Scientific Visualization: Interactions, Features, Metaphors

Edited by
Hans Hagen
DFU – Dagstuhl Follow-Ups

The DFU – Dagstuhl Follow-Ups series offers a frame for the publication of peer-reviewed papers based on Dagstuhl Seminars. DFU volumes are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

- Susanne Albers
- Bernd Becker
- Karsten Berns
- Stephan Diehl
- Hannes Hartenstein
- Frank Leymann
- Stephan Merz
- Bernhard Nebel
- Han La Poutré
- Bernt Schiele
- Nicole Schweikardt
- Raimund Seidel
- Gerhard Weikum
- Reinhard Wilhelm (Editor-in-Chief)

ISSN 1868-8977

www.dagstuhl.de/dfu
Contents

Preface
Hans Hagen .. vii

CakeES: Cake Metaphor for Analyzing Safety Issues of Embedded Systems
Yasmin I. Al-Zokari, Taimur Khan, Daniel Schneider, Dirk Zeckzer, Hans Hagen 1

2D Tensor Field Segmentation
Cornelia Auer, Jaya Sreevalsan-Nair, Valentin Zobel, and Ingrid Hotz 17

A
Jean-Paul Balabanian and Eduard Gröller .. 36

Interpolants Induced by Marching Cases
Hamish Carr and Eoin Murphy .. 48

Comparative Visualization Using Cross-Mesh Field Evaluations and Derived Quantities
Hank Childs, Sean Ahern, Jeremy Meredith, Mark Miller, and Kenneth I. Joy … 59

On the Computation of Integral Curves in Adaptive Mesh Refinement Vector Fields
Eduard Deines, Gunther H. Weber, Christoph Garth, Brian Van Straalen, Sergey
Borovikov, Daniel F. Martin, and Kenneth I. Joy 73

Integrating Semantics into the Visualization Process
Sebastián Escarza, Martín L. Larrea, Dana K. Urribarri, Silvia M. Castro, and
Sergio R. Martig .. 92

Simulation and Visualization of Medical Application to the Inner Ear of the Guinea Pig
to Reduce Animal Experiments
Martin Hering-Bertram, Norbert Siedow, Oliver Tse, Stefan K. Plontke, Ruth Gill,
and Alec N. Salt .. 103

Information-theoretic Analysis of Unsteady Data
Heike Jänicke .. 118

Construction of Implicit Surfaces from Point Clouds Using a Feature-based Approach
Patric Keller, Oliver Kreylos, Eric S. Cowgill, Louise H. Kellogg, Martin
Hering-Bertram, Bernd Hamann, and Hans Hagen 129

Framework for Comprehensive Size and Resolution Utilization of Arbitrary Displays
Taimur Khan, Daniel Schneider, Yasmin I. Al-Zokari, Dirk Zeckzer, and
Hans Hagen .. 144

Salient Frame Detection for Molecular Dynamics Simulations
Youngmin Kim, Robert Patro, Cheuk Yiu Ip, Dianne P. O’Leary, Andriy Anishkin,
Sergei Sukharev, and Amitabh Varshney .. 160

3D Reconstruction of Human Ribcage and Lungs and Improved Visualization of Lung
X-ray Images Through Removal of the Ribcage
Christopher Koehler and Thomas Wischgoll ... 176

A Visual Approach to Analysis of Stress Tensor Fields
Andrea Kratz, Björn Meyer, and Ingrid Hotz ... 188

