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Abstract
In daily operation, railway traffic always deviates from the planned schedule to a certain extent.
Primary initial delays of trains may cause a whole cascade of secondary delays of other trains
over the entire network. In this paper, we propose a stochastic model for delay propagation and
forecasts of arrival and departure events which is applicable to all kind of public transport (not
only to railway traffic). Our model is fairly realistic, it includes general waiting policies (how
long do trains wait for delayed feeder trains), it uses driving time profiles (discrete distributions)
on travel arcs which depend on the departure time, and it incorporates the catch-up potential
of buffer times on driving sections and train stops. The model is suited for an online scenario
where a massive stream of update messages on the current status of trains arrives which has to be
propagated through the whole network. Efficient stochastic propagation of delays has important
applications in online timetable information, in delay management and train disposition, and in
stability analysis of timetables.

The proposed approach has been implemented and evaluated on the German timetable of
2011 with waiting policies of Deutsche Bahn AG. A complete stochastic delay propagation for
the whole German train network and a whole day can be performed in less than 14 seconds on a
PC. We tested our propagation algorithm with artificial discrete travel time distributions which
can be parametrized by the size of their fluctuations. Our forecasts are compared with real data.
It turns out that stochastic propagation of delays is efficient enough to be applicable in practice,
but the forecast quality requires further adjustments of our artificial travel time distributions to
estimates from real data.
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1 Introduction

Motivation. Train delays occur for various reasons: Disruptions in the operations flow,
accidents, malfunctioning or damaged equipment, construction work, repair work, and
extreme weather conditions like snow and ice, floods, and landslides, to name just a few.
Initial delays of these types are called primary delays. They usually induce a whole cascade
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of secondary delays of other trains which have to wait according to certain waiting policies
between connecting trains. On a typical day of operation of German Railways, an online
system has to handle millions of forecast messages about (mostly small) changes with respect
to the planned schedule and the latest prediction of the current situation. Thus, a graph
model representing the current schedule has to be updated at a high rate [9]. Delay cascades
cannot be forecast exactly due to several stochastic influences. For example, trains can drive
faster than planned or stay shorter at stations than scheduled and so catch up some of their
delay. In fact, to make the schedule more robust, certain slacks are usually integrated into
the planned schedule. Stochastic forecasts can be used for several purposes:
1. Ontrip timetable information: The arrival and departure time distribution can be

used to evaluate the reliability of a planned transfer and then used in a multi-criteria
setting as an additional objective.

2. Delay management and train disposition: Dispatchers have to decide whether a
train should wait for another delayed train. These decisions are quite complex, and so
it is helpful to evaluate the reliability of forecasts of arrival and departure times as a
decision aid. This information can be used for explicit human decisions or in an automatic
disposition system which tries to find globally optimal waiting decisions.

3. “Stability analysis” of the planned schedule: Stochastic simulations of delays allow
for a quantitative evaluation how small delays propagate through the system. They help
to study the robustness of the schedule.

Related Work. Efficient deterministic propagation of primary and secondary delays has
been done by Müller-Hannemann and Schnee [9]. They demonstrated that even massive
delay data streams can be propagated instantly, making this approach feasible for real-time
multi-criteria timetable information. Goverde [6] recently presented an efficient deterministic
delay propagation algorithm for periodic timetables. Train event networks are similar to
project networks. In stochastic project networks (PERT-networks), the vertices are project
events and arcs correspond to activities. The duration of each activity has an associated
probability distribution. One is typically interested in critical paths or in the distribution
function of the overall project completion time. The computation of the distribution function
is computationally hard, even the evaluation at a single point is #P-complete in general [7].
Stochastic models for the propagation of delays have been studied intensively, most im-
portantly by Carey and Kwieciński [3, 4] and Meester and Muns [8]. They propose to use
approximations of delay distributions to reduce the computational effort and study the
error propagation for such approximations. However, they do not model waiting policies for
connecting trains. For the computation of propagated delays, the distributions are treated
as if they were independent. Although it is difficult to bound the consequences of the
independence assumption quantitatively, Meester and Muns argue that the effect of their
approximations is small. The experimental evaluation of [8] has been conducted on a “toy
network” of ten stations and four train lines. A similar approach has been taken by Büker [2].
Compared to our work, his experiments are only based on relatively small subnetworks.
Goverde [5] uses a max-plus algebra approach for stability analysis of railway timetables. See
also the PhD-thesis of Yuan [10] for further references and an in-depth discussion of models.

