
Comparison of Discrete and Continuous Models
for the Pooling Problem∗

Mohammed Alfaki1 and Dag Haugland1

1 Department of Informatics, University of Bergen,
P.O. Box 7803, N-5020 Bergen, Norway.
mohammeda@ii.uib.no and dag@ii.uib.no

Abstract
The pooling problem is an important global optimization problem which is encountered in many
industrial settings. It is traditionally modeled as a bilinear, nonconvex optimization problem, and
solved by branch-and-bound algorithms where the subproblems are convex. In some industrial
applications, for instance in pipeline transportation of natural gas, a different modeling approach
is often made. Rather than defining it as a bilinear problem, the range of qualities is discretized,
and the complicating constraints are replaced by linear ones involving integer variables. Conse-
quently, the pooling problem is approximated by a mixed-integer programming problem. With
a coarse discretization, this approach represents a saving in computational effort, but may also
lead to less accurate modeling. Justified guidelines for choosing between a bilinear and a dis-
crete model seem to be scarce in the pooling problem literature. In the present work, we study
discretized versions of models that have been proved to work well when formulated as bilinear
programs. Through extensive numerical experiments, we compare the discrete models to their
continuous ancestors. In particular, we study how the level of discretization must be chosen if a
discrete model is going to be competitive in both running time and accuracy.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Global Optimization, Industrial Optimization, Graphs and Networks,
Pooling Problem

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.112

1 Introduction

The pooling problem is an important industrial optimization problem that originates from
the petroleum refineries. It can be considered as an extension of the minimum cost flow
problem on networks of three sets of nodes, referred to as sources, pools and terminals. From
each source, a raw material is supplied to the network. The qualities of the raw materials
depend on the source from which they are supplied. At the pools, raw materials of possibly
unequal qualities are mixed to form intermediate products. In their turn, the intermediate
products are blended again to form end products at the terminals. The resulting qualities of
end products thus depend on what sources they originate from, and in what proportions.
Restrictions, which may vary between the terminals, apply to these qualities.

Earlier work on the optimization of the pooling problem can be traced back to Haverly
[12] in 1978, and since then there has been a continuous interest in the problem. Mainly,

∗ This research was sponsored by the Norwegian Research Council, Gassco, and Statoil under contract
175967/S30.

© Mohammed Alfaki and Dag Haugland;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 112–121

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.112
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Alfaki and D. Haugland 113

the literature focuses on formulations, solution methods, applications, and experimental
evaluations.

The problem is often formulated as a non-convex, continuous optimization problem,
and many solution methods have been proposed to solve it. The ambition of the earliest
approaches was to find a good local optimum. This includes the popular method of [12],
which solves a sequence of linear programs approximating the problem. Based on Benders
decomposition, Floudas and Aggarwal [2] proposed an algorithm to search for the global
solution. Building on this, Floudas and Visweswaran [10] developed an algorithm based on
Lagrangian relaxation techniques. Other Lagrangian-based algorithms were proposed by
Adhya et al. [1] and Almutairi and Elhedhli [6]. Foulds et al. [11] developed a branch-and-
bound algorithm based on linear relaxations of bilinear programs as suggested by McCormick
[14] and Al-Khayyal and Falk [3].

Several continuous formulations have been proposed for the pooling problem. In addition
to traditional network flow variables, the models also need some representation of product
quality. The most straightforward approach [12], is to introduce a decision variable for each
pool, and to let the variable be defined as the quality of the product at the given pool. As
an alternative, Ben-Tal et al. [8] proposed a formulation where the quality variables are
replaced by variables representing the proportions in which the pool receives flow from various
sources. Tawarmalani and Sahinidis [19] strengthen this formulation by the application of
reformulation-linearization technique (RLT) suggested by Sherali and Adams [18]. Following
the idea of proportion variables, Alfaki and Haugland [4] proposed two formulations: In the
first model, the source proportions introduced in [8] are replaced by terminal proportions.
By combining source and terminal proportions, the second model becomes stronger than the
first and also stronger than the model in [19].

