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Abstract
In this paper, we consider solving the integer linear systems, i.e., given a matrix A ∈ Rm×n, a
vector b ∈ Rm, and a positive integer d, to compute an integer vector x ∈ Dn such that Ax ≥ b,
where m and n denote positive integers, R denotes the set of reals, and D = {0, 1, . . . , d − 1}.
The problem is one of the most fundamental NP-hard problems in computer science.

For the problem, we propose a complexity index η which is based only on the sign pattern
of A. For a real γ, let ILS=(γ) denote the family of the problem instances I with η(I) = γ. We
then show the following trichotomy:

ILS=(γ) is linearly solvable, if γ < 1,
ILS=(γ) is weakly NP-hard and pseudo-polynomially solvable, if γ = 1, and
ILS=(γ) is strongly NP-hard, if γ > 1.

This, for example, includes the existing results that quadratic systems and Horn systems can be
solved in pseudo-polynomial time.
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1 Introduction

Integer linear systems
Let A denote a matrix A ∈ Rm×n, b denote a vector b ∈ Rm, where m and n denote positive
integers, and R denote the set of reals. For a positive integer d, let D = {0, 1, . . . , d− 1}. In
this paper, we consider the problem of computing an integer vector x ∈ Dn such that Ax ≥ b,
which we denote by ILS. The ILS problem is one of the most fundamental and important
problems in computer science, and have been studied extensively from both theoretical and
practical points of view [18, 26]. It is known that the ILS problem is strongly NP-hard, and
can be solved in polynomial time, if m or n are bounded by some constant [22], or A is totally
unimodular and b is integral [15]. When A is quadratic (also called TVPI, i.e., each row of A
contains at most two nonzero elements) or Horn (i.e., each row of A contains at most one
positive element), the ILS problem is known to be weakly NP-hard, but it can be solved in
time polynomial in the input length and d, and hence in pseudo-polynomial time [20, 14, 29].
The best known bounds for quadratic and Horn systems require O(md) time [2] and O(n2md)
time, respectively. For unit linear systems, i.e., A ∈ {0,−1,+1}m×n, it is known that the
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614 Trichotomy for Integer Linear Systems Based on Their Sign Patterns

problem is still strongly NP-hard, but it can be solved in O(nm) [21] and O(n logn + m)
time [27] if A is in addition quadratic, and can be solved in O(n2m) time [9, 28] if A is in
addition Horn. Finally, for the difference constraint systems, i.e., A ∈ {0,−1,+1}m×n and
each row of A contains one positive element and one negative element, it is known that the
problem is equivalent to the negative cycle detection in network theory and can be solved in
O(nm) [3, 11, 24] and O(

√
nm logC) [12], where C denotes the maximum absolute value of

the negative elements in b.

A complexity index for integer linear systems
In this paper, we introduce a complexity index η for the ILS problem, which sharply
distinguishes between the classes of easy, semi-hard and hard integer linear systems. The
complexity index is based only on the sign pattern of A.

For a real a, its sign is defined as

sgn(a) =


+ (a > 0)
0 (a = 0)
− (a < 0),

(1)

and the sign of a real matrix A ∈ Rm×n is the matrix sgn(A) ∈ {0,−,+}m×n which is
obtained from A by replacing each element by its sign. For example, for a matrix

A =
(

1 −3 0
4 2 −5

)
, (2)

we have

sgn(A) =
(

+ − 0
+ + −

)
. (3)

Given an instance I = (A, b, d) of the ILS problem, the index η(I) is the optimal value of
the following linear programming problem.

min. Z

s.t.
∑

j:sgn(aij)=+ αj +
∑

j:sgn(aij)=−(1− αj) ≤ Z (i = 1, . . . ,m)
0 ≤ αj ≤ 1 (j = 1, . . . , n).

(4)

We note that neither numerical information of A, b nor d is used for our index η(I), and
it depends only on sgn(A), i.e., two problem instances I and I ′ have η(I) = η(I ′) if the
corresponding matrices have the same sign patterns.