Our Contribution. We present in the following section a concise and realistic stochastic
model for delay propagation and calculation of arrival and departure time distributions in
public transport. Our model is formulated with respect to an event graph which models the
train schedule and the waiting conditions between planned transfer possibilities. It includes
general waiting policies (how long do trains wait for delayed feeder trains), it uses driving
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time profiles (discrete distributions) on travel arcs which depend on the departure time, but
also on train category or track conditions. Moreover, our model incorporates the catch-up
potential of buffer times on driving sections and at train stops. We believe that the resulting
model is quite elegant which made it possible to implement it with a reasonable effort.

Discrete distributions of travel times on travel arcs can be chosen arbitrarily which allows
to test different scenarios, in particular to stress the system to its limits. A crucial property
of our approach is that it allows dynamic updates with respect to new delay messages. Given
incoming messages (new delays or updates of existing delays, and current effective status
messages of trains) from some external source, we immediately propagate these messages
through the whole network. The event graph is a directed acyclic graph. Therefore, delay
propagation can be done in topological order of events. For start up it is necessary to
propagate once the initial distributions over the whole event graph. Afterwards new forecasts
and effective status messages are only propagated in the forward cone of the corresponding
event, i.e. in the part of the network which can be reached from it. We work with two types
of distributions: one-point distributions of already realized events and arbitrary discrete
distributions of events which still lie in the future.

Although stochastic delay propagation is computationally quite expensive, we managed
to implement a version which is fast enough to be used in an online system. Experiments
with a prototypal implementation on the whole German train network and realistic waiting
rules between connecting trains require less than 14s to propagate all discrete distributions
for a full traffic day. Simulations with several distributions of travel times on travel arcs yield
interesting insights into the robustness of the planned schedule against small fluctuations. We
compare our predictions with realized event times for two different types of days, a mid-week
day and a weekend day and perform experiments with four different sets of waiting rules
between connecting trains.

Overview. In the following section we describe in detail the event graph, our stochastic
model, and its underlying assumptions. Afterwards we explain, how arrival and departure
probabilities can be computed for all events. In Section 4, we report on experimental results
with a prototypal implementation. A full version of this paper is available as a Technical
Report [1].

2 The stochastic model

2.1 The timetable and its corresponding event graph
A time table TT := (P, S,C) consists of a tuple of sets. Let P be the set of trains, S the set of
stations and C the set of elementary connections, that is C := {c = (p, s, s′, td, ta) | train p ∈
P leaves station s at time td. The next stop of p is at station s′ at time ta}.

We define with respect to the set of elementary connections C sets of departure eventsDepv
and arrival events Arrv for each station v ∈ S. Let Dep = ∪v∈SDepv and Arr = ∪v∈SArrv.
Each event depv := (time, train) ∈ Depv and arrv := (time, train) ∈ Arrv represents
exactly one departure or arrival event which consists of the two attributes time and train.
Staying times at a station v can be lower and upper bounded by minimum and maximum
staying times minstay(arrv, depv),maxstay(arrv, depv) ∈ Z+ which have to be respected
between different events in v. Staying times ensure the possibility to transfer from one train
(the so-called feeder train) to the next. We denote by G := (V,A) the event graph with
V := Dep ∪ Arr and the arc set A := Atravel ∪ Atransfer consisting of the travel arc set
Atravel :=
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{(depv, arrw)| there exists c ∈ C with td = depv(time), ta = arrw(time),
v = s, w = s′ ∧ p = depv(train) = arrw(train)}

and the transfer arc set

Atransfer := {(arrv, depv)| arrv ∈ Arr, depv ∈ Dep,minstay(arrv, depv) ≤
depv(time)− arrv(time) ≤ maxstay(arrv, depv)}.