In its traditional form, the pooling problem is defined on tripartite networks where all
arcs connect a source to a pool, a pool to a terminal or a source to a terminal. Contrary
to formulations with quality variables, formulations based on proportion variables cannot
easily be generalized to arbitrary networks. Audet et al. [7] considered the case where there
are connections between pools, and suggested a hybrid formulation involving both quality
and proportion variables. Using only flow and proportion variables, Alfaki and Haugland
[5] proposed a multi-commodity flow formulation for arbitrary networks, and proved that it
dominates the hybrid formulation and a quality based formulation.

The above mentioned continuous formulations all have bilinear constraints. For the models
with quality variables, this can be explained by the fact that the quality at a pool is defined as
the weighted average of entering qualities, where the flow constitutes the weights. Reflecting
the NP-hardness of the problem [4], bilinear constraints seem inescapable in continuous
formulations, and represent a serious challenge to solution algorithms. Consequently, there is
a need for easy-to-use and well studied solution strategies, such as mixed integer programs.
This can be seen from the work of Faria and Bagajewicz [9], who discretized the quality
variables of the wastewater treatment problem, which is closely related to the pooling
problem, and replaced the bilinear constraints by "big M" constraints. Pushing in the same
direction, Pham et al. [16] and Pham [15] eliminated the bilinear terms by discretizing the
quality variables. Consequently, the pooling problem is approximated by a mixed-integer
programming problem.

In this paper, we generalize the discretization approach proposed in Pham [16] to arbitrary
networks. Through numerical experiments on large scale instances, we compare our discrete
formulation with a continuous formulation. The purpose of this is to investigate whether
discrete models are more suitable for finding good solutions when the global optimum is out

ATMOS’11

114 Comparison of Discrete and Continuous Models for the Pooling Problem

of reach. By lower bounding techniques, we also aim to estimate the error introduced by
discretizing the solution space.

The remainder of the paper is organized as follows: Section 2 introduces the pooling
problem and one of its continuous formulations, and gives a brief description of the traditional
solution methods. In Section 3, we present our discrete model and its extension to arbitrary
networks. The numerical experiments are reported in Section 4, and major conclusions are
summarized in Section 5.

2 Problem statement and formulation

We consider a directed graph (network) G = (N, A) with node set N and arc set A. For each
node i ∈ N , let N−i = {j ∈ N : (j, i) ∈ A} and N+

i = {j ∈ N : (i, j) ∈ A} denote the set of
in- and out-neighbors of i, respectively. We assume that G has non-empty sets S, T ⊆ N of
sources and terminals, respectively, where N−s = ∅ ∀s ∈ S and N+

t = ∅ ∀t ∈ T . We refer to
all nodes in I = N \ (S ∪ T) as pools. We define a finite set of quality attributes K. With each
i ∈ S ∪ T , we associate a real constant qk

i for each k ∈ K. If s ∈ S, qk
s is referred to as the

quality parameter of attribute k at that source, and if t ∈ T , qk
t is referred to as the quality

bound of attribute k at terminal t. For each i ∈ N , we define the constant flow capacity bi,
and for each arc (i, j) ∈ A, we define the constant unit cost cij . This is slightly more general
than defining costs and revenues only at the sources and the terminals, respectively, which
is common practice in the pooling problem literature. For each i ∈ N , let Si be the set of
sources from which there exists a path to i in G.

Define fij as the flow along the arc (i, j) ∈ A, and wk
i (k ∈ K) as the quality of flow

leaving pool i ∈ I. The pooling problem is to assign flow values to all arcs in the pooling
network such that each flow capacity bi is respected at all nodes i ∈ I, and such that the
total flow cost is minimized. Besides that, the quality of the flow leaving any pool is given as
the weighted average of the quality of entering flow, where the flow values constitute the
weights. More precisely, the matrix of qualities satisfies∑

s∈N−
i
∩S

qk
s fsi +

∑
j∈N−

i
\S

wk
j fji = wk

i

∑
j∈N−

i

fji, i ∈ N \ S, k ∈ K, (1)

if
∑

j∈N−
i

fji > 0. Otherwise, wk
i is given an arbitrary value. In addition, the flow arriving

at terminal t ∈ T must for all attributes k ∈ K satisfy the quality bounds qk
t . Assuming that

the qualities also at the terminals are given as weighted averages of entering flow, we arrive
at the constraints:∑

s∈N−t ∩S

qk
s fst +

∑
j∈N−t \S

wk
j fjt ≤ qk

t

∑
j∈N−t

fjt, t ∈ T, k ∈ K. (2)

