. during the local abduction, if the agent derives a transitional state,

a. if it has the token, then it sends out the transitional state with the token (i.e., it will
no longer have the token);

b. otherwise, it buffers the transitional state;
and in both cases it continues the local abduction;

3. once an agent receives a transitional state and the token, it initiates a local abduction
and keeps the token;

4. if an agent derives a solved state, it sends the extracted answer to the query issuer
regardless if it has the token or not, and continues the local abduction (i.e., to search for
more solutions);

5. if an agent finishes a local abduction (i.e., finishes constructing and exploring a local
abductive derivation tree), then
a. if it has the token, it returns the token as a backtracking signal to the agent who

passed the transitional state;
b. otherwise, it waits for the backtracking signal;

6. after an agent receives a backtracking signal (i.e., it regains the token),
a. if there are buffered transitional states, then one of them is sent out with the token

(i.e., the agent loses the token again);
b. otherwise, the agent stores the token and continues the local abduction if it has not

yet completed, or the agent sends a backtracking signal as in 5(a) if finished;
7. if the query issuer no longer needs further answers, it sends a discard message to all the

agents, so they will stop all relevant local abductions and remove relevant buffered states.

ICLP 2011

182 Multi-agent Confidential Abductive Reasoning

Note that with such a coordination strategy, an agent may still receive a transitional state
while it still has some unfinished local abduction. Because of the synchronised backtracking,
the current local abduction computation can be interrupted until a new local abduction is
finished, and then resumed.

4.2.4 Soundness and Completeness
The distributed algorithm is sound and complete only with respect to a three-valued se-
mantics [13] for which, given a global query Q and a global abductive answer 〈θ,∆〉, the
interpretation (completion) of all abducibles (i.e. AB) is defined as I∆θ = {At | A ∈ ∆θ∧A ∈
AB} ∪ {Af | A /∈ ∆θ ∧A ∈ AB}.

I Theorem 5. (Soundness) Given a global abductive framework 〈Σ, F̂〉 and a global query Q,
if there is a successful global derivation for Q with answer 〈∆, θ〉, then 1.

⋃
i∈Σ Πi∪I∆θ |=3 Qθ,

and 2.
⋃
i∈Σ Πi ∪ I∆θ |=3

⋃
i∈Σ ICi, where |=3 is the logical entailment under the three-valued

semantics for abductive logic programs [13].

I Theorem 6. (Completeness) Let 〈Σ, F̂〉 be a global abductive framework and Q a global
query, suppose there is a finite global derivation tree T for Q. If

⋃
i∈Σ Πi ∪

⋃
i∈Σ ICi ∪ ∃Q is

satisfiable under the three-valued semantics, then T contains a successful branch.
Our DAREC2 system is a customisation of the DAREC system, i.e., special goal selection

and agent interaction strategies are adopted. With these strategies, askable atoms can be seen
as normal non-abducible atoms where the agent ID argument has the set of (the identifiers)
the agents as domain. The DAREC system is sound and complete with respect to any goal
selection and agent interaction strategies, and therefore our system inherits these properties
(the reader is referred to [8] for outline proofs). The choice of three-valued completion
semantics instead of other stronger semantics (e.g. stable model semantics [4]), is because
top-down inference procedures, like abduction, may suffer from looping. In practice, looping
can be avoided either by implementing a depth-bounded search strategy or by ensuring that
the overall logic program satisfies certain properties (e.g., abductive non-recursive [14]).

4.2.5 Implementation
Our system has been implemented with YAP Prolog 6 2. An inequality solver extending the
standard unification algorithm has also been implemented. For example, given f(1, p(X)) 6=
f(Y, p(2)), the solver will answer 1 6= Y or X 6= 2. The system uses the finite domain
constraint solver (CLP(FD)) by YAP and the inequality solver for handling the arithmetic
constraints and inequalities during the local inferences.

