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Abstract
A standard approach for visualizing scalar volume data is the extraction of isosurfaces. The
most efficient methods for surface extraction operate on regular grids. When data is given on
unstructured point-based samples, regularization can be applied but may introduce interpola-
tion errors. We propose a method for smooth isosurface visualization that operates directly on
unstructured point-based volume data avoiding any resampling. We derive a variational formu-
lation for smooth local isosurface extraction using an implicit surface representation in form of
a level-set approach, deploying Moving Least Squares (MLS) approximation, and operating on a
kd-tree. The locality of our approach has two aspects: first, our algorithm extracts only those
components of the isosurface, which intersect a subdomain of interest; second, the action of the
main term in the governing equation is concentrated near the current isosurface position. Both
aspects reduce the computation times per level-set iteration. As for most level-set methods a
reinitialization procedure is needed, but we also consider a modified algorithm where this step is
eliminated. The final isosurface is extracted in form of a point cloud representation. We present
a novel point completion scheme that allows us to handle highly adaptive point sample distri-
butions. Subsequently, splat-based or mere (shaded) point rendering is applied. We apply our
method to several synthetic and real-world data sets to demonstrate its validity and efficiency.
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1 Introduction

Many applications in modern engineering and science provide techniques that produce un-
structured point-based volume data. Such data are, for instance, generated by measurements
with sensors that are irregularly placed in space. An even larger class of unstructured data
generation is given by simulations with Lagrangian methods in engineering, hydrodynamics,
astrophysics, etc. A classical representative of such methods is the approach of Smoothed
Particle Hydrodynamics (SPH) developed by Lucy [16] and Gingold and Monaghan [8].

SPH is currently used for numerous astrophysical simulations of galaxy mergers, star
formation, supernova explosions, and other processes. The method involves no regular spatial
grid. Objects are represented as an ensemble of interacting particles, which permanently
change their positions according to some governing equations. The particles carry all
quantities of interest, which may remain unchanged (mass of a particle) or may vary with
time (velocity, density, temperature, etc.). The number of particles in modern simulations
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is in the order of several millions. Thus, a large amount of information needs to be saved,
transformed, analyzed, and rendered. As a consequence, there exists a constantly growing
need in fast, robust, and effective visualization techniques.

A standard approach to visualize scalar volume data is to extract and render isosurfaces.
A huge variety of algorithms are known for gridded data. To detect an isosurface from
unstructured data, a common procedure is to first interpolate the scalar field to vertices of
a regular (rectangular) grid. Such a regularization simplifies the extraction algorithm but
inevitably introduces an interpolation error. This error can significantly affect the result,
especially in regions with low sample density or highly adaptive sample distribution. The
particular strength of Lagrangian simulations such as SPH is its adaptivity. Therefore,
visualization methods should make an effort to avoid interpolation to a regular grid whenever
possible [23]. Our intent is to perform all operations exclusively on scattered samples, i.e.,
on unstructured point-based volume data without any given connectivity information.

A high-quality smooth isosurface visualization requires accurate computation of gradients
to the isosurface. This becomes a problem for some real-world data sets, as the sampled
scalar function may contain noise and may not be sufficiently smooth. There exist two
principle approaches to extract smooth isosurfaces:

• The original scalar function f is regularized in a neighborhood of the isosurface and the
surface position and the gradient field are found with respect to the modified function;
• An auxiliary smooth (signed distance) function ψ is initialized at the samples and
iteratively updated to approach f maintaining desired regularity. Subsequently, an
isosurface is extracted due to the final values of ψ.

The first scheme works well, if an a priory information on noise parameters is available.
Moreover, the behavior of the scalar function close to the isosurface may be non-uniform: for
the real astrophysical data we work with, the ratio of the largest to the smallest gradient
norm can be of order 103, which makes the first approach hardly applicable. The competitive
second scheme being a flexible multitasking tool is referred to as a level-set approach and is
widely used in edge detection, image segmentation problems, etc.

We propose a novel method for smooth local isosurface extraction from point-based
volume data using an implicit surface representation. Locality in the context means that we
are only interested in extracting those components of the isosurface that have a non-empty
intersection with a given subdomain (region of interest). This feature is highly desirable when
operating on many-object astrophysical data, where different components of an isosurface
may occlude each other from a viewer. To derive the governing equation we introduce a cost
functional, that is minimized during level-set evolution. After convergence, we extract the
detected isosurface in point-cloud representation, which can be made arbitrarily dense for
point or splat-based rendering.

The main contributions of this work are:

• a new main term (governing equation) of the cost function, which significantly softens
the dependence of parameters on given data;
• a variational approach to the minimization problem;
• an accurate and fast estimation of differential operators based on the Moving Least
Squares (MLS) algorithm;
• investigation of a reinitialization-free formulation using the functional proposed by Li et
al. [14];
• iterative extraction of isopoints using MLS approximation and Newton’s method;
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224 Variational Level-Set Detection of Local Isosurfaces

• a new procedure for point-cloud completion resulting in dense, accurate, and smooth
point-based rendering of the isosurface; and
• numerical tests involving both synthetical and real-world data sets indicating the behavior
of several quantities measuring the quality of the solution.