Instead of defining quality variables, we associate a flow commodity with each source s ∈ S,
where at most bs units of the commodity can enter the network, and the commodity can leave
the network at any t ∈ T . At all other nodes, the commodity neither enters nor leaves the
network. Now, the variable fij defines the total flow of all commodities along arc (i, j) ∈ A.
Relative to the total flow leaving node i ∈ S ∪ I, let the variable ys

i denote the proportion of
commodity s (define ys

i = 0 if s /∈ Si and ys
s = 1). Therefore, the quantity ys

i fij defines the
flow of commodity s (meaning the commodity associated with source s, we simply refer to s

as a commodity whenever convenient) along the arc (i, j). Based on the multi-commodity
flow formulation, Alfaki and Haugland [5] proposed the following formulation to the pooling
problem:

M. Alfaki and D. Haugland 115

z∗ = min
∑

(i,j)∈A

cijfij (3)

s.t.
∑

j∈N+
i

fij ≤ bi, i ∈ S ∪ I, (4)

∑
j∈N−t

fjt ≤ bt, t ∈ T, (5)

∑
j∈N−

i

ys
j fji −

∑
j∈N+

i

ys
i fij = 0, s ∈ Si, i ∈ I, (6)

∑
j∈N−t

∑
s∈Sj

qk
s ys

j − qk
t

 fjt ≤ 0, t ∈ T, k ∈ K, (7)

∑
s∈Si

ys
i = 1, i ∈ I, (8)

∑
s∈Si

ys
i fij = fij , (i, j) ∈ A, i ∈ I, (9)

∑
j∈N+

i

ys
i fij ≤ ys

i bi, s ∈ Si, i ∈ I, (10)

fij ≥ 0, (i, j) ∈ A, (11)
0 ≤ ys

i ≤ 1, s ∈ Si, i ∈ I. (12)

The formulation (3)–(12) generalizes the PQ-formulation [19] for networks without directed
paths connecting two pools. Constraints (4)–(5) impose the flow capacity constraints at all
nodes, while (6) ensures that ys

i is the proportion of the flow leaving pool i that originates
from source s. The definition of ys

i also implies (8). The desired quality at the terminals is
achieved by (7). Constraints (9)–(10) are redundant RLT cuts [18] that contribute to stronger
relaxations. They are derived respectively by multiplying (8) by fij , and by multiplying (4)
by ys

i .

2.1 Traditional solution methods
Because of the bilinear constraints (6)–(7) and (9)–(10), the feasible region of (3)–(12) is
generally non-convex. Traditional solution approaches to such problems are typically based
upon linear relaxation, which is embedded into a branch-and-bound procedure. Linear
relaxations for the pooling problem are constructed by replacing each occurrence of the
bilinear terms with its convex and concave envelopes [3, 14].

In the root node of a branch-and-bound algorithm, this relaxation is solved. In this
way, the solution to the linear relaxation provides a lower bound on the global minimum.
Convergence can then be attained through partitioning of the domain within a branch and
bound framework.

3 Discrete formulation

To linearize the bilinear term ys
i fij , we discretize the proportion variable ys

i into n + 1 known
points, i.e. we divide the interval [0, 1] to n ≥ 1 intervals. For simplicity, we assume that the
number of discretization points is equal for all i and s, and that the discretization points are

ATMOS’11

116 Comparison of Discrete and Continuous Models for the Pooling Problem

uniformly distributed on [0, 1]. However, the methodology suggested in this work does not
rely on these assumptions.

3.1 Computing a set of discretized proportion vectors

Consider any pool i ∈ I and the corresponding set of sources Si that can feed the
pool. By the suggested discretization of ys

i for all s ∈ Si, we get (n + 1)|Si| differ-
ent combinations of discretized proportions. However, many of these violate (8). Let
Ωi =

{
Y ∈ RSi : nY s ∈ {0, 1, . . . , n},

∑
s∈Si

Y s = 1
}
be the set of discrete values of yi that

satisfy (8). For the purpose of simple notation, let the sources in Si be identified by the
integers 1, . . . , |Si|.