Agents in the system use TCP messages for peer-to-peer communications. For optimisation
purposes, the system allows the option of using a “yellow page directory”. When enabled, each
agent maintains a copy of the directory to record agent advertisements. An advertisement
contains an agent’s identifier, the set of askables defined by the agent, and the set of abducibles
regulated by the agent (i.e., the abducible that appears in an integrity constraint of the
agent). When a new agent joins the system, it broadcasts its advertisements, so they are
added to all other agents’ directory. When an agent leaves, its advertisements are removed
from everyone’s directory. The directory can be used to further reduce communications and
local computations: (1) abducibles no longer need to be checked (tagged) by agents that do

2 http://www.dcc.fc.up.pt/~vsc/Yap/

http://www.dcc.fc.up.pt/~vsc/Yap/

J. Ma, A. Russo, K. Broda, E.C. Lupu 183

not regulate them; (2) denials, with an askable whose agent ID is a universally quantified
variable, no longer need to be checked by agents that do not know the askable; (3) in deciding
recipient agents for a transitional state, agents that do not define the askable in question, are
no longer considered. Note that the directory does not contain private atoms of any agent,
and therefore its use does not affect the confidentiality property of the system.

5 Distributed Policy Analysis

A policy analysis framework has been proposed in [3]. The framework provides a specification
language to represent security policies (authorisations and obligations), and system domain,
as normal logic programs. Various policy analysis tasks can be solved using abduction.
Modality conflict, for instance, can be defined as an abductive reasoning task where the
goal is the negation of the property to analyse and the conditional answer is an example of
system execution that proves this goal, i.e. a counterexample to the property. An example
of analysis of separation of duty (SoD) in the context of security policies distributed over
networks is given below.
I Example 7. In a Role-based Access Control (RBAC) system, the permission of an action depends
on the role(s) assigned to the subject. Assume a RBAC corporate network with one team agent
(team1) and two administrator agents (admin1 and admin2). The team1 is responsible for taking
orders which can only be completed by an initiator and a verifier together, and who cannot be the
same person, (i.e. the SoD concept). Before team1 can accept an order, it needs to check whether it
can have clerks with suitable roles available to perform the two actions. The role assignments can
only be performed by independent administrators, whose duties/privileges are also separated – they
manage different role assignments and have without centralising the knowledge of the agents.

A distributed network, such as in the example, often consists of multiple nodes, each of
which may have its own policies that are not shareable with others, but which may depend
on each other. Centralised policy analysis for the whole network is not possible because of
the confidentiality concern. Our system can be applied directly to this class of problems as a
simulator of the distributed network.

Let’s elaborate the example further. For simplicity, we only describe the policies relevant
to the aforementioned analysis tasks. The team agent has local knowledge about team
members and administrators, as well as the effects of roles assignments. It also has a rule
specifying that role assignments are decided by the administrators. The system domain is
dynamic, as executed actions may change its properties, and it is modelled using a set of
domain independent Event Calculus axioms. Thus, Πteam1 contains at least the following
rules (by convention, Su, Ta, Ac and F are variables of the sorts subjects, targets, actions
and fluents respectively, and T, T1, T2, . . . are variables of the sort time):

holds(F, T)← initially(F), 0 < T,¬clipped(0, F, T).
holds(F, T)← do(Su, T a, Ac, T 1), initiates(Su, T a, Ac, F, T 1),

0 < T 1, T 1 < T,¬clipped(T 1, F, T).
clipped(T 1, F, T)← do(Su, T a, Ac, T 2), terminates(Su, T a, Ac, F, T 2),

T 1 < T 2, T 2 < T.

do(Su, T a, Ac, T)← Ac = assign(Role),
request(Su, T a, Ac, T), permitted(Su, T a, Ac, T)@Su.

initiates(Su, T a, assign(Role), hasRole(T a, Role), T)←
holds(clerk(T a), T), holds(admin(Su), T).

holds(clerk(X), T)← X ∈ {alex, bob}.
holds(admin(X), T)← X ∈ {admin1, admin2}.
holds(canInitiateOrder(X), T)@team1← holds(hasRole(X, initiator), T).
holds(canV erifyOrder(X), T)@team1← holds(hasRole(X, verifier), T).