Our method is designed for but not limited to the visualization of data coming from
astrophysical simulations using Smoothed Particle Hydrodynamics.

2 Related Work

Level-set methods are successfully used in various areas of research including visualization.
They find their application in image segmentation [5, 17], object detection [6], shape re-
construction [28], isosurface generation [7], multiphase motion [27], etc. The methods are
applied to data coming from scanners [17], satellites [25], or tomography [11, 12].

Most level-set algorithms are designed to operate on a grid, which may be uniform,
adaptive, octree-based, or of other form. If scattered data are allowed as input, they are
typically interpolated to an auxiliary underlying mesh. We refer to recent results in the area
of scattered data interpolation that allow for efficient large-scale data processing [20, 21].

MLS is a well-studied tool for reconstructing smooth function from scattered data. The
approach finds many applications in numerical simulations (especially, particle methods) and
computer graphics. Recently, MLS was applied to volume rendering of shaded isosurfaces
from regular and irregular volume data [10]. The high-quality shading requires accurate
approximation of derivatives. There exist two methods for gradient computation using MLS:
the faster one was proposed by Nayroles et al. [18] and was used in the Diffuse Element
Method (DEM) to solve compressible fluid equations in Rd. The more accurate but time-
consuming method proposed by Belytschko et al. [3] was used in the Element-Free Galerkin
Method (EFG).

A PDE-based technique for smooth isosurface extraction from volume data sampled
on particles was developed by Rosenthal and Linsen [23, 24, 15]. Our method also uses
original irregularly sampled data to propagate an implicit surface according to a level-
set equation. However, in contrast to the approach proposed by Rosenthal and Linsen,
we suggest to minimize a cost functional by variational methods. Also, we use the non-
morphological formulation to make the method local and achieve better efficiency [19]. The
advantages of local level-set methods are reduction of computational efforts, simplicity of
implementation, and generality [22, 26]. The data sets we work with represent systems of
interacting astrophysical objects. Thus, we prefer to use a local method to be able to extract
isosurfaces associated with one object or a group of objects.

We extract isosurfaces in point cloud representation, which we render using point-based
rendering methods. The main problem we face is that the point cloud representation of
the surface is inhomogeneously dense due to the irregularity of the data samples. Thus, a
sampling of additional isosurface points is required. We refer to recent approaches [13, 1, 2]
and references therein for some algorithms. For instance, adaptive splatting is a well-known
rendering method allowing for high-quality images from point-set surfaces [29]. Our approach
to produce additional samples is not based on the extracted point cloud, but is derived from
the underlying data field, which allows for a more precise positioning.
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3 Problem Setting and Data Structure

In astrophysical simulations, when using a particle-based method like SPH, all quantities of
interest are periodically recorded in files. The data usually contains vector fields (current
particles positions, velocities, pressure, magnetic field) and scalar functions (mass density,
particles’ interaction radii, temperature, chemical component concentrations, etc.), typically
ordered by particle indices. Required information should then be extracted from the data,
transformed, processed, and displayed to facilitate visual exploration in order to obtain a
deeper understanding of the modeled processes. In our work, we focus on the detection and
rendering of isosurfaces — surfaces corresponding to some prescribed value of a scalar field.

Given a set of N irregularly distributed points xi ∈ D ⊂ R3 with associated scalar values
fi ≈ f(xi) ∈ R representing some smooth field f : D → R in a bounded domain D, we want
to detect and render all components of a smooth isosurface Γiso = {x ∈ D : f(x) = fiso}
with respect to a given real isovalue fiso that have non-empty intersections with a subdomain
D′ ⊂ D. We assume mini fi < fiso < maxi fi. Our method produces a finite set of points
pk ∈ Γiso, which are used for surface rendering. From now on, we refer to these points as
isopoints.

A three-dimensional kd-tree T is used to store space coordinates of points together with
pointers to the scalar functions used in the surface extraction algorithm. This data structure
is an efficient and flexible tool for fast handling of irregular data and search queries [23, 10].
In a pre-processing step, an indexing of the samples is applied. Subsequently, a major part of
the required operations on the data is reduced to a fast search over the indices. In particular,
we use the generated kd-tree to compute and store the n nearest neighbors for each sample
point. In all our tests, we used n = 26.

Although it should be obvious, we still want to point out that the proposed methods
can be applied to structured data sets, as well. For structured data, the neighborhood
information can be retrieved much easier, i.e., without using the kd-tree structure, which
also allows for a more accurate estimation of differential operators on samples and a more
precise evaluation of isopoint positions.