For any Y ∈ Ωi, the components of nY define a unique composition of n into |Si| parts.
As demonstrated by Knuth [13, Section 7.2.1.3], there is hence a bijection between Ωi and
the set of (|Si| − 1)-combinations of {1, . . . , n + |Si| − 1}. Let any such combination be
denoted

(
a1, . . . , a|Si|−1

)
, where 1 ≤ a1 < · · · < a|Si|−1 ≤ n + |Si| − 1. It follows from

[13, Section 7.2.1.3] that the corresponding Y ∈ Ωi can be written Y s = (as − as−1 − 1) /n

(s = 1, . . . , |Si|), where a0 = 0 and a|Si| = n + |Si|. The above reference also suggests an
algorithm for enumerating all (|Si| − 1)-combinations of {1, . . . , n + |Si| − 1}, and thereby
also the set Ωi. This is outlined in Algorithm 1.

Algorithm 1 Discretization(i,n)
Ωi ← ∅, as ← s ∀s = 0, 1, . . . , |Si| − 1, a|Si| ← n + |Si|
repeat

Y s ← (as − as−1 − 1) /n ∀s = 1, . . . , |Si|
Ωi ← Ωi ∪ {Y }
s← 1
while as + 1 = as+1 do

as ← s, s← s + 1
if s < |Si| then

as ← as + 1
until s = |Si|
return Ωi

It is shown in [13] that the while-loop of Algorithm 1 is executed |Si|−1
n+1 |Ωi| times. The

while-loop thus implies that enumerating |Ωi| by use of Algorithm 1 does not run in O (|Ωi|)
time.

3.2 The discrete model defined in an extended graph

We introduce an extension of G where each pool i is replaced by a set Ii consisting of
|Ωi| duplications of i. Each new pool j ∈ Ii, corresponds to a unique Yj ∈ Ωi with
components Y s

j s ∈ Si. We refer to these vectors as the discretized proportions. The set
of pools in the extended network hence becomes In = ∪i∈IIi, and the extended network
will be represented by the directed graph Gn = (Nn, An), where Nn = S ∪ In ∪ T and
An = A ∩ (S × T) ∪ {(j, l) : l ∈ Ii, (j, i) ∈ A} ∪ {(l, j) : l ∈ Ii, (i, j) ∈ A}. For any j ∈ In, let
i(j) denote the parent pool in G. That is, i(j) is the unique pool satisfying j ∈ Ii(j). For
completeness, let i(j) = j for all j ∈ S ∪ T .

M. Alfaki and D. Haugland 117

For the selection of proportions at pool i ∈ I, define the binary variables pj for each
j ∈ Ii such that,

pj =
{

1, if ys
i = Y s

j for all s ∈ Si,
0, otherwise,

and impose the constraint
∑

j∈Ii pj = 1 for each i ∈ I, to ensure compatibility with the
original problem. In the extended network, the flow can pass through at most one j ∈ Ii,
leading to the constraints

∑
l∈N+

j
fjl ≤ bipj for all j ∈ Ii, where f now denotes flow in the

extended network. The number of pools in the extended graph Gn increases exponentially
with n. To reduce |In|, we identify pairs of pools i, i′ ∈ I such that N+

i = N+
i′ and N−i = N−i′ .

For all such pairs, we do not introduce Ii′ .
The MILP formulation approximating the continuous formulation (3)–(12), can hence be

stated as follows

z(n) = min
∑

(j,l)∈An

ci(j),i(l)fjl (13)

s.t.
∑

l∈N+
s

fsl ≤ bs, s ∈ S, (14)

∑
l∈N+

j

fjl ≤ bi(j)pj , j ∈ In, (15)

∑
l∈N−t

flt ≤ bt, t ∈ T, (16)

∑
l∈N−

j

Y s
l flj −

∑
l∈N+

j

Y s
j fjl = 0, s ∈ Si(j), j ∈ In, (17)