Scientific Visualization: Interactions, Features, Metaphors. Dagstuhl Follow-Ups, Vol. 2.
Editor: H. Hagen
Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, Germany
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract Feature Space Representation for Volumetric Transfer Function Exploration</td>
<td>212</td>
</tr>
<tr>
<td>Ross Maciejewski, Yun Jang, David S. Ebert, and Kelly P. Gaither</td>
<td></td>
</tr>
<tr>
<td>Variational Level-Set Detection of Local Isosurfaces from Unstructured Point-based Volume Data</td>
<td>222</td>
</tr>
<tr>
<td>Vladimir Molchanov, Paul Rosenthal, and Lars Linsen</td>
<td></td>
</tr>
<tr>
<td>Reflections on QuestVis: A Visualization System for an Environmental Sustainability Model</td>
<td>240</td>
</tr>
<tr>
<td>Tamara Munzner, Aaron Barsky, and Matt Williams</td>
<td></td>
</tr>
<tr>
<td>Generation of Adaptive Streak Surfaces Using Moving Least Squares</td>
<td>260</td>
</tr>
<tr>
<td>Harald Obermaier, Martin Hering-Bertram, Jörg Kahnert, and Hans Hagen</td>
<td></td>
</tr>
<tr>
<td>Interactive Isocontouring of High-Order Surfaces</td>
<td>276</td>
</tr>
<tr>
<td>Christian Pagot, Joachim Vollrath, Filip Sadl, Daniel Weiskopf, Thomas Ertl, and João L. D. Comba</td>
<td></td>
</tr>
<tr>
<td>HCI in Medical Visualization</td>
<td>292</td>
</tr>
<tr>
<td>Bernhard Preim</td>
<td></td>
</tr>
<tr>
<td>Visualizing Spatial Partitions</td>
<td>311</td>
</tr>
<tr>
<td>Penny Rheingans, Blazej Bulka, and Marie desJardins</td>
<td></td>
</tr>
<tr>
<td>Feature Extraction for DW-MRI Visualization: The State of the Art and Beyond</td>
<td>322</td>
</tr>
<tr>
<td>Thomas Schultz</td>
<td></td>
</tr>
<tr>
<td>Previewing Volume Decomposition Through Optimal Viewpoints</td>
<td>346</td>
</tr>
<tr>
<td>Shigeo Takahashi, Issei Fujishiro, Yuriko Takeshima, and Chongke Bi</td>
<td></td>
</tr>
<tr>
<td>Modeling Multiresolution 3D Scalar Fields through Regular Simplex Bisection</td>
<td>360</td>
</tr>
<tr>
<td>Kenneth Weiss and Leila De Floriani</td>
<td></td>
</tr>
<tr>
<td>ViSSaAn: Visual Support for Safety Analysis</td>
<td>378</td>
</tr>
<tr>
<td>Yi Yang, Dirk Zeckzer, Peter Liggesmeyer, and Hans Hagen</td>
<td></td>
</tr>
</tbody>
</table>
The Schloss Dagstuhl seminars on Scientific Visualization provide a dynamic setting for ongoing and future research in visualization. Numerous contributions in this active field originated at Schloss Dagstuhl, and were extended to large-scale collaborative research and high-impact works. This volume of the Dagstuhl Follow-Ups series contains the proceedings from the 2009 seminar.¹

Resulting from a growth in data set size, complexity, and number of covered application areas, modern Scientific Visualization combines research from a wide variety of theoretical and practical fields such as mathematics, physics, biology and computer science. These research efforts yield a large number of different analysis, processing, and visualization techniques, allowing the efficient generation and presentation of visual results. This in turn directly contributes to the way domain experts are able to deduce knowledge from abstract data.

Emphasizing the heterogeneity of this research field, the Dagstuhl Seminar Scientific Visualization in 2009 focused on a wide range of visualization topics such as “Knowledge Assisted Visualization”, “Visual Exploration Environment”, “Biomedical Visualization”, and “Visualization of Vector- and Tensorfields”. The seminar aimed to provide an open and international environment for the discussion of recent trends, breakthroughs and future directions of research in the area of visualization, fostering scientific exchange and collaboration among researchers of the Sci-Vis community and identifying new research directions.