4 Variational Formulation and Level-Set Equation

The problem of detecting isosurface locations has much in common with problems in image
segmentation. In fact, a simple transformation f → sgn(f − fiso) of the data converts the
surface defined by a prescribed isovalue into a boundary with a sharp gradient. Then, one
can apply any known edge-detection algorithm to capture the surface. However, our goal is
to develop an algorithm for isosurface detection that is more efficient, simple, and robust for
this task than the transformed image segmentation algorithms.

4.1 Cost Function

We start with a construction of a functional E, which is the target function that we want to
minimize. E depends on the given data f , the constant fiso representing the isovalue, and
a level-set function ϕ together with its derivatives of first order, i.e., E = E(ϕ,∇ϕ; f, fiso).
The total functional consists of two weighted terms

E = E1 + λE2, (1)
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responsible for accuracy and smoothness of the solution, respectively. We propose to use

E1 = 1
4

∫
D

(sgn(ϕ(x))− sgn(f(x)− fiso))2 dx (2)

and

E2 =
∫
D

δ(ϕ(x)) |∇ϕ(x)| dx. (3)

Here, we use the standard definitions of the sign function

sgn(x) =
{

0 for x = 0
x/|x| for x 6= 0

and the Dirac function

δ(x) = d
dxH(x), H(x) =

{
1 for x ≥ 0
0 for x < 0 .

H(x) denotes the Heaviside function and the derivative is used in the sense of distributions.
A discussion of the proposed functional E in comparison with previous work is provided in
Section 7.

A function ϕ∞ minimizing a functional of the form
∫
L(ϕ,∇ϕ) dx satisfies the Euler-

Lagrange equation(
∂L

∂ϕ
−
∑
i

∂

∂xi

∂L

∂ϕi

)∣∣∣∣
ϕ=ϕ∞

= 0, (4)

where ϕi is the i-th component of ∇ϕ. We derive the Euler-Lagrange equations for E1 by

1
2(sgn(ϕ(x))− sgn(f(x)− fiso)) sgn′(ϕ(x)) = 0 (5)

and for E2 by

0 = δ′(ϕ(x))|∇ϕ(x)| − ∇ ·
[
δ(ϕ(x)) ∇ϕ(x)

|∇ϕ(x)|

]
= δ′(ϕ)|∇ϕ| − δ′(ϕ)∇ϕ · ∇ϕ

|∇ϕ|
− δ(ϕ)∇ ·

[
∇ϕ
|∇ϕ|

]
= − δ(ϕ(x))∇ ·

[
∇ϕ(x)
|∇ϕ(x)|

]
. (6)

The idea of a level-set approach is to reach ϕ∞ being a fixed point of an evolution equation
for ϕ = ϕ(x, t) minimizing E. Here, t is an artificial time parameterizing the minimization
process ϕ(x, t)→ ϕ∞(x) as t→∞. To construct the PDE, one equates the left-hand side of
Equation (4) with −∂ϕ/∂t. For the functional E, it reads [6, 9]

∂ϕ

∂t
= δ(ϕ) (sgn(f − fiso)− sgn(ϕ)) + λ δ(ϕ) ∇ ·

(
∇ϕ
|∇ϕ|

)
. (7)

In this derivation, we used

sgn(x) = 2H(x)− 1, sgn′(x) = 2H ′(x) = 2δ(x) (8)

in the sense of distributions. In the following, Equation (7) will be regularized and discretized
in space and time, leading to an iterative process for the value of ϕ at each sample point.
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4.2 Spatial and Temporal Discretization
In practice, the Dirac function δ(x) in Equation (7) is smoothed on a small scale ε. Recall
that δ(ϕ) in the first term of Equation (7) appears as a derivative of the sgn-function.
Therefore, in order to be consistent with the differentiation, one should also smooth sgn(ϕ).
It is worth to note that in many papers (e.g., [6, 14, 19]) the smoothed functions contain in
their definitions trigonometric expressions, which are expensive to compute. Our choice is to
use polynomial splines

δε(x) = 1
ε
δ̂
(x
ε

)
, δ̂(x) = 1

6


4− 6x2 + 3x3 for |x| ≤ 1
(2− x)3 for 1 < |x| ≤ 2
0 for |x| > 2

,

sgnε(εx) = sgn(x)
12


16|x| − 8|x|3 + 3x4 for |x| ≤ 1
12− (|x| − 2)4 for 1 < |x| ≤ 2
12 for |x| > 2

.

Here sgn′ε(x) = 2δε(x) similar to Equation (8).
The quantity 4ε characterizes the width of a band around the current zero-level surface,

in which the terms of Equation (7) operate. The smaller the value of parameter ε is, the
stronger is the localization of the update. We want to mention that Equation (7) contains
two delta-functions, which could be smoothed on different scales ε and ε′. In grid-based
methods, the smoothing parameter is chosen to be in the order of several grid steps. In our
case, there is no such characteristic, since the samples are scattered. Thus, the optimal ε
and ε′ depend on local samples distribution and the parameters can be corrected during
simulations.