ICLP 2011

184 Multi-agent Confidential Abductive Reasoning

One of the administrators, admin1, can assign the verifier role to users. It has a
blanket policy rule “a user can be assigned a role if it is permitted by at least one local policy”.
Blanket policy rules that can be used for modelling conflict resolutions are also private to
the agent, e.g., in admin1, positive authorisation policies (rules with permitted as head)
has higher priority than negative authorisation policies (rules with denied as head). In
addition, admin1 maintains a local trust level database of the users and has a local positive
authorisation policy “the verifier can be assigned to a user if the user’s trust level is greater
than 4”. Thus, Πadmin1 contains at least the following rules:

permitted(admin1, T a, assign(Role), T)@admin1←
holds(managed_role(Role), T), permitted(admin1, T a, assign(Role), T).

permitted(admin1, T a, assign(verifier), T)← holds(trust_level(T a, L), T), L > 4.

holds(trust_level(alex, 3), T).
holds(trust_level(bob, 5), T).
holds(managed_role(verifier), T).

The other administrator, admin2, can assign the initiator role to users. It has a different
blanket policy rule “a user can be assigned a role if none of the local policies denies it” (i.e.,
negative authorisation has higher priority). It also tries to implement SoD by having a local
negative authorisation policy “a user cannot be assigned to the initiator role if it has been
assigned the conflicting verifier role”. Thus, Πadmin2 contains at least of the following:

permitted(admin2, T a, assign(Role), T)@admin2←
holds(managed_role(Role), T),¬denied(admin2, T a, assign(Role), T).

denied(admin2, T a, assign(initiator), T)←
holds(conflicting(initiator, Role), T), request(Su, T a, assign(Role), T 1), T 1 < T.

holds(managed_role(initiator), T).
holds(conflicting(initiator, verifier), T).

To check if team1 can fulfil a task with the administrators under the SoD constraint, we can use
the query ∃X,Y, T, Z.[holds(canInitiateOrder(X), T)@Z, holds(canV erifyOrder(Y), T)@Z
∧X 6= Y]. Our system can succeed the query and find one answer: Ans1 = request(admin1, bob,
assign(verifier), T1)∧request(admin2, alex, assign(initiator), T2)∧T1 < T∧T2 < T∧Z =
team1. To check if the existing administrators’ policies can guarantee the SoD security prop-
erty of the overall system, i.e., “it is not possible that someone can complete an order alone”, we
can use the (negated) query ∃X,T, Z.[holds(canInitiateOrder(X), T)@Z, holds(canV erify−
Order(X), T)@Z]. Our system can also succeed this query and find one answer: Ans2 =
req(admin1, bob, assign(verifier), T1)∧req(admin2, bob, assign(initiator), T2)∧T1 ≤ T2∧
T2 < T ∧Z = team1. Therefore, the existing policies are not sufficient to guarantee the SoD
property, and the administrators have to revise their policies.

5.1 Benchmarking
To study the scalability of DAREC2 in distributed policy analysis, an auto-testing environment
has been developed. Given a set of tunable parameters, the environment is able to generate
policy rules and action effect rules with randomised conditions conforming to the language
in [3]. These rules are then distributed among a specified number of agents. Note that the
language in [3] guarantees the overall system model (as a logic program) is abductive acyclic
and hence the executions of policy analysis queries always terminate. For each distributed
computation, the total number of messages exchanged between agents, the average ping
time and the total time for computing all solutions for a given query are recorded. For
example, empirical results (e.g., 5 agents, each having about 250 rules; each rule body has on

J. Ma, A. Russo, K. Broda, E.C. Lupu 185

average 10 conditions, 3 of which are askables) showed that for about two thirds of the tested
queries, the DAREC2 computation is about 1.26∼6.17 times faster than a computation using
abduction over the centralised rules with an average ping time between agents being 0.015ms.
This was expected as concurrent computation was performed during collaborative reasoning.