In the course of the seminar, leading international scientists presented state-of-the-art summaries as well as novel research results and ideas. Among the discussed key topics were:

- **Interaction Techniques/Frameworks**
 To efficiently perform visual data analysis, end users and domain experts need not just be presented with visualization results, but have to be offered intuitive and efficient real-time interaction techniques and frameworks. User-centered approaches demonstrate, how human factors can influence the way data is processed and presented. Presentations and results from this seminar illustrated and devised methods for interactive data exploration and analysis.

- **Feature Definition and Extraction/Reconstruction**
 New data types and application fields require new types of features, novel extraction techniques and visualization algorithms. Work from a broad context of feature extraction and reconstruction in areas such as scalar-, vector- and tensorfield visualization was presented in the course of this seminar.

- **Visualization Metaphors**
 As existing work from the field of visualization is adapted to new application areas or visualization problems, an increase in size, structure or complexity of the given data necessarily leads to the development of optimized algorithms. This seminar identified algorithms and data structures for performance and accuracy improvement in key areas of scientific visualization such as (vector) field analysis.

¹ See www.dagstuhl.de/09251.
Besides these topics, participants gave valuable presentations about conceptual, philosophical and psychological questions in visualization regarding the impact and benefit of user-centered approaches, research classification and other topics. The productive setting at Dagstuhl made it possible, that a selection of ideas presented at this seminar as well as scientific results of this gathering are made available as Proceedings.

We would like to thank all the participants and many thanks go to Dr. Inga Scheler for her help editing this book.

Hans Hagen
List of Authors

Sean Ahern
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
ahern@ornl.gov

Yasmin I. Al-Zokari
Department of Computer Science
University of Kaiserslautern
Gottlieb-Daimler-Strasse
67663 Kaiserslautern, Germany
alzokari@informatik.uni-kl.de

Andriy Anishkin
Department of Biology, University of Maryland
College Park, MD 20742
anishkin@icqmail.com

Cornelia Auer
Zuse Institut Berlin
Takustrasse 7
14195 Berlin, Germany
auer@zib.de

Jean-Paul Balabanian
University of Bergen
Bergen, Norway
jean-paul.balabanian@ii.uib.no

Aaron Barsky
Department of Computer Science
University of British Columbia
201-2566 Main Mall, Vancouver BC V6T 1Z4, Canada
barsky@cs.ubc.ca

Chongke Bi
Graduate School of Frontier Sciences
The University of Tokyo
5-1-5 Kashiwanoha
Kashiwa, Chiba 277-8561, Japan
bichongke@visual.k.u-tokyo.ac.jp

Sergey Borovikov
University of Alabama
Huntsville, USA
snb0003@uah.edu

Blazej Bulka
Clark & Parsia, LLC
926 N St NW Rear, Studio #1
Washington DC, 2001, USA
blazej@clarkparsia.com

Hamish Carr
School of Computing and Informatics,
University College Dublin
Belfield, Dublin 4, Ireland
and School of Computing, Univ. of Leeds
Woodhouse Lane, Leeds, LS2 9JT, U.K.
h.carr@leeds.ac.uk

Silvia M. Castro
Laboratorio de Investigacion y Desarrollo en Visualizacion y Computacion Grafica (VyGLab)
Departamento de Ciencias e Ingenieria de la Computacion (DCIC)
Universidad Nacional del Sur (UNS)
Bahia Blanca, Buenos Aires, Argentina
smc@cs.uns.edu.ar

Hank Childs
Lawrence Berkeley National Laboratory
Berkeley, California, USA hchilds@lbl.gov

Joao L. D. Comba
Instituto de Informatica, UFRGS
Porto Alegre, RS, Brazil, CP 15064
comba@inf.ufrgs.br

Eric S. Cowgill
Department of Geology,
UC Davis, CA, USA
cowgill@geology.ucdavis.edu

Eduard Deines
University of California
Davis, USA
edeines@ucdavis.edu

David S. Ebert
Purdue University
Visual Analytics Center
West Lafayette, IN, USA
ebertd@purdue.edu
Authors