To discretize Equation (7) in space we need a technique to approximate the differential
operators (i.e., gradient and divergence) on the unstructured data. For each point of interest
xi, we use the kd-tree to find its n nearest neighbors from the whole set of samples. Let
Vi be the set of the n nearest neighbors of xi including the point itself. Then, for any
scalar function g and sample xi we can determine the parameters of the linear function
gi(x) = ai · x + bi, gi : R3 → R from the condition∑

xj∈Vi

w2
i (xi − xj)(g(xj)− gi(xj))2 → min

with some weight function wi(x). In other words, gi is the local MLS approximation of the
scalar field g in the neighborhood of xi. Practically, the unknown coefficients are found as
the solution of the overdetermined system of linear equations

wi(xi − xj)(ai · xj + bi) = wi(xi − xj)g(xj), xj ∈ Vi,

using QR-decomposition [4] or by explicit formulae that are analogous to the ones proposed by
Rosenthal and Linsen [24] for least-squares approximation. The least-squares approximation
used by Rosenthal and Linsen can be viewed as a particular case of MLS with the weight
function w(x) ≡ 1. A simple one-dimensional test comparing the two approaches is presented
in Figure 1. It is shown that MLS produces a smoother interpolation when compared to
least squares.

For all our tests we use

wi(x) =
{ (

1− ‖x‖2/h2
i

)
for |x| ≤ hi

0 else ,
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Figure 1 Comparison of least squares and MLS approximation for two close samples in one spatial
dimension. Samples are located at {0, 1, 2, 2.95, 3.05, 4, 5, 6} with values due to the function f(x) =
x3 + 10. We used 6 nearest neighbors in both cases and the weight function w(x) = (1− (x/3.5)2)
for MLS. MLS produces a smoother interpolation.

where hi is the support size chosen to be equal to the distance between the ith sample and
the farthest of the 26 nearest neighbors.

After having determined an MLS linear approximation in the neighborhood of the ith
sample, we can set

∇g(xi) ≈ ai.

We note that we stay rather in the frame of the DEM than the EFG formulation. Similar to
Ledergerber et al. [10] we prefer the faster method, since the improvement by more accurate
derivative estimation is negligible. To estimate the divergence of a vector field (g1, g2, g3)
at a sample point xi we construct the linear least-square approximations gki for each k-th
component and then sum up the coefficients as

∇ · (g1, g2, g3)(xi) = (a1
i )1 + (a2

i )2 + (a3
i )3.

For the time integration we use an explicit Euler scheme. Hence, the iteration step

ϕk+1 = ϕk + ∆t
[
δε(ϕk) (sgn(f − fiso)− sgnε(ϕk)) + λ δε′(ϕk) ∇ ·

(
∇ϕk

|∇ϕk|

)]
(9)

is applied to all sample points xi. The upper index k stands for the k-th layer in time. The
use of the explicit first-order scheme ensures that the iterations are stable for a sufficiently
small ∆t depending on the spatial resolution. However, since the sampling is irregular, the
choice of a globally stable ∆t can be small. We refer the reader to the discussion about the
choice of ∆t and asynchronous time integration by Rosenthal and Linsen [24].

4.3 Reinitialization
Stability of evolution of ϕ according to a level-set equation requires closeness of ϕ to a signed
distance function [22]. The width of the band involved in computations due to Equation (9)
is determined by the size of the support of the smeared-out delta function δε(ϕ). In the
neighborhood of an isopoint p ∈ Γiso, it can be roughly estimated as 4ε|∇ϕ(p)|. Thus, a
high gradient of ϕ makes the band narrow and slows down propagation of Γiso. However,
small values of the gradient norm make the computations in Equation (9) unstable due
to the division by |∇ϕ|. This observation explains the need for keeping |∇ϕ| ≈ 1 during
computations.
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An exact calculation of the signed distance function is extremely time consuming. A
standard approach is to trigger a reinitialization routine after several evolution steps [19].
This procedure drives the auxiliary function ψ towards a signed distance function of the
zero-isosurface as in the Eikonal equation

∂ψ(x, τ)
∂τ

= sgn(ϕ(x, t)) (1− |∇ψ(x, τ)|) . (10)

We discretize and solve Equation (10) for τ > 0 with the initial condition ψ(x, 0) = ϕ(x, t).
A few iterations suffice. After the reinitialization procedure, we set ϕ = ψ and continue the
computations with respect to the level-set equation.