Furthermore, we define waiting times waittransfer : Atransfer 7→ Z+ ∪ {∞} where we de-
note by waittransfer(arrv, depv) the number of time units which train(depv) may depart
later than the planned time time(depv) with respect to its feeder train train(arrv). Clearly,
waittransfer(arrv, depv) = ∞ if train(arrv) = train(depv), because a train cannot depart
before its arrival. We define a further waiting time wait : Dep 7→ Z+ with wait(depv) :=
max{waittransfer(arrv, depv)| (arrv, depv) ∈ Atransfer ∧ train(arrv) 6= train(depv)}. If
some train is delayed by more than wait(depv), then its departure time depends on no
other train, irrespectively of their delays. Each travel arc (depv, arrw) ∈ Atravel pos-
sesses a scheduled travel time arrw(time) − depv(time) and a minimum possible travel
time mintt(depv, arrw) ∈ Z+ with mintt(depv, arrw) ≤ arrw(time) − depv(time). If train
train(depv) departs too late at v there exists the possibility to regain some time. We define
a realization time tr(event) for each event and call the current time point update time tupdate.
Note that scheduled time points (see the attributes attached to departure or arrival events)
are denoted as ‘time’.

2.2 Model assumptions
In the following, we specify and discuss our model assumptions. The general scenario is
that we obtain a stream of online messages about the delay status of trains (so-called status
messages) from the railway company, i.e., for each train, the difference between the scheduled
and the realization time for departure and arrival events is measured and reported.

I Assumption 1. With respect to status messages, a train can arrive or depart at any time
after the planned arrival or departure time, respectively.

Of course, a train shall never depart before its scheduled departure time. In reality, a
train may arrive somewhat early, but then its waiting time at the station will be increased.
Thus our model assumption does not make a difference for delay propagation, but simplifies
the mathematical model. For compatibility to Assumption 1, we demand the following.

I Assumption 2. With respect to our forecasts of arrival and departure time distributions,
no train departs before its scheduled time or arrives at a station before its planned arrival
time.

I Assumption 3. We assume that the distributions of arrival times of all feeder trains of a
given train are stochastically independent.

In other words, we postulate that the delay distributions of any two feeder trains are
mutually independent. Note that the same independence assumption has also been used
in the previous studies mentioned in the related work section above. However, we would
like to emphasize one crucial point in online delay propagation: as soon as a delay of some
train has been realized, the corresponding departure or arrival time distribution of this
event is replaced by a one-point distribution, and this update is propagated through the
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network. Hence, the contribution of realized delays is fully reflected in our estimates of
future arrival and departure time distributions. Nevertheless, our independence assumption
may be violated to a certain extent, for example, because of limited track capacities for
incoming trains at a station. However, this simplification enables us to keep stochastic delay
propagation tractable.

I Assumption 4. Waiting rules are defined for any pair of arriving and departing trains
for which a transfer arc is defined.

For simplicity, we do not model new transfer possibilities due to other delayed trains
(although it would not change our model, only the implementation is slightly more complic-
ated).

3 Departure and arrival probabilities
3.1 Travel time, departure and arrival random variables
Let (Ω,A, P ) be a discrete probability space with sample space Ω, σ-algebra A and probability
measure P . Furthermore, let T ⊂ Z+ be a discrete set of time points. We define with respect
to a current time tupdate for each event event ∈ Dep∪Arr a discrete random variable Xevent :
Ω 7→ {event(time), event(time) + 1, . . . }. We call a variable departure random variable if
event = depv and arrival random variable for event = arrv where depv, arrv ∈ Dep ∪ Arr.
The range of Xevent(Ω) is {event(time), event(time) + 1, . . . } by our Assumption 2. With
respect to Assumption 3, we state that all arrival random variables Xarrv with arrv ∈ Arr
for a single station s ∈ S are pairwise stochastically independent with respect to probability
measure P . This means that for all pairs (t, t′) ∈ {arrv(time), . . . } × {arr′v(time), . . . } it
follows that

P (X−1
arrv

({t}) ∩X−1
arr′

v
({t′})) = P (X−1

arrv
({t})) · P (X−1

arr′
v
({t′})).

Furthermore, we distinguish between realized and not realized random variables. For all
realized events we state P (X−1

event(tr(event))) := 1 (in such cases tr(event) ≤ tupdate).
Non-realized events are in general not ‘one-point-distributed’.

We also need a random variable which describes possible travel times on each arc
(depv, arrw) ∈ Atravel. Generally, we want to model the case that a train can regain some time
with a smaller travel time as the planned travel time arrw(time)−depv(time). Assumption 2
ensures that we may not arrive at an earlier time as arrw(time). Hence, we need for each
arc (depv, arcw) ∈ Atravel a sequence of discrete travel time variables (Xt

(depv,arcw))t∈TP for
each possible departure time point t ∈ TP := {depv(time), depv(time) + 1, . . . } with

Xt
(depv,arrw) : Ω 7→ {mintt(depv, arrw), . . . , arrw(time)− depv(time) + k}.

