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Abstract
In this paper a general framework (based on soft constraints) to model and solve the fair allocation
problem is proposed. Our formal approach allows to model different allocation problems, ranging
from goods and resources allocation to task and chore division. Soft constraints are employed
to find a fair solution by respecting the agents’s preferences; indeed these can be modeled in a
natural fashion by using the Semiring-based framework for soft constraints. The fairness property
is considered following an economical point of view, that is, taking into account the notions of
envy-freeness (each player likes its allocation at least as much as those that the other players
receive, so it does not envy anybody else) and efficiency (there is no other division better for
everybody, or better for some players and not worse for the others).
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1 Introduction and problem description

The problem of “fair division”, that is, fairly dividing resources or costs among a set of
people, is an important issue in real life scenarios; it can refer to several situations, such
as inheritance and divorce settlements, division of health resources, computer networking
resources, voting power, intellectual property licenses, costs for environmental improvements,
etc. In these cases, formal protocols for division are needed. Many variations of the basic
problem exist, for example, the situation with divisible resources is quite different from the
situation with indivisible objects; the items to be divided can be goods or sometimes “bads”
like chores or other burdens; some problems can involve the division of money to compensate
a “non fair share”, or a payoff in exchange for performing a chore. Other aspects to consider
are the number of objects with respect to the number of people. If goods are scarce, an
auction is needed and the items are assigned to (usually) one winner; in this case fairness
methods are studied in repeated auctions to guarantee that not always the same player will
be the winner.

But most of the variation comes from the fact that there are many reasonable ways to
formalize “fairness” including max-min fairness, proportional fairness, envy-free fairness, etc.
which may or may not lead to the same optimal allocation; if we take into account a global
view this means looking at the overall allocation in terms of social welfare, while a local view
focus on the agents preferences.

In this paper we investigate on the allocation of indivisible objects which can be either
goods or bads; thus, given a set of items and a set of people, each person states a weight for
each object which, depending on the cases, can represent preferences or costs (such as time,
money, resources etc.). According our model, the solution will be an envy-free allocation of
objects to the agents, reminding that envy-freeness is a fairness property that guarantees
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that no agent would rather have one of the bundle allocated to any of the other agents, that
is, each player prefers his bundle.

The paper is organized as follows: in Sec. 2.1 the various aspects of fair division problems
are illustrated; in Sec. 2.2 we give a background on Soft Constraint Satisfaction Problems
and semirings; in Sec. 4.1 we show how to use the SCSP framework to model allocation
problems; in Sec. 4.2 the mapping between SCSP and allocation problems is provided; finally,
Sec. 5 contains references to similar works in the field of fair division and allocation problems,
a short summary and our future works.

2 Background and overview of the existing literature

In the indivisible resource area, most of the issues are based on the Santa Claus problem [4],
in which the goal is to distribute n presents among k kids, in such a way that the least
lucky kid is as happy as possible; a linear programming is used with the Max-min fairness
objective function. Another variant is represented by the “housemate problem” [5], where
goods are associated with bads. The problem consists in assigning different rooms to people
sharing a house according the bid they submit, but also to determine a price to be paid by
each roommate for his assigned room. Concerning Chore division, the problem of dividing
an undesirable object has been investigated only for divisible goods, where cake cutting
algorithms have been adapted in order to deal with chores instead of desirable goods. It is
supposed that chores are infinitely divisible [3] and valuations over bundles are additive. Other
works view the problem from a computational perspective and are based on approximation
algorithms with the purpose of finding a solution closest to the optimum [6].

2.1 The problem of fair division

Fair division [2] is the problem of dividing one or several goods amongst two or more agents in
a way that satisfies a suitable fairness criterion. Fair division has been studied in philosophy,
political science, economics and mathematics for a long time, but is also relevant to computer
science and multiagent systems (MAS), in which resource allocation is a central topic since
the application or agents need resources to perform tasks. It is assumed that agents are
autonomous. A solution needs to respect and balance their individual preferences; fairness
definitions are required and once we have a well-defined fair division problem, we require an
algorithm to solve it.

The elements of a Fair Division Problem are a set P of n players: p1, p2, ..., pn and a set
of m objects O to be divided. The problem is to divide the set O into n shares ( o1, o2, ..., on

) so that each player gets a fair share of O. A fair share is any share that, in the opinion of
the player receiving it, has a value that is at least 1

n of the total value of the set of goods O.
It is crucial to understand that share value is subjective, and that each player may even have
a different notion of how much the set to be divided is worth.

There are three types of fair division schemes: the Continuous Fair Division Schemes,
in which the set O is infinitely divisible (cake, land, etc.) and shares can be adjusted by
arbitrarily small amounts; the Discrete Fair Division Schemes where the set O is made up of
indivisible objects (cars, houses, etc) and the Mixed Fair Division Schemes. In this paper,
since we are dealing with indivisible objects, we will focus on the discrete case.
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2.2 Constraint Satisfaction Problems, Semirings and Soft Constraints
The classic definition of a Constraint Satisfaction Problem (CSP) is as follows [10]. A
CSP P is a triple P = 〈X,D,C〉 where X is an n-tuple of variables X = 〈x1, x2, . . . , xn〉,
D is a corresponding n-tuple of domains D = 〈D1, D2, . . . , Dn〉 such that xi can assume
values within a determined domain Di, C is a t-tuple of constraints C = 〈C1, C2, . . . , Ct〉. A
constraint Cj is a pair 〈RlSj

, Sj〉 where RlSj
is a relation on the variables in Si = scope(Ci).