If the level-set function remains close to the signed distance function during evolution,
the governing equation could be simplified [19]. For example, the mean curvature term could
be reduced to the Laplacian of ϕ. In our approach, no simplified equation is used. Therefore,
we may moderate the requirement for ϕ to c < |∇ϕ(xi, t)| < C with some constants c and
C ∈ R+ for all 1 ≤ i ≤ N and t ≥ 0. Hence, it is enough to have a mechanism that suppresses
large and low gradients. Such a tool was proposed by Li et al. [14] in form of an additional
diffusion term. This term minimizes a functional controlling the closeness of the level-set
function to the signed distance function. It eliminates the need to solve the Eikonal equation.
We discuss this enhancement of our level-set method in Section 5.

4.4 Choice of Parameters and Level-Set Function Initialization
The parameters ε and ε′ define a band around the isosurface, where the level-set function
values are to be updated. Usually, they are chosen to be comparable with the cell size. In
our experiments, we set ε = ε′ ∈ [1.0l, 1.5l], where l is the local average distance between
samples. This choice results in a width of the band of 4ε due to the definition of the δε
function. Small values prevent isosurface propagation, large smoothing parameters decrease
efficiency of the method.

Next, we choose a sufficiently small time step ∆t to ensure that the main term in Equation
(9) does not destroy local monotonicity of ϕ and provides stable computations. In Figure 2,
we show how the choice of ∆t influences the shape of ϕ1(x) initialized as ϕ0(x) = −x. The
one-dimensional examples show that large time steps cause instabilities, whereas small steps
∆t slow down the propagation of the profile. Scaling analysis gives ∆t ∼ ε2. In our tests we
use ∆t ∈ [0.3ε2, 0.6ε2]. It is possible to derive an exact estimation for the time stepping as
it is shown for simple one-dimensional regularized functions in the appendix.

The last parameter to be set is λ. We refer the reader to Rosenthal and Linsen [24] for
the stability analysis of the smoothing term in Equation (9) for regular and unstructured
grids. Small λ may result in non-smooth surface, large values make computations unstable.
For our tests we use ∆tλ < 0.5.

Then we should specify an initial condition for Equation (9) to obtain a Cauchy problem.
For the reasons discussed in the previous section, it is desirable to set ϕ(x, 0) as a signed
distance function, i.e., |∇ϕ(x, 0)| = 1. In our tests, we use the scalar function f representing
mass density or temperature distribution in an astrophysical object. These quantities
necessarily vanish on the boundary of the domain D. Thus, their isosurfaces are closed
hypersurfaces with gradients pointing inside the closed volume. Therefore, it is preferable to
initialize the level-set function with a closed zero-level surface embedded in D and containing
the subdomain of interest D′ inside the bounded volume. A simple way to achieve this, is to
use the ansatz

ϕ(x, 0) = r0 − |x− x0|
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Figure 2 Dependance of the profile of the level-set function after one time step on the choice
of ∆t using the one-dimensional underlying scalar fields f(x) = 1 (left) and f(x) = sgn(x) (right).
Initial level-set function ϕ0(x) = −x (blue line) and level-set function ϕ1(x) after first time step for
∆t = 0.5, 1.0, 1.5 (green, gray, and red lines, respectively) are shown with parameter ε = 1. Large
time steps destroy the local monotonicity of ϕ.

with some parameters r0 > 0 and x0 ∈ D representing the radius and center of a sphere,
respectively. Let Ω+(g) = {x ∈ D : g(x) > 0} and Ω−(g) = Ω+(−g) for any scalar function
g. Let the region Ω+(f − fiso) have several components. Our method recovers all isosurfaces,
for which the intersection of Ω+(f − fiso) with Ω+(ϕ) is non-empty.

5 Level-Set Method without Reinitialization

A new variational formulation for active contours was proposed by Li et al. [14]. The main
idea is to add the term

E3 = 1
2

∫
D

(|∇ϕ(x)| − 1)2 dx (11)

added with some weight µ to the functional E. This term penalizes deviation of the level-set
function from a signed distance function. It aims to make the algorithm more efficient by
eliminating the costly reinitialization routine.

The associated Euler-Lagrange equation reads

0 = − ∇ ·
[
(|∇ϕ(x)| − 1) ∇ϕ(x)

|∇ϕ(x)|

]
. (12)

We add the weighted term to Equation (7), discretize it in space and time, and derive the
formulation

ϕk+1 = ϕk + ∆t
[
δε(ϕk) (sgn(f − fiso)− sgnε(ϕk)) (13)

+λ δε′(ϕk) ∇ ·
(
∇ϕk

|∇ϕk|

)
+ µ∇ ·

(
(|∇ϕk| − 1) ∇ϕ

k

|∇ϕk|

)]
.

One of our tasks was to test the algorithm without reinitialization on the problems of smooth
isosurface extraction in comparison to the standard variant with the Eikonal equation.
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Figure 3 Scheme of the local completion of the point-based surface. The sample of interest and
its neighbors (dark), added rough estimates of additional samples (red non-filled), and corrected
additional points (red filled) are shown.