The idea of this index originates from the works by Boros et al. [5], which intro-
duced a complexity index for the Boolean satisfiability problem (SAT): Given a CNF
ϕ =

∧m
i=1

(∨
j∈Pi

xj ∨
∨

j∈Ni
xj

)
of n variables, where Pi, Ni ⊆ {1, 2, . . . , n} with Pi∩Ni = ∅,

determine whether or not ϕ is satisfiable, i.e., whether or not there is x ∈ {0, 1}n such that
ϕ(x) = 1. Their index distinguishes between the classes of easy and hard SAT instances.
We can see that our index is a generalization of theirs to integer linear systems, since the
Boolean satisfiability problem can be represented as integer linear systems with unit matrices
A ∈ {0,−1,+1}m×n.

The results obtained in this paper
For a real γ, let ILS=(γ) denote the family of the problem instances I with η(I) = γ. We
then have the following main result.



K. Kimura and K. Makino 615

I Theorem 1.1. (1) ILS=(γ) is linearly solvable, if γ < 1,
(2) ILS=(γ) is weakly NP-hard and pseudo-polynomially solvable, if γ = 1, and
(3) ILS=(γ) is strongly NP-hard, if γ > 1.
Here we assume that ILS=(γ) 6= ∅ holds.

We also show that η(I) < 1, = 1, and > 1 can be checked in linear time. This theorem
implies the existing results [2, 14, 29] that quadratic (i.e., TVPI) systems and Horn systems
can be solved in pseudo-polynomial time, since quadratic systems and Horn systems are
included in ILS=(γ) with γ ≤ 1, which will be discussed later.

If we restrict integer linear systems to Boolean satisfiability problem, then Boros et al. [5]
showed that ILS=(γ) is linearly solvable if γ ≤ 1, and ILS=(γ) is strongly NP-hard if γ > 1.
Instead of their result, which partitions the SAT problem into two classes of easy and hard
SAT instances, we partition integer linear systems into three classes of easy, semi-hard and
hard systems.

For unit linear systems, i.e., A ∈ {0,−1,+1}m×n, we have the following result.

I Theorem 1.2. Let A be a unit matrix, i.e., A ∈ {0,−1,+1}m×n. Then we have
(1) ILS=(γ) is polynomially solvable if γ ≤ 1.
(2) ILS=(γ) is strongly NP-hard if γ > 1.

We note that Theorem 1.2 includes polynomial solvability for Horn and quadratic unit
systems [1, 8, 9, 17, 21, 27, 28], and tractability of SAT problem (i.e., the satisfiability
problem for 2-, Horn, renamable Horn, and q-Horn CNFs can be solved in polynomial time)
[10, 13, 23, 4].

We generalize the results above by considering nonconstant γ. More precisely, we regard
γ as a function of the number of variables n and d, and for such γ, let ILS≤(γ) denotes the
family of the problem instances I with η(I) ≤ γ. We have the following results.

I Theorem 1.3. (1) ILS≤(γ) is linearly solvable, if γ < 1.
(2) ILS≤(γ) is weakly NP-hard and pseudo-polynomially solvable, if 1 ≤ γ ≤ 1 + c logd n

n for
some constant c > 0.

(3) ILS≤(γ) is strongly NP-hard, if γ ≥ 1 + 1
nδ

for some constant δ < 1.

I Theorem 1.4. Let A be a unit matrix, i.e., A ∈ {0,−1,+1}m×n. Then we have
(1) ILS≤(γ) is polynomially solvable, if γ ≤ 1 + c logd n

n .
(2) ILS≤(γ) is strongly NP-hard, if γ ≥ 1 + 1

nδ
for some constant δ < 1.

Finally, we mention that there exists a line of research for sign solvability for linear
systems [7, 25], linear programming problem [16], and linear complementarity problem [19].
They mainly study sign patterns of the input data, that always determine sign patterns of
solutions. Their works are motivated by the fact that the input data are uncertain but the
structural properties are preserved in most practical situations. While both their and our
works concern the sign patterns of the input, ours differs from theirs in that our work studies
the integer solutions and does not concern sign patterns of the solutions.