A solution to the CSP P is an n-tuple A = 〈a1, a2, . . . , an〉 where ai ∈ Di and each Cj is
satisfied in that RlSj

holds on the projection of A onto the scope Sj . In a given task one may
be required to find the set of all solutions, sol(P), to determine if that set is non-empty or
just to find any solution, if one exists. If the set of solutions is empty the CSP is unsatisfiable.
A c-semiring [8, 9] S (or simply semiring in the following) is a tuple 〈A,+,×,0,1〉 where A
is a set with two special elements 0,1 ∈ A (respectively the bottom and top elements of A)
and with two operations + and × that satisfy certain properties: + is defined over (possibly
infinite) sets of elements of A and is commutative, associative and idempotent; it is closed, 0
is its unit element and 1 is its absorbing element; × is closed, associative, commutative and
distributes over +, 1 is its unit element and 0 is its absorbing element (for the exhaustive
definition, please refer to [8]). The + operation defines a partial order ≤S over A such that
a ≤S b iff a+ b = b; intuitively a ≤S b if b represents a value better than a. Other properties
related to the two operations are that + and × are monotone on ≤S , 0 is its min and 1 its
max, 〈A,≤S〉 is a complete lattice and + is its lub. A soft constraint [8, 9] may be seen as
a constraint where each instantiation of its variables has an associated preference. Given
S = 〈A,+,×,0,1〉 and an ordered set of variables V over a finite domain D, a soft constraint
is a function which, given an assignment η : V → D of the variables, returns a value of the
semiring. Using this notation C = η → A is the set of all possible constraints that can be
built starting from S, D and V .

Given the set C, the combination function ⊗ : C × C → C is defined as (c1 ⊗ c2)η =
c1η × c2η [8, 9]. The ⊗ builds a new constraint which associates with each tuple of domain
values for such variables a semiring element which is obtained by multiplying the elements
associated by the original constraints to the appropriate sub-tuples. Given a constraint c ∈ C
and a variable v ∈ V , the projection [8, 9, 11] of c over V − {v}, written c ⇓(V \{v}) is the
constraint c′ such that c′η =

∑
d∈D cη[v := d]. Informally, projecting means eliminating

some variables from the support. A SCSP [9] is a tuple P = 〈X,D,C,A〉 where X is
a set of variables, D is the domain of the variables and C is a set of constraints over
X associating values form a c-semiring A. The best level of consistency notion defined
as blevel(P ) = Sol(P ) ⇓∅, where Sol(P ) =

⊗
C [9]. A problem P is α-consistent if

blevel(P ) = α [9]; P is instead simply “consistent” iff there exists α >S 0 such that P is
α-consistent [9]. P is inconsistent if it is not consistent.

3 Goal of the research

Although there is wide literature on fair division within the fields of economics, game theory,
political science, mathematics, operations research and computer science, it seems to lack a
unified and general framework which allows to solve the different kinds of problems, each
one with different objects (desirable or undesirable items), weights or preferences. Another
issue encountered in previous works is that often it is not possible to find a solution and the
problem remains unsolved; our approach might be applied in all these cases because the use
of soft constraints allows to always find a solution; moreover we provide a general framework
which can model several cases by choosing the appropriate semiring (see Sec. 2.2).
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4 Preliminary results accomplished

4.1 The SCSP framework for allocations problems

In this section we define a quantitative framework to model fair division problems, where
each assignment of objects to people have an associated preference/weight and, consequently,
modeling this kind of problems as Soft CSPs (see Sec. 2.2) leads to an allocation of goods to
people that optimize the criteria defined by the chosen semiring. For instance, the Weighted
semiring 〈R+,min, +̂, 0, 1〉, where +̂ is the arithmetic plus (0 = ∞ and 1 = 0), can be
used to model the undesirable objects case (such as chore division) by expressing the (e.g.
money) cost for performing a chore; the optimum solution in this scenario corresponds to an
allocation with minimum total cost. The Fuzzy semiring 〈[0..1],max,min, 0, 1〉 is well suited
for modeling the players’s preferences with respect to each good; the solution we obtain with
this semiring corresponds in choosing the highest among the minimum preferences. The
Probabilistic semiring 〈[0..1],max, ×̂, 0, 1〉 can be used when preferences are unknown, thus,
weights corresponds to probabilities; we can express for instance, that person p1 prefers
object o3 with probability 0.4. The arithmetic ×̂ is used to compose the probability values
together (since we assume that preferences and thus probabilities are independent). By
using the Boolean semiring 〈{true, false},∨,∧, false, true〉 we can solve the non weighted
allocation problems, that is, each person states only the goods he/she desires (or the tasks
he is able to perform).