6 Isopoints Computation

Following steps are performed after finishing an iteration due to the level-set equation:
1. a rough estimate for a set of isopoints pk is computed;
2. positions of pk are improved;
3. the set of isopoints is completed and rendered.

In the first step, we find all pairs of neighboring samples xi and xj such that sgn(ϕi) 6=
sgn(ϕj). Using an angle criterion [23], some pairs are rejected. Isopoints are found by means
of linear interpolation between the pairs of detected samples.

In the second step, we refine the position of each isopoint pk using MLS and Newton’s
method as follows:

pi+1
k = pik −

ϕ(pik)
|∇ϕ(pik)|2

∇ϕ(pik), p0
k = pk. (14)

Iterations are performed until |pi+1
k − pik| is sufficiently small.

The resulting point set is quite accurate but in most cases has low (and non-uniform)
density for rendering. We complete the set as it is shown in Figure 3. In the neighborhood
of each pk we compute a linear approximation to the isosurface. The plane is divided in cells
of small size. Then, neighbors of pk are orthogonally projected to the plane. We add new
samples in empty cells and refine them by Newton’s method (14). Normals at isopoints are
computed during the refinement procedure. Assuring high sampling rate, the final completed
point set can be rendered using mere point renderings (with local shading). Alternatively,
one can use a somewhat lower sampling rate and use the standard splat-based rendering
approach

7 Comparison with Literature

There are three aspects that distinguish our approach from the one proposed by Rosenthal
and Linsen [24], namely: the main part of the cost function, the variational derivation of
the level-set equation, and the non-morphological approach. In addition, we consider an
algorithm with a proper diffusive term to make the reinitialization procedure obsolete.

The functional

Ē =
∫
D

|ϕ(x)− (f(x)− fiso)|dx (15)
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was proposed by Rosenthal and Linsen [23] to measure the accuracy of isosurface extraction.
The proposed evolution level-set equation has the form

∂ϕ(x, t)
∂t

+ (ϕ(x, t)− (f(x)− fiso)) |∇ϕ(x, t)| = 0 . (16)

This equation pushes ϕ towards f(x)− fiso on the global scope, whereas the reinitialization
step tries to restore the signed distance function. As a result, ϕ converges to some compromise,
possibly being far away from both. Moreover, if we scale the field f(x) − fiso by a large
constant factor k, the isosurface obviously remains unchanged, but the discretized Equation
(16) requires a much smaller time step ∆t. When nevertheless choosing larger time steps, the
reinitialization procedure needs to be called after each iteration and needs to perform many
iterations on the whole data set. Obviously, the computational costs increase significantly.

It is absolutely not necessary to achieve ϕ(x, t) → f(x) − fiso to be able to detect the
isosurface Γiso. It suffices to make the sets Ω±(ϕ) and Ω±(f − fiso) coincide. The closeness
of the sets can be measured with the functional E1. In contrast to Ē, our functional and
level-set equation parameters are not sensible to the magnitude of f , which makes our
approach preferable. In practice, the minimization of E1 on a discrete set of nodes results in
the detection of the isosurface that is accurate up to the local internodal scale. Correction of
the isosurface on the subgrid scale is then dominated by the smoothing and reinitialization
procedures.

Finally, we underline the fact that our goal is to extract local isosurfaces. The method
automatically detects those parts of a multi-component isosurface, which intersect with the
subdomain of interest. This property will be demonstrated in experiments below.

8 Results and Discussion

8.1 Measurement Functionals
The following functionals are computed and recorded during our tests to measure the quality
of the solution.

P (t) = 1
2N

N∑
i=1
|sgn(ϕ(xi, t))− sgn(f(xi)− fiso)|

computes the relative number of samples, at which the sign of the level-set function is
different to the sign of the underlying scalar field. P can remain large, if not all isosurface
components are extracted. Constant P indicates no propagation of the isosurface.

MG(t) = max
j

{
|∇ϕ(pj , t)|, |∇ϕ(pj , t)|−1}

and

AG(t) = 1
M

M∑
j=1

max
{
|∇ϕ(pj , t)|, |∇ϕ(pj , t)|−1}

measure the maximal and the average deviation of ϕ from the signed distance function at M
isopoints. If the analytical form of f is known, we can estimate the average distance from
isopoints to the exact isosurface as follows

L(t) = 1
M

M∑
j=1

|f(pj)− fiso|
|∇f(pj)|

.
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Figure 4 Level-set evolution of the isosurface for a one-component synthetic data set: steps 5,
10, 15, 20, 30, 50, and 75 are presented. Splat-based rendering of refined isopoint sets is performed.
Parameters: total number of samples in the box [0, 128]3 is 2M, 4t = 1.0, ε = 4.0, ε′ = 5.0, and
λ = 0.15. Two reinitialization steps are performed after each iteration.