2 Integer linear systems with index smaller than 1

For a given problem instance I = (A, b, d), we denote by (Z,α1, . . . , αn) an optimal solution
of (4). Let V = {1, . . . , n}. In this paper, we assume without loss of generality that each
variable is not redundant, i.e., A contains no column whose elements are all 0, since otherwise
we can fix all redundant variables to 0, for example.

In this section, we consider the case in which η(I) < 1, i.e., Z < 1, and prove (1) in
Theorem 1.3, which implies Theorems 1.1, 1.2, 1.4 when η(I) < 1.

STACS’12



616 Trichotomy for Integer Linear Systems Based on Their Sign Patterns

2.1 The case of η(I) < 1/2
Let us first consider the case in which Z = η(I) < 1/2. Then, there exists no j ∈ V with
αj = 1/2, since otherwise we have Z ≥ 1/2, a contradiction. If αj > 1/2 for some j ∈ V ,
then by Z < 1/2, the j-th column of A is nonpositive. Similarly, αj < 1/2 implies that
the j-th column of A is nonnegative. These imply that Z = 0, αj > 1/2 ⇒ αj = 1, and
αj < 1/2⇒ αj = 0. Therefore, we have the following lemma.

I Lemma 2.1. If Problem (4) has the optimal value Z < 1/2, then we have Z = 0, and
there exists a unique 0-1 optimal solution for (4).

Moreover, η(I) < 1/2 (and hence η(I) = 0) holds if and only if each column of A is either
nonnegative or nonpositive. Let y be a n-dimensional vector such that yj = d − 1 if j-th
column of A is nonnegative, and 0, otherwise (i.e., if j-th column of A is nonpositive). Then
it is not difficult to see that there exists a vector x ∈ Dn with Ax ≥ b if and only if y satisfies
Ay ≥ b. These lead to the following lemma.

I Lemma 2.2. Let I = (A, b, d) be a problem instance. Then we can check whether η(I) < 1/2
in linear time, and if so, the problem can be solved in linear time.

2.2 The case of η(I) = 1/2
We next consider the case in which Z = η(I) = 1/2.

If αj > 1/2 (resp., αj < 1/2) for some j ∈ V , then Z = 1/2 implies that the j-th column
of A is nonpositive (resp., nonnegative). Define a vector α∗ ∈ Rn by α∗j = 1 if the j-th
column of A is nonpositive, 0 if the j-th column of A is nonnegative, and 1/2, otherwise.
Then we can see that this α∗ is also an optimal solution of (4).

I Lemma 2.3. If Problem (4) has the optimal value Z = 1/2, then it has a half-integral
optimal solution.

Moreover, α∗j = 1/2 if and only if the j-th column of A contains both positive and
negative elements, and if aij 6= 0 for such j, then the i-th row of A contains no nonzero
element aik with k 6= j and α∗k = 1/2. Let us fix xj = 0 for all j ∈ V with α∗j = 1, and
xj = d − 1 for all j ∈ V with α∗j = 0. Then each inequality of the resulting integer linear
system contains at most one variable, and hence it can be easily solved.

I Lemma 2.4. Let I = (A, b, d) be a problem instance. Then we can check whether η(I) = 1/2
in linear time, and if so, the problem can be solved in linear time.

2.3 The case of 1/2 < η(I) < 1
In this section, we consider the case in which 1/2 < Z = η(I) < 1. Note that in this
case Problem (4) might have no (half-)integral optimal solution. For example, let A be a
(n + 1) × n matrix such that aij = −1 if i = j, 1 if i = n + 1, and 0 otherwise. Then the
problem has a unique optimal solution Z = n

n+1 and αj = 1
n+1 for all j.