To satisfy Assumption 2, we have to distinguish random variables for different times with
respect to their time distance to the scheduled times. That means that the probability
for time t must be zero if the distance between a forecasted time and the scheduled arrival time
arrw(time) is more thanmintt(depv, arrw).We set P ((Xt

(depv,arrw))−1({mintt(depv, arrw), . . . ,
arrw(time) − t − 1})) := 0 for all t ∈ {depv(time), . . . , d} because our Assumption 2 pro-
hibits to arrive earlier than planned. Clearly, it is necessary to model for all points in
time t a distinct random variable Xt

(depv,arrw). In theory, we are able to distinguish infin-
itely many of such random variables. In our experiments, we restrict ourselves to the case
where all random variables are identical from a certain point of time d onwards. We set
d := arrw(time)−mintt(depv, arrw)− 1 and define

Xt
(depv,arrw) := Xd+1

(depv,arrw)
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Figure 1 Possible travel times on an arc (depv, arrw) depending on the actual departure time.
We use the the abbreviations t := depv(time), d := arrw(time) − mintt(depv, arrw), min :=
mintt(depv, arrw) and scheduled:= arrw(time) − depv(time). The allowed fluctuation above the
scheduled travel time is here chosen as k = 2. The data points connected by lines represent all travel
times which lead to the same arrival time at w. The points in the same column td correspond to all
possible travel times for a fixed distribution Xt

(depv,arrw).

for all t > d. Consider Figure 1 for an example of travel time distributions.

3.2 Departure random variables and departure probabilities
When we reach the current time point tupdate, we replace for all events with a realization
time tr(event) ≤ tupdate their discrete departure or arrival random variables with the above
defined ‘one-point-distribution’ (if the data is available). Afterwards, we can compute —
following a topological ordering of the acyclic event graph — all succeeding random variables.
In a next step we want to describe how one can compute the departure random variable
for an event which has not yet been realized. For the determination of a departure random
variable we distinguish between three cases.
1. Train train(depv) departs at its scheduled time depv(time).
2. Trains train(depv) departs at t ∈ {depv(time) + 1, . . . , depv(time) + wait(depv)}.
3. Train train(depv) departs at t ∈ {depv(time) + wait(depv) + 1, . . . }.
We denote the set of all arrival events of feeder trains by F := {arriv| (arriv, depv) ∈
Atransfer, train(arriv) 6= train(depv)}. Case (1) occurs if train train(arrv) arrives at
t ∈ {arrv(time), . . . , depv(time)−minstay(arrv, depv)} and for each feeder trains arriv ∈ F
with i ∈ N|F | one of the following holds: (a) either it arrives early enough so that the
train can depart on time, i.e., it arrives in time interval {arriv(time), . . . , depv(time) −
minstay(arriv, depv)}, or (b) it arrives so late that the departing train does not need to
take care of it. This happens in the interval {depv(time) − minstay(arriv, . . . , depv) +
wait(arriv, depv) + 1, . . . }. Let l := |F |+ 1 the number of ingoing transfer arcs for departure
event depv and arrlv := arrv.We define for all feeder trains i ∈ Nl−1 and t ∈ {depv(time), . . . }
possible arrival intervals Ii(t) depending on possible departure times of train train(arrv) with
Ii(t) := {arriv(time), . . . , t−minstay(arriv, depv)−1} ∪{depv(time)−minstay(arriv, depv)+
wait(arriv, depv) + 1} and Il(t) :=
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{arrv(time), . . . , t−minstay(arrv, depv)− 1}. Furthermore, we need slightly different index
sets Ji(t) := {arriv(time), . . . , t−minstay(arriv, depv)} ∪{depv(time)−minstay(arriv, depv)+
waittransfer(arriv, depv) + 1, . . . } and Jl(t) := {arrv(time), . . . , t − minstay(arrv, depv)}.
Finally, we denote mi := minstay(arriv, depv). For case (1) we compute the preimages of a
departure random variable with

X−1
depv

({depv(time)}) =
l⋂
i=1

X−1
arri

v
(Ji(depv(time))).