Here, we used

|pj − y| = |f(pj)− f(y)|
|f(pj)− f(y)| ‖pj − y‖ ≈ |f(pj)− fiso|

|∇f(pj)|
,

where y is the point closest to pj on the exact isosurface: f(y) = fiso. The approximation is
accurate for small |pj − y|.

Beside the quantities above, we are interested in the efficiency of the methods, which is
related to the amount of time needed to perform one temporal iteration. We have performed
several tests based on synthetic and real-world data presented in the following.

8.2 One-component Synthetic Data
In our first experiment, we investigated the accuracy and convergence of our method. We use a
synthetic volume data given by the analytic scalar field f(x) = −((ax+0.05(ay)3)2+0.7(ay)2+
0.3(az − 0.7(ya)2)2 − 4.0)/a2 with a = 0.1. Extracted is the isosurface Γ = {x : f(x) = 0}.
There are 2M samples randomly distributed within a cube of edge size 128. The isosurface is
initialized as a sphere. Positions of the isosurface during the level-set iterations as well as the
evolution of the main process characteristics are presented in Figure 4. One iteration of our
level-set approach takes about 15s on a standard PC with an Intel Xeon (3.2GHz, quad-core)
processor. The final average distance between isopoints and the exact isosurface is of order
0.7, which is less than the average sample distance (∼ 1) and the characteristic length of the
isosurface (∼ 100). Here, as well as in the next experiments we intentionally perform more
iterations than necessary to document convergence of our method.

8.3 Multi-component Synthetic Data
The second experiment shows the extraction of a subset of isosurface components and
illustrates the flexibility of the method with respect to the initial surface setting. The
results are shown in Figure 5. The initial isosurface represents two intersecting spheres.
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Figure 5 Level-set evolution of the isosurface
for a multi-component synthetic data set: steps
0, 3, 5, 8, 10, 20, 30, 50 and 100 are shown. Point
rendering is used. Parameters: total number of
samples in the box [0, 128]3 is 2M,4t = 1.25, ε =
3.5, ε′ = 5.0, and λ = 0.01. Two reinitialization
steps are performed after each iteration.
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Figure 6 Level-set evolution of the isosurface
for the White Dwarf data set: steps 0, 3, 5, 8, 10,
20, 30, 50 and 100 are shown. Point rendering
is used. Parameters: total number of samples
in the box [0, 128]3 is 2M, 4t = 1.25, ε = 3.5,
ε′ = 5.0, and λ = 0.01. Four reinitialization
steps are performed after each iteration. Data set
courtesy of Stephan Rosswog, Jacobs University,
Bremen, Germany.
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Figure 7 Level-set evolution of the isosurface without reinitialization for the data set with two
White Dwarfs: steps 10, 50, 100 and 150 are shown. Splat-based rendering is used. Parameters:
total number of samples is 2.5M, 4t = 0.0025, ε = 1.0, ε′ = 0.2, λ = 10−8, and µ = 10−6. Data set
courtesy of Stephan Rosswog, Jacobs University, Bremen, Germany.

One iteration takes about 15s. The final average distance between isopoints and the exact
isosurface is ≈ 0.14 (the average sample distance: ∼ 1, object size: ∼ 90). The method
is stable to the isosurface’s topology change. Larger values of λ lead to disappearance of
the central spherical isosurface component due to the high curvature values. High values of
MG(t) in the first steps are due to non-smooth behavior of the initial level-set function: the
gradient degenerates at the samples close to the spheres’ intersection line.

8.4 Real Volume Data

In the next test we extract one of two isosurface components by applying our method to
a region of interest of a real-world astrophysical data set. The data set consists of 0.5M
samples and represents a White Dwarf passing close to a Black Hole (not represented in
data). The isosurface of the star corresponding to fiso = 0.001 consists of two parts (a head
and a tail). We extract one of them placed in the core of the White Dwarf. The results are
shown in Figure 6. One iteration takes about 12s.

8.5 Method without Reinitialization

We applied the reinitialization-free method (13) to all data sets from previous tests. We
found that the propagation of the isosurface is too slow for various parameters combinations
we tried. The reason could be that the diffusion-like term may push the isosurface in the
direction opposite to its movement. The larger µ, the more obvious is this action. Low
µ prevents the suppression of high gradients, which also leads to slow propagation of the
surface. In contrast, this is not the case for the method with reinitialization, since we do not
change the isosurface location while solving the Eikonal equation (10).

Results of one experiment for the reinitialization-free algorithm are presented in Figure 7.
The data set consist of 2.5M samples and represents two White Dwarfs passing close to each
other with a mass accretion developed. We extract the isosurface Γ = {x : f(x) = 0.055} of
one star only. The level-set function was initialized as a sphere. One iteration took ∼ 12s
computational time. In Figure 8 we compare the evolution of gradient norms (minimal,
maximal, and average) with the diffusion term enabled (green curves) and disabled (blue
curves). The diffusion term moves the average gradient norm toward the value 1 and therefore
helps the surface propagation. However, since the coefficient µ was chosen to be small, the
effect is minimal. It is impossible to increase µ, as it leads to unstable computations.
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Figure 8 Influence of the diffusion term from Equation (5) on the behavior of the gradient norm.
Green lines represent the experiments of Figure 7 with µ = 10−6, while blue lines show the same
experiments with µ = 0. The improvement of the gradient norm evolution is minimal, but larger
values of µ lead to instable computations.