4.2 Mapping Allocation Problems to SCSPs

In this section we show a mapping from the allocation problem to SCSPs. An allocation
problem is formed by a set of m indivisible objects (or items) O = {o1, o2, . . . , om} and a
set of people (or players) P = {p1, . . . , pn}. Each player has their own preferences or costs
regarding the allocation of goods/tasks to be selected. The problem consists in partitioning
the set of objects in n subsets (or bundles) in a way that each person receives a (non-empty)
bundle that satisfies a suitable fairness criterion. In order to model this problem with a SCSP,
we define a variable for each object oi ∈ O, i.e. V = {o1, o2, . . . , om} and the domain of each
variable is the set of people in P : D = {p1, . . . , pn}, meaning that an object can be assigned
to a person in the set P ; for example o1 = p2 means that player p2 receives object o1. A
soft constraint associates a semiring value for each assignment of the variables in its scope,
which represent the preference of the player for a given item; if no weights are considered ,
the corresponding variable assignment is not admitted or admitted and the values 0 or 1 of
the boolean semiring set are respectively returned.

I Example 1. As a simple example, suppose we must assign 3 objects (o1, o2, o3) to 2
players (p1, p2). The corresponding SCSP, by using (for instance) a Fuzzy semiring, has
three variables: o1, o2 and o3, each with the domain D = {p1, p2}; we define the following
unary constraints: Co1 := {(p1, 0.7); (p2, 0.2); } meaning that object 1 can be assigned either
to person 1 (who has a preference of 0.7 for this objects) or person 2 (with preference 0.2);
Co2 := {(p1, 0.3); (p2, 0.1); } that is, object 2 can be assigned either to person 1 or 2 with
preferences 0.3 and 0.1 respectively; Co3 := {(p2, 0.7)} meaning that object 3 can only be
assigned to person 2 who desires the object with preference 0.7;

the solution is illustrated in the table below:
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o1 o2 o3 Sol(P )
p1 p1 p1 not allowed
p1 p1 p2 0.7 × 0.3 × 0.7 0.3
p1 p2 p1 not allowed
p1 p2 p2 0.7 × 0.1 × 0.7 0.1
p2 p1 p1 not allowed
p2 p2 p1 not allowed
p2 p2 p2 0.2 × 0.1 × 0.7 0.1
p2 p1 p2 0.2 × 0.3 × 0.7 0.2

The (unique) optimal solution of this problem is o1 = p1, o2 = p1o3 = p2 (with preference
0.3).

Depending on the cases, the solution provided might not be fair if we only use the previous
method. For example, with different preferences, the solution (p2, p2, p2) could be returned,
which is certainly unfair, since player 1 does not get any object and envies player 2. For this
reason, we need to specify additional constraints in order to solve the allocation problem
and guarantee the envy-freeness property of fairness. Let xij be a boolean variable which is
equal to 1 if item j is assigned to player i and 0 otherwise and let ui(Bi) be the value for
person i of the set of objects (Bi) assigned to him; this value represents the valuation of the
bundle (that is, the subset of items) for each person; an issue encountered in this case is that
requesting an input to the agents for every possible combination of goods is NP-hard, in fact
for m object there are 2m valuations for each of the n players. In order to reduce the size of
the problem, we can automatically calculate the value of the bundle, by specifying in the
problem if the valuations are additive (thus, the value is obtained by summing the weights of
the single objects in the bundle), super-additive (the value of the bundle is greater than the
values of the single objects), sub-additive (the value of the bundle is lower than the values
of the single objects) or maximal (the value of the bundle corresponds to the maximum
weight among the objects in the bundle); in this way we can compute the value of the entire
bundle ui(Bi); the type of valuation depends on the kind of goods; for example if the items
considered are complementary (e.g. printers and ink cartridges) the valuation of the bundle
might be super-additive, or conversely, if the goods are substitute (e.g. petroleum and natural
gas), the valuation might be sub-additive. The defined constraints are the following: 1

1. Each object must be assigned to at most one person ∀j
∑

i xij = 1;
2. Each person must receive at least one item: ∀i

∑
j xij ≥ 1;

3. Envy-freeness constraint. Each person does not prefer the set of objects assigned to the
other players: ∀i ui(Bi) ≥ ui(Bj) for each j 6= i;

Moreover, since we are assuming that the number of objects is greater (or equal) than the
number of people, our solution is also efficient, as shown in [12], which proves that when
m ≥ n envy-freeness implies efficiency.

5 Open issues and expected achievements

We investigated on the use of the semiring-based framework for soft constraints in order to
model and solve the fair allocation of objects problem. According the chosen semiring, we
can easily represent the different set of preferences, their combination and the various kind of
objects. In the future we plan to use the framework for the Stable Marriage Problem, which
can be casted in a particular fair allocation problem involving the same number of objects
and people.

1 constraints 1 and 2 are based on those used in the Santa Claus Problem’s paper [4]
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