6 Conclusion and Future Work

Confidentiality in knowledge is one important constraint that makes a multi-agent reasoning
problem challenging, and it is also a very common assumption in MAS’s. The main
contributions of this paper include (1) a logical framework for modelling the distributed
knowledge of a multi-agent system where the agent knowledge bases are correlated and have
private information, and (2) a top-down distributed abductive algorithm which allows agents
to perform collaborative hypothetical reasoning without disclosing private information. By
limiting the set of abducible predicates to be empty, the system becomes a general purpose
distributed deductive theorem prover that performs constructive negation. This feature
is very useful when dealing with logic programs with unbounded domains (e.g., Πadmin2
in Example 7) that cannot be implemented using bottom-up algorithms like answer set
programming. The system has many potential applications including distributed security
policy analysis. As a future work, we aim to perform more benchmarking to investigate the
performance under different safe goal selection strategies, agent selection strategies and agent
interaction strategies, and extend our system to handle private abducible predicates.

References
1 G. Bourgne, K. Inoue, and N. Maudet. Abduction of distributed theories through local

interactions. In Proceedings of the 19th European Conference on Artificial Intelligence,
pages 901–906, 2010.

2 A. Ciampolini, E. Lamma, P. Mello, F. Toni, and P. Torroni. Cooperation and competition
in ALIAS: a logic framework for agents that negotiate. Annals of Mathematics and Artificial
Intelligence, 37(1–2):65–91, 2003.

3 R. Craven, R. Lobo, J. Ma, A. Russo, E.C. Lupu, and A. Bandara. Expressive policy ana-
lysis with enhanced system dynamicity. In Proceedings of the 4th International Symposium
on Information, Computer, and Communications Security, pages 239–250, 2009.

4 M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Proceedings of the 5th International Conference of Logic Programming, 1988.

5 A.C. Kakas and P. Mancarella. Abductive logic programming. In Proceedings of the Work-
shop Logic Programming and Non-Monotonic Logic, pages 49–61, 1990.

6 A.C. Kakas, B. Van Nuffelen, and M. Denecker. A-system: Problem solving through
abduction. In Proceedings of 17th International Joint Conference on Artificial Intelligence,
pages 591–596, 2001.

7 J. Ma, A. Russo, K. Broda, and K. Clark. DARE: a system for distributed abductive
reasoning. Journal of Autonomous Agents and Multi-Agent Systems, 16(3):271–297, 2008.

8 J. Ma, A. Russo, K. Broda, and E. Lupu. Distributed abductive reasoning with constraints.
In Post-proceedings of the 8th International Workshop on Declarative Agent Languages and
Technologies, 2010.

9 H. Nabeshima, K. Iwanuma, K. Inoue, and O. Ray. Solar: An automated deduction system
for consequence finding. AI Communications, 23(2-3):183–203, March 2010.

10 Bert Van Nuffelen. Abductive Constraint Logic Programming: Implementation and Applic-
ations. PhD thesis, Department of Computer Science, K.U.Leuven, 2004.

ICLP 2011

186 Multi-agent Confidential Abductive Reasoning

11 K. Satoh, K. Inoue, K. Iwanuma, and C. Sakama. Speculative computation by abduction
under incomplete communication environments. In Proceedings of the 4th International
Conference on Multi-Agent Systems, pages 263–270, 2000.

12 M.P. Sindlar, M.M. Dastani, F. Dignum, and J.C. Meyer. Mental state abduction of bdi-
based agents. pages 161–178, 2009.

13 Frank Teusink. Three-valued completion for abductive logic programs. Theoretical Com-
puter Science, 165(1):171–200, 1996.

14 Sofie Verbaeten. Termination analysis for abductive general logic programs. In International
Conference on Logic Programming, pages 365–379, 1999.

	Introduction
	Related Work
	Knowledge Representation
	Multi-agent Confidential Abductive Framework

	Distributed Algorithm
	Local Abduction
	Coordination
	Transitional States and Confidentiality
	State Recipient Agent Selection
	Backtracking with Concurrent Computation
	Soundness and Completeness
	Implementation

	Distributed Policy Analysis
	Benchmarking

	Conclusion and Future Work