∑
l∈N−t

 ∑
s∈Si(l)

qk
s Y s

l − qk
t

 flt ≤ 0, t ∈ T, k ∈ K, (18)

∑
j∈Ii

pj = 1, i ∈ I, (19)

pj ∈ {0, 1}, j ∈ Ii, i ∈ I, (20)
fjl ≥ 0, (j, l) ∈ An. (21)

Any feasible solution to (13)–(21) is a feasible solution to the original problem, and produces
thereby an upper bound on z∗. The sequence z(n) converges to z∗ as n → ∞, but even
for instances of moderate size the computational burden represented by the MILP becomes
prohibitively large for large values of n. However, with a coarse discretization, the optimal
solution to (13)–(21) may be computable for instances where a global optimization algorithm
based on a continuous formulation fails to converge within a reasonable time limit. In such
instances, it is relevant to compare the optimal MILP-solution to the best solution obtained
by an interrupted global optimization procedure.

3.3 Example

To illustrate the network extension outlined above, consider the first instance in Haverly
[12], denoted Haverly1, depicted in Figure 1. Observe that node 4 is the unique pool in the

ATMOS’11

118 Comparison of Discrete and Continuous Models for the Pooling Problem

network, and that S4 = {1, 2}. Let n = 2, which implies that

(Y s
j) =

 0 1
1/2 1/2
1 0

 . (22)

Each row of the matrix in (22) represents a possible combination of the flow proportions.
Therefore, we replace pool 4 with 3 new pools (I4 = {4, 5, 6} and I2 = I4), and we change
the numbering of the terminals accordingly.

(qk
i , bi)

cij

1
(3,300)

2
(1,300)

3
(2,300)

4
6

16

5
-9

1

6
-5

-15

(2.5,100)

(1.5,200)

Figure 1 The Haverly1 pooling problem instance [12].

The set I4 has the same set of neighbors as the original pool in Figure 1. The new
network structure for Haverly1 instance is shown in Figure 2.

1
(3,300)

2
(1,300)

3
(2,300)

46

16

5
6

16

6

6

16

7-9
-9
-9

1
8-5

-15
-15
-15

(2.5,100)

(1.5,200)

Figure 2 The discretized version of Haverly1 pooling problem instance with n = 2.

4 Computational experiments

For computational comparison of the discrete and the continuous formulations, we have used
the 35 large-scale instances, with 15 arbitrary instances from [5] and 20 standard instances
taken from [4]. The instances are divided into six groups, three groups with arbitrary

M. Alfaki and D. Haugland 119

networks (arbC, arbD and arbE) and the other three groups (stdA, stdB and stdC) with
standard instances. The instances in the former three groups can be downloaded from
the web page http://www.ii.uib.no/~mohammeda/gpooling/ and the other instances can
be downloaded from http://www.ii.uib.no/~mohammeda/spooling/. Table 1 reports the
network sizes and number of arcs range in the network for each group.

Table 1 Instance characteristics

Group #instances
Size of node and quality sets

#arcs range
|S| |I| |T | |K|

arbC 5 8 6 6 4 57 – 82
arbD 5 12 10 8 5 114 – 166
arbE 5 10 10 15 12 181 – 248
stdA 10 20 10 15 24 171 – 407
stdB 6 35 17 21 34 384 – 1044
stdC 4 60 15 50 40 811 – 1451

Computational experiments were conducted by submitting these instances using the
formulation (3)–(12) to the global solver BARON [17] version 1.8.5. The same instances
were submitted to ILOG CPLEX version 10.2 using the discretized formulation (13)–(21)
with n = 1, 2, 4. For both strategies, we set the time limit of each run to one CPU-hour, and
set the relative optimality tolerance to 10−3. Experiments reported here are conducted on a
computer equipped with quad-core 3.00GHz processors where each group of four cores share
8GB of memory.

The results of the computational experiments are reported in Table 2. The first column
gives the instance name, columns 2–3 report the lower and the upper bound provided by
BARON with the continuous formulation. Column 4–5 give, for each value of n, the best
feasible solution to the discrete model that CPLEX could find within the time limit. In
instances where CPLEX could not prove optimality within the time limit, the best solution
is written in parentheses. A stroke (—) in the table means that no feasible solution was
found. For each instance, unless both of the formulations give the same solution, the best
solution found is written in bold.