Thomas Ertl
VISUS, Universität Stuttgart
Allmandring 19
70569, Stuttgart, Germany
ertl@visus.uni-stuttgart.de

Sebastian Escarza
Laboratorio de Investigacion y Desarrollo en Visualizacion y Computacion Grafica (VyGLab)
Departamento de Ciencias e Ingenieria de la Computacion (DCIC)
Universidad Nacional del Sur (UNS)
Bahia Blanca, Buenos Aires, Argentina
se@cs.uns.edu.ar

Leila De Floriani
Dipartimento di Informatica e Scienze dell’Informazione
Università di Genova
Genova, Italy
deflo@disi.unige.it

Issei Fujishiro
Department of Information and Computer Science
Keio University
3-14-1 Hiyoshi, Kohoku-ku
Yokohama 223-8522, Japan
fuji@ics.keio.ac.jp

Kelly P. Gaither
University of Texas
Austin, TX, USA
kelly@tacc.utexas.edu

Christoph Garth
University of California
Davis, USA
cgarth@cs.ucdavis.edu

Ruth Gill
Washington University School of Medicine
St Louis, MO, U.S.A.

djstrudl@wustl.edu

Eduard Gröller
Vienna University of Technology
Vienna, Austria
groeller@cg.tuwien.ac.at

Hans Hagen
Department of Computer Science
University of Kaiserslautern
Gottlieb-Daimler-Strasse
67663 Kaiserslautern, Germany
hagen@informatik.uni-kl.de

Bernd Hamann
Institute for Data Analysis and Visualization (IDAV), Department of Computer Science,
UC Davis, CA, USA.
hamann@cs.ucdavis.edu

Martin Herding-Bertram
Fraunhofer ITWM
Kaiserslautern, Germany
Rhine-Waal University of Applied Sciences
47533 Kleve, Deutschland
martin.herding-bertram@hochschule-rhein-waal.de

Ingrid Hotz
Takustrasse 7
14195 Berlin, Germany
hotz@zib.de

Cheuk Yiu Ip
Department of Computer Science and Engineering
University of Maryland Institute for Advanced Computer Studies
College Park, MD 20742
jpey@cs.umd.edu

Heike Jänicke
Swansea University
Swansea, Wales, UK
h.jaenicke@swansea.ac.uk

Yun Jang
ETH Zurich
Zurich, Switzerland
jangy@inf.ethz.ch

Marie desJardins
University of Maryland, Baltimore County
1000 Hilltop Circle
Baltimore MD, 21250, USA
mariedj@cs.umbc.edu
Authors

Kenneth I. Joy
Institute for Data Analysis and Visualization
Computer Science Department
University of California
Davis, California, USA
joy@cs.ucdavis.edu

Patric Keller
Department of Computer Science,
University of Kaiserslautern, Germany
pkeller@cs.uni-kl.de

Louise H. Kellogg
Department of Geology,
UC Davis, CA, USA
kellogg@geology.ucdavis.edu

Youngmin Kim
Department of Computer Science and
University of Maryland Institute for
Advanced Computer Studies
College Park, MD 20742
ymkim@cs.umd.edu

Taimur Khan
Department of Computer Science
University of Kaiserslautern
Gottlieb-Daimler-Strasse
67663 Kaiserslautern, Germany
tkhan@informatik.uni-kl.de

Christopher Koehler
Wright State University
3640 Col. Glenn Hwy, Dayton OH 45431
koehler.11@wright.edu

Andrea Kratz
Zuse Institute Berlin (ZIB)
Department Visualization and Data Analysis
Takustrasse 7, 14195 Berlin, Germany
kratz@zib.de

Oliver Kreylos
Department of Geology,
UC Davis, CA, USA
kreylos@cs.ucdavis.edu

Jörg Kuhnert
Fraunhofer ITWM Kaiserslautern
Kaiserslautern, Germany

Martin L. Larrea
Laboratorio de Investigacion y Desarrollo en
Visualizacion y Computacion Grafica
(VyGLab)
Departamento de Ciencias e Ingenieria de la
Computacion (DCIC)
Universidad Nacional del Sur (UNS)
Bahia Blanca, Buenos Aires, Argentina
mll@cs.uns.edu.ar