9 Conclusion and Future Work

We have proposed a novel level-set approach for smooth isosurface extraction that works for
both structured and unstructured point-based volume data. A variational approach was used
to derive a level-set equation that determines the evolution of the interface towards its steady
state. The variational approach provides fast convergence. The action of the main terms of
the governing equation at each time step was localized to a narrow neighborhood around
the zero level surface of the auxiliary function. This led to a speed-up of our method when
compared to algorithms acting on all levels. The locality allowed us to apply our method
to subdomains of interest and to extract a subset of isocomponents. Finally, we tested a
specific diffusion term in the level-set equation to avoid costly reinitialization.

We compared our algorithm to the state-of-the-art approach proposed by Rosenthal and
Linsen. We showed that in their algorithm the efficiency was strongly affected by properties
of the underlying scalar field f . In particular, large gradients required small time steps and
frequent reinitialization. We removed this issue by a proper choice of the cost functional.
We tested the proposed method on synthetic and real-world data sets. Localization of the
update reduced the computational time of the isosurface extraction in the White Dwarf data
by factor 2 when compared to the method by Rosenthal and Linsen.

In the proposed method, all computations (except those due to the signed distance
property) are concentrated in a small neighborhood around the zero-isosurface of the level-set
function. It provides a gradual smooth evolution of the surface during computations, but
still requires significant computational efforts to maintain the signed distance property.
An improvement in the efficiency of the method can be obtained by incorporating a local
reinitialization procedure in the algorithm.

There are possible improvements in the algorithm which would increase the accuracy at
the cost of efficiency:

use of a higher-order basis in MLS;
more accurate estimation of MLS gradients [3]; and
more accurate time-integration scheme (provided that the spatial approximation is
accurate).

To increase the efficiency of the method, one can use individual time steps for samples and
smoothing parameters that are adaptive in space and time.
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Appendix

I Theorem 1. Let

ϕk+1(x) = ϕk(x) + ∆t δα(ϕk(x)) (sgn(f(x)− fiso)− sgnα(ϕk(x)))

for all natural k ≥ 1 with some ϕ0(x), f(x), and a constant fiso. Here,

δα(x) =

 (α− |x|)
α2 |x| < α

0 else
, sgnα(x) =

 x (2α− |x|)
α2 |x| < α

sgn(x) else
.

Then, ϕk(x)→ ϕ∞(x) as k →∞ pointwise for ∆t < α2, where

ϕ∞(x) =
{
α sgn(f(x)− fiso) for |ϕ0(x)| < α

ϕ0(x) else .

Moreover, ϕk(x) inherits the monotonicity of ϕ0(x) if ∆t < α2/3.

Proof. For all x with |ϕ0(x)| ≥ α, the main equation reads ϕk+1(x) ≡ ϕk(x). Thus, the
statement is trivial. Now, we assume sgn(f(x)−fiso) ≡ 1 for those x at which 0 ≤ ϕ0(x) < α.
Other cases can be proven by analogy. The simplified equation reads

ϕk+1(x) = ϕk(x) + ∆t
α4 (α−ϕk(x)) (α2−ϕk(x) (2α−ϕk(x))) = ϕk(x) + ∆t

α4 (α−ϕk(x))3.

The following estimations for ∆t ≤ α2 and 0 ≤ ϕk(x) < α hold:

ϕk+1(x)− ϕk(x) = ∆t
α4 (α− ϕk(x))3 > 0;

α− ϕk+1(x) = α− ϕk(x)− ∆t
α4 (α− ϕk(x))3 = (α− ϕk(x))

[
1− ∆t

α4 (α− ϕk(x))2
]
≥ 0.

This shows that {ϕk(x)} is a strictly monotonely increasing sequence bounded from above.
Clearly, α is the minimal upper bound. Thus, the first part of the theorem is proven.

To show the monotonicity of ϕk(x) with respect to x, we observe that for the function
f(x) = x+ ∆t(α− x)3/α4

f ′(x) = 1− 3∆t(α− x)2/α4 ≥ 0

if ∆t ≤ α2/3 and 0 ≤ x < α. Therefore, ϕk+1(x) ≥ ϕk+1(y) if ϕk(x) ≥ ϕk(y). J

The regularized functions used in our experiments have a support that is two times larger
than the support of the functions in the theorem statement. The substitution α = 2ε leads
to the estimation ∆t ≤ 4ε2/3, which is close to what one finds numerically.
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