BARON computed the global optima for 14 instances. In the other hand, the feasible
solutions for 9 instances with the discretized formulation are the true optimal solutions. Eight
instances were solved to optimality by both of the formulations. Comparing the upper bounds
(the feasible solutions) provided by both the continuous and the discretized formulations,
we observe that the discrete formulation found the best upper bound in 21 instances out
of 35. Even for n = 1, which means that all pools receive flow from at most one source,
the best solution from the discrete model tends to outperform the best solution obtained
by the continuous one. However, increasing the number of discretization points beyond 2
seems appropriate only in the smaller instances, and failed to produce feasible solutions
in the remaining ones. For the more complicated instances, no better results are obtained
by extending the search from solutions with no blending at the pools (n = 1) to solutions
allowing blending of at most two streams in equal proportions (n = 2).

ATMOS’11

http://www.ii.uib.no/~mohammeda/gpooling/
http://www.ii.uib.no/~mohammeda/spooling/

120 Comparison of Discrete and Continuous Models for the Pooling Problem

Table 2 Comparison between continuous and discrete models for the pooling problem.

Inst.
Continuous model Discrete model

lb ub z(n = 1) z(n = 2) z(n = 4)

arbC0 -1352.72 -1352.72 -1262.38 -1348.83 -1350.30
arbC1 -673.86 -673.86 -508.00 -615.50 -655.62
arbC2 -1716.62 -1716.62 -1688.69 -1705.81 (-1710.76)
arbC3 -1512.10 -1512.10 -1489.70 -1505.43 (-1508.92)
arbC4 -1071.81 -1071.81 -1071.81 -1071.81 -1071.81
arbD0 -1994.00 -1571.11 -1833.33 -1911.35 —
arbD1 -1356.51 -1356.51 -1346.54 -1356.51 —
arbD2 -2071.00 -2065.85 -2069.06 -2070.16 —
arbD3 -637.86 -637.86 -637.86 -637.86 —
arbD4 -1641.80 -1641.80 -1641.43 -1641.80 —
arbE0 -463.23 -463.23 -463.23 -462.23 —
arbE1 -556.00 -556.00 -556.00 -556.00 —
arbE2 -78.68 -78.68 -78.68 -78.68 —
arbE3 -891.25 -891.25 -891.25 -891.25 —
arbE4 -221.35 -221.35 -221.35 -221.35 —
stdA0 -37402.74 -5383.70 -31990.52 -34175.71 (-34853.43)
stdA1 -30362.74 -29276.56 -24590.16 -25179.84 (-28389.31)
stdA2 -23044.16 -23044.16 -19846.94 -20666.60 (-21795.71)
stdA3 -41113.10 -31258.05 -36233.75 -37116.64 (-38624.98)
stdA4 -42999.89 -8770.94 -38126.91 (-39331.58) (-39345.90)
stdA5 -28257.75 -6369.59 -26447.07 (-27008.30) (-26729.51)
stdA6 -42463.05 -9555.82 -41777.00 (-42022.93) (-41829.91)
stdA7 -44682.25 -5762.08 -42582.29 (-43309.48) (-42227.89)
stdA8 -30666.87 -6576.76 -30341.61 (-30435.00) (-30265.99)
stdA9 -21933.99 -14059.98 -21887.77 (-21891.96) (-21527.08)
stdB0 -45441.79 -9075.24 -40171.43 (-41036.54) (-40600.32)
stdB1 -65468.81 -34069.43 -60720.54 (-62445.97) (-61858.06)
stdB2 -56512.64 -11149.29 -53261.82 (-53355.55) —
stdB3 -74050.47 -11469.84 (-73572.52) (-73469.63) —
stdB4 -59469.66 -13145.64 (-59399.63) (-59233.59) —
stdB5 -60696.36 -10313.90 (-60080.85) (-59486.56) —
stdC0 -98792.76 -2400.00 (-77517.74) (-79384.25) —
stdC1 -119006.17 -12114.75 (-97290.27) (-91215.32) —
stdC2 -135916.19 -6342.08 (-117024.36) (-115594.77) —
stdC3 -130315.02 -8770.86 (-122570.51) (-114675.85) —