Dianne P. O Leary
Department of Computer Science and
University of Maryland Institute for
Advanced Computer Studies
College Park, MD 20742
oleary@cs.umd.edu

Peter Liggesmeyer
University of Kaiserslautern, Germany
liggesmeyer@informatik.uni-kl.de

Lars Linsen
Visualization and Computer Graphics
Laboratory
Jacobs University Bremen
Campus Ring 1
Bremen, Germany

Ross Maciejewski
Purdue University
Visual Analytics Center
West Lafayette, IN, USA
rmacieje@purdue.edu

Sergio R. Martig
Laboratorio de Investigacion y Desarrollo en
Visualizacion y Computacion Grafica
(VyGLab)
Departamento de Ciencias e Ingenieria de la
Computacion (DCIC)
Universidad Nacional del Sur (UNS)
Bahia Blanca, Buenos Aires, Argentina
srm@cs.uns.edu.ar

Daniel F. Martin
Lawrence Berkeley National Laboratory
Berkeley, USA
dfmartin@lbl.gov
Jeremy Meredith
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
ahern@ornl.gov

Björn Meyer
Zuse Institute Berlin (ZIB)
Department Visualization and Data Analysis
Takustrasse 7, 14195 Berlin, Germany
bjoern.meyer@zib.de

Mark Miller
Lawrence Livermore National Laboratory
Livermore, California, USA
miller86@llnl.gov

Vladimir Molchanov
Visualization and Computer Graphics Laboratory
Jacobs University Bremen
Campus Ring 1
Bremen, Germany

Tamara Munzner
Department of Computer Science
University of British Columbia
201-2366 Main Mall, Vancouver BC V6T 1Z4, Canada
tmm@cs.ubc.ca

Eoin Murphy
School of Computing and Informatics,
University College Dublin
Belfield, Dublin 4, Ireland
eoinomurchu@gmail.com

Harald Obermaier
University of Kaiserslautern
Kaiserslautern, Germany

Christian Pagot
Instituto de Informatica, UFRGS
Porto Alegre, RS, Brazil, CP 15064
capagot@inf.ufrgs.br

Robert Patro
Department of Computer Science and
University of Maryland Institute for
Advanced Computer Studies
College Park, MD 20742
rob@cs.umd.edu

Stefan K. Plontke
Tübingen Hearing Research Center (THRC)
Tübingen, Germany
stefan.plontke@uni-tuebingen.de

Bernhard Preim
University of Magdeburg
Department of Simulation and Graphics
39106, Magdeburg, Universitätsplatz 2,
Germany bernhard.preim@ovgu.de

Penny Rheingans
University of Maryland, Baltimore County
1000 Hilltop Circle
Baltimore MD, 21250, USA
rheingan@cs.umbc.edu

Paul Rosenthal
Visualization and Computer Graphics Laboratory
Jacobs University Bremen
Campus Ring 1
Bremen, Germany

Filip Sadlo
VISUS, Universität Stuttgart
Allmandring 19
70569, Stuttgart, Germany
sadlo@visus.uni-stuttgart.de

Alec N. Salt
Washington University School of Medicine
St Louis, MO, U.S.A.

Daniel Schneider
Department of Computer Science
University of Kaiserslautern
Gottlieb-Daimler-Strasse
67663 Kaiserslautern, Germany
dschnei@informatik.uni-kl.de

Thomas Schultz
Computer Science Department and
Computation Institute
University of Chicago, USA
t.schultz@uchicago.edu

Norbert Siedow
Fraunhofer ITWM
Kaiserslautern, Germany
norbert.siedow@itwm.fraunhofer.de
Authors

Valentin Zobel
Takustrasse 7
14195 Berlin, Germany
zobel@zib.de