By Assumption 3, and if we denote parri
v
(t) := P (X−1

arri
v
({t})) and pdepv

(t) := P (X−1
depv

({t}))
we get

pdepv
(depv(time)) =

λ∏
i=1

∑
λ∈Ji(depv(time))

parri
v
(λ).

We call pdepv
the departure probability and parrv

the arrival probability.
Case (2) occurs if train train(arrv) arrives in interval {arrv(time), . . . ,

t − minstay(arrv, depv)} and at least one feeder train train(arri0v ) with arri0v ∈ F ar-
rives exactly at time point t − minstay(arri0v , depv). We define with respect to possible
departure times t ∈ {depv(time) + 1, . . . , depv(time) +wait(depv)} the set of all ‘exact’ time
point tuples as

At := {(t1, . . . , tl)| (t1, . . . , tl) ∈ (×li=1Ji(t)) ∧ ∃i0 < l with ti0 = t−mi0}.

For a departure random variable in case (2) we get

X−1
depv

({t}) =
⋃

(t1,...,tl)∈At

(
l⋂
i=1

X−1
arri

v
({ti})

)
.

This formulation is compact but we have to consider exponentially many disjoint subsets
of Ω leading to a non-efficient algorithm for computing Xdepv

. Instead, we rearrange these
preimages by applying the well-known ‘De Morgan-rules’ such that we get only polynomially
many disjoint subsets of Ω. Then, we get

X−1
depv

({t}) =
l−1⋃
j=0

(
j⋂

i=1

X−1
arri

v
(Ii(t)))

⋂
(X−1

arr
j+1
v

({t−mj+1}))
l⋂

i=j+2

X−1
arri

v
(Ji(t))) =:

l−1⋃
j=0

Sj .

Using σ-additivity to compute the elementary probabilities pdepv (t) := P (X−1
depv

({t})) we
have to show that for all pairs j, j′ ∈ {0, . . . , k−1} the sets Sj , Sj′ are disjoint. It is sufficient
to prove that for an arbitrary j0 the sets Sj0 and Sj0+1 are pairwise disjoint. Assume there
exists an ω ∈ Ω with ω ∈ Sj0 ∩ Sj0+1. Then it follows that X

arr
j0+1
v

(ω) = t −mj0+1 and
X
arr

j0+1
v

(ω) ∈ Ij0+1. Because t−mj0+1 /∈ Ij0+1 this is a contradiction. Hence, we can apply
σ-additivity and use Assumption 3 that our random variables are stochastically independent.
For case (2) we obtain

pdepv (t) =
l−1∑
j=0

 j∏
i=1

 ∑
λ∈Ii(t)

parri
v
(λ)

 · parrj+1
v

(t−mj+1) ·
ł∏

i=j+2

 ∑
λ∈Ji(t)

parri
v
(λ)

 .

Case (3) is much simpler because the departure time of train train(depv) only depends
on its arriving time arrv(time). That is X−1

depv
({t}) = X−1

arrv
({t − ml}) and results in

pdepv
(t) = parrv

(t−ml).
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The case that train train(depv) starts at station v ∈ S is also simpler. Obviously, its
departure time only depends on feeder trains. We can take all above computations but
ignore the arrival event arrkv in case (1) and case (2). For case (3) we set pdepv

(t) := 0 for all
t ∈ {depv(time) + waittransfer(depv) + 1, . . . }.

3.3 Arrival random variables and arrival probabilities
Let (depv, arrw) ∈ Atravel be a travel arc. The arriving time on w depends on the departure
time at v ∈ S and all possible travel times on this travel arc at this time. We denote the
possible travel time set by PTT := {mintt(depv, arrw), . . . , arrw(time)− depv(time) + k}
with k ∈ N. Formally, we get for each t ∈ {arrv(time), . . . }

X−1
arrw

({t}) =
⋃

j∈PTT
(X−1

depv
({t− j})

⋂
(Xt−j

(depv,arrw))
−1({j}).

We can apply σ-additivity to probability measure P . We set pt(depv,arrw)(λ) :=
P (Xt

(depv,arrw))(λ) and get the arrival probability for an arrival event arrw at time t as

parrw (t) =
∑

j∈PTT
pdepv (t− j) · pt−j(depv,arrw)(j).