5 Conclusion

In this paper, we have given a mixed integer programming model serving as an approximation
to the pooling problem. The model makes no assumption about the network structure,
and admits for example directed paths intersecting more than one pool. Computational
experiments on a set of large-scale instances show that a discrete model is superior to
its continuous ancestor, even when a very coarse discretization is applied. With a fine

M. Alfaki and D. Haugland 121

discretization, the model implies a large computational effort. To cope with this, a topic for
future research is to develop an adaptive discretization rule. Computations can be saved if
the number of discretization points can be kept small, while gradually focusing the search on
solution sets of decreasing size.

References
1 N. Adhya, N. Sahinidis, and M. Tawarmalani. A Lagrangian approach to the pooling

problem. Industrial & Engineering Chemistry Research, 38(5):1956–1972, 1999.
2 A. Aggarwal and C. Floudas. A decomposition strategy for global optimization search in

the pooling problem. OSRA Journal on Computing, 2(3):225–235, 1990.
3 F. Al-Khayyal and J. Falk. Jointly constrained biconvex programming. Mathematics of

Operations Research, 8(2):273–286, 1983.
4 M. Alfaki and D. Haugland. Strong formulations for the pooling problem. Journal of Global

Optimization, 2010. Submitted for publication.
5 M. Alfaki and D. Haugland. A multi-commodity flow formulation for the pooling problem

in arbitrary networks. Journal of Global Optimization, 2011. Submitted for publication.
6 H. Almutairi and S. Elhedhli. A new Lagrangian approach to the pooling problem. Journal

of Global Optimization, 45:237–257, 2009.
7 C. Audet, J. Brimberg, P. Hansen, S. Le Digabel, and N. Mladenović. Pooling problem:

Alternate formulations and solution methods. Management science, 50(6):761–776, 2004.
8 A. Ben-Tal, G. Eiger, and V. Gershovitz. Global minimization by reducing the duality gap.

Mathematical Programming, 63(1):193–212, 1994.
9 D.C. Faria and M.J. Bagajewicz. A new approach for the design of multicomponent wa-

ter/wastewater networks. Computer Aided Chemical Engineering, 25:43–48, 2008.
10 C.A. Floudas and V. Visweswaran. A global optimization algorithm (GOP) for certain

classes of nonconvex NLPs–I. Theory. Computers & chemical engineering, 14(12):1397–
1417, 1990.

11 L. Foulds, D. Haugland, and K. Jörnsten. A bilinear approach to the pooling problem.
Optimization, 24(1):165–180, 1992.

12 C. Haverly. Studies of the behavior of recursion for the pooling problem. ACM SIGMAP
Bulletin, 25:19–28, 1978.

13 D. E. Knuth. The Art of Computer Programming, Volume 4A: Combinatorial Algorithms,
Part 1. Addison-Wesley, Reading, Massachusetts, 2011.

14 G. McCormick. Computability of global solutions to factorable nonconvex programs: part
I - convex underestimating problems. Mathematical Programming, 10(1):147–175, 1976.

15 V. Pham. A Global Optimization Approach to Pooling Problems in Refineries. Master’s
thesis, Department of Chemical Engineering, Texas A&M University, Texas, USA, 2007.

16 V. Pham, C. Laird, and M. El-Halwagi. Convex hull discretization approach to the global op-
timization of pooling problems. Industrial & Engineering Chemistry Research, 48(4):1973–
1979, 2009.

17 N. Sahinidis. BARON: A general purpose global optimization software package. Journal
of Global Optimization, 8(2):201–205, 1996.

18 H.D. Sherali and W.P. Adams. A Reformulation-Linearization Technique for Solving Dis-
crete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1999.

19 M. Tawarmalani and N.V. Sahinidis. Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

ATMOS’11

	Introduction
	Problem statement and formulation
	Traditional solution methods

	Discrete formulation
	Computing a set of discretized proportion vectors
	The discrete model defined in an extended graph
	Example

	Computational experiments
	Conclusion