4 Experiments

Test instances and environment. Our computational study is based on the German
train schedule of 2011, with actual data of realized departure and arrival times for days in
February and March 2011. Each day of operation has about 300,000 departure and arrival
events per day. All experiments were run on a PC (Intel(R) Xeon(R), 2.93GHz, 4MB cache,
47GB main memory under ubuntu linux version 8.10). Only one core has been used by our
program. Our code is written in C++ and has been compiled with g++ 4.4.3 and compile
option -O3.

Delay distributions on travel arcs. For our simulation experiments we use two types
of distributions: a uniform distribution and a kind of unimodal distribution with a peak at
the scheduled travel time. Our unimodal distribution is parametrized by k which controls
the support size. For parameter k the support has width 2k + 1, and the distribution
assigns the probabilities 1

2k+1 ,
1

2k , . . . ,
1
22 , 1 −

∑k
i=1

1
2i ,

1
22 ,

1
23 . . . ,

1
2k+1 to the travel times

mintt,mintt+ 1, . . . , s, s+ 1, . . . , s+ k, where s denotes the scheduled travel time.
We select the travel time distribution of a travel arc depending on the actual departure

time depv(time). If the departure time at departure event depv is between the scheduled
time depv(time) and arrw(time)−mintt(depv, arrw) we apply the uniform distribution. If
the actual departure time is above arrw(time) −mintt(depv, arrw), we always apply the
unimodal distribution.
Waiting rules. For the waiting times waittransfer we use four different scenarios:

1. rule-based: We use the standard waiting rules from German Railways.
2. always: Each train has to wait for all of its feeder trains.
3. never: No train has to wait for another train.
4. static: Whenever necessary, a train has to wait for a feeder train exactly x minutes. We

set x := 5 and waittransfer(arrv, depv) = 5.
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k = 1 k = 2 k = 3 k = 4 k = 5
never 3.72s 6.23s 6.07s 6.98s 11.32s

rule-based 3.73s 6.30s 6.93s 7.02s 11.52s

static 4.12s 6.32s 7.01s 8.95s 11.94s

always 5.12s 7.29s 8.57s 10.99s 13.78s

Table 1 Running times in seconds for the different waiting strategies and travel time distributions.

Experiment 1: Efficiency. In our experiments we use the fluctuation parameter k ∈
{1, 2, 3, 4, 5} for travel times, i.e., the maximum permitted additional travel time for each
train between two stops. The exact definition can be found in Subsection 3.1. The running
time for the computation of all arrival and departure distributions of a whole day takes only
a few seconds, see Table 1. Hence, we are able to determine forecasts in real time. Two
trends are obvious: the wider the travel time distributions (increasing fluctuation parameter
k), the larger the running time. Likewise, when we compare the rules among each other,
we observe that the more trains have to wait for each other, the larger the running time.
However, in all cases the absolute running times are below 14s.

Experiment 2: Width of distributions over time. Our second experiment has been
guided by the following questions:
1. How precise are our forecasts, i.e. how narrow or wide are the computed distributions?

The smaller the support of the distribution, the more meaningful is our forecast.
2. To which extent does the distribution width (support) depend on the chosen waiting

rule? This gives us insight into the stability of a rule and also may explain the observed
differences in CPU time. The wider a distribution becomes during propagation, the more
work has to be done and the less stable a waiting rule will behave.

3. Do the distribution widths grow over time, and how does this depend on the chosen
waiting rule? For the extreme waiting rule “always” we may expect a cascading effect,
while for the other three rules the slack times within the schedule and the bounds on
the maximum waiting time may have a weakening and stabilizing effect on the support
widths.

In Figure 2, we investigate the widths of all supports with respect to the time horizon
and all four waiting rules on Thursday, 10.03.2011. For the delay distributions on travel arcs
we used the fluctuation parameter k = 2. For the waiting strategies “rule-based”, “never”
and “static”, we observe that the width of the supports of event distributions stays relatively
narrow over time, while for the extreme waiting policy “always” the widths of supports grow
fast with an increasing time horizon. These findings also partially explain the observed
running times for the different waiting rules as shown in Table 1.

Experiment 3: Predictions vs. realized data. This experiment investigates how well
our predictions fit to realized data. In this experiment, we computed our predictions without
using any information about actual delays. Since real operations have been conducted
approximately according to the “rule based” waiting rule, we compare our predictions with
this rule.

For the comparison of our predictions with realized data we use two different test days,
namely a Thursday and a Sunday. In Table 2, we give an overview about the data availability
for both days. This is necessary, because we did not get all realized event times from
German Railways. For about 30% of the regional trains we have no information about their
realized departure or arrival times. For the 10.03.2011 we have collected 289, 459 messages
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static, k=2
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Figure 2 The three-dimensional plots show how the predicted arrival and departure time
distributions change over time, from early morning to midnight for the traffic day 10.03.2011 (24
hours). For each point in time, the z-axis gives the number of events which have a distribution with
a certain support width. We compare the different waiting rules for the fluctuation parameter k = 2.
Waiting rules: “rule based” (upper left) and “always” (upper right), “never” (lower left) and “static”
(lower right).

about realized event times and for the 20.02.2011 we got 193, 461 messages. According to
information from German Railways, we may assume that the rest of non-available messages
were “in due time”, what here means that all these trains have at most 1 minute of delay.
With respect to this data situation, we determined the absolute difference between realized
timestamps (of observed real world data) and the planned schedule time to measure the
“strength of delays” on these days, see Figure 3.

In Figure 4, we display the absolute differences between the expectation values and the
realized times for 289459 available events on Thursday 10.03.2011 and for 193461 available
events on Sunday, 20.02.2011. With respect to expectation values, the difference to the
realized values is less than 5 minutes in about 66% of all available events on both investigated
days. However, a significant number of forecasts is wide off (by 2 hours or more in some
cases). In order to interpret the results of this experiment, recall that our computation of
arrival and departure time distributions is based on the pure published schedule only, it does
not incorporate actual delays. Without information about actual delays these heavy tails of

available non-available but presumably non-available event
date event data in due time event data data without any information

20.02.2011 45 38 17
10.03.2011 51 44 5

Table 2 Data availability with respect to all events. Percentage of available and non-available
data. A fraction of non-available data can be assumed to be “in due time” (3rd column.)

ATMOS’11



110 Stochastic Delay Prediction in Large Train Networks

� �� ��� ����
�

��

��

��

��

��

��

��

	�


�

���

�������������������������������

������������������

���������������

 
�
�
�
�
��
�
�
��
�
� 
�
�
�
�
�
��
��
�
�
�
�
��
�

Figure 3 The cumulative curves show the percentage fraction of events with a realized delay of
at most x minutes for two different days, 10.03.2011 (above, dotted line: a Thursday) and 20.02.2011
(below: a Sunday).
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Figure 4 Comparison of the absolute differences from the expected and realized timestamps
on 10.03.2011 (left) and on 20.02.2011 (right) with fluctuation parameter k = 2 for travel time
distributions.

large differences between expectation values for predictions and the corresponding realized
values are more or less unavoidable. The travel time distributions used in our model are
designed to capture small delays, they are not capable to predict large source delays (for
example, that a trains is delayed by two hours because of a defect of the engine). On the
positive side, small fluctuations are seemingly captured quite well.

Experiment 4: Predictions over time. In contrast to the previous experiment, we now
incorporate all delays which occurred before 11:59 a.m. on several test days and make on
this basis predictions for the next four hours. These predictions are then compared with the
realized data. Our hypothesis is that the fit of our predictions should decrease the further in
the future we look, which is confirmed in Figure 5. On five test days, we observe a small
average increase, ranging from 4 minutes difference when looking 30 minutes ahead to less
than 7 minutes 4 hours ahead. Thus, the accuracy of prediction is already quite good and
degrades only slowly when we look into the forthcoming hours. We believe that this is good
news for applications in real-time timetable information.
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Figure 5 Based on actual delays before 11:59 a.m., we compute the distributions of events
occurring in the next four hours. We show how the average distance of the expectation values of our
predicted event time distributions from the realized delay data evolves over time.

5 Conclusions

We have presented a stochastic model for delay propagation in large transportation networks.
This model turns out to be fast enough for an online scenario with massive streams of
update messages. In our experiments we worked with simple artificial distributions for
travel time fluctuations (in the absence of real distributions). The next step is to replace
these distributions by empirical distributions from collected statistical data over several
months. We expect that empirical distributions will enable us to generate significantly tighter
predictions.
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