For a subset S ⊂ R, let VS = {j ∈ V | αj ∈ S}. For two reals a and b with a < b,
[a, b) = {z ∈ R | a ≤ z < b}, (a, b] = {z ∈ R | a < z ≤ b} and [a, b] = {z ∈ R | a ≤ z ≤ b}.
Let ε be a positive number that satisfies Z ≤ 1− ε and 2kε = 1 for some integer k, where we
note that ε might depend on m and n. We then partition [0, 1] into 2k + 1 sets

[0, 1] =
k⋃

`=1
[(`− 1)ε, `ε) ∪ {1/2} ∪

k⋃
`=1

(1− `ε, 1− (`− 1)ε]. (5)
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For i = 1, 2, . . . ,m, let Pi = {j ∈ V | aij > 0} and Ni = {j ∈ V | aij < 0}. Then we have
the following properties.

I Lemma 2.5. Let I = (A, b, d) be a problem instance with 1/2 < η(I) < 1, and let ε be
defined as above. Then
(i) V(1−ε,1] ∩ Pi = ∅ and V[0,ε) ∩Ni = ∅ hold for all i = 1, 2, . . . ,m.
(ii) If j ∈ V(1−(`+1)ε,1−`ε] ∩ Pi for some ` = 1, 2, . . . , k and i = 1, 2, . . . ,m, then we have

Pi − {j} ⊆ V[0,`ε) and Ni ⊆ V(1−`ε,1].
(iii) If j ∈ V[`ε,(`+1)ε) ∩ Ni for some ` = 1, 2, . . . , k and i = 1, 2, . . . ,m, then we have

Pi ⊆ V[0,`ε) and Ni − {j} ⊆ V(1−`ε,1].

Proof. (i), (ii), and (iii) follow from Z ≤ 1− ε. J

By (i) in Lemma 2.5, if j ∈ V(1−ε,1], then the j-th column of A is nonpositive, and hence
we can fix xj = 0. Similarly, if j ∈ V[0,ε), then the j-th column of A is nonnegative, and
hence we can fix xj = d − 1. After fixing variables in V(1−ε,1] ∪ V[0,ε), if aij > 0 for some
j ∈ V(1−2ε,1−ε], then (ii) in Lemma 2.5 implies that the i-th inequality of the resulting
system contains only one variable xj . By solving such inequalities, we have a lower bound
xj ≥ pj (∈ D). Since all the other inequalities have aij ≤ 0, we can fix xj = pj . Similarly,
if aij < 0 for some j ∈ V[ε,2ε), then (iii) in Lemma 2.5 implies that the i-th inequality of
the resulting system contains only one variable xj . By solving such inequalities, we have
an upper bound xj ≤ pj (∈ D). Since all the other inequalities have aij ≥ 0, we can fix
xj = pj . By repeatedly applying this argument to variables in V(1−(`+1)ε,1−`ε] and V[`ε,(`+1)ε)
for ` = 2, 3, . . . k, we can fix all the variables in V \ V{1/2}. Note that by (ii) and (iii) in
Lemma 2.5, each inequality of the resulting system consists of at most one variable. Hence
we can solve it in linear time.

Formally, we describe the algorithm in Algorithm 2.7. We note that the algorithm uses
no information of (Z,α1, . . . , αn) of (4).

We remark that if the algorithm above solved the integer linear system, then we have
η(I) < 1. Since we can check whether η(I) ≤ 1/2 in linear time by Lemmas 2.2 and 2.4, we
have the following result.

I Lemma 2.6. Let I = (A, b, d) be a problem instance. Then we can check whether 1/2 <
η(I) < 1 in linear time, and if so, the problem can be solved in linear time.

By combining Lemmas 2.2, 2.4, and 2.6, we have (1) in Theorem 1.3.

STACS’12
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I Algorithm 2.7.
Step 1.

for 1 ≤ j ≤ n do
if j-th column of A is nonpositive then xj := 0
else if j-th column of A is nonnegative then xj := d− 1
end if

end for
if the resulting system has an inconsistent inequality (with no variable) then output
“infeasible” and halt
else remove inequalities with no variable from the system
end if

Step 2.
while the resulting system has j ∈ V such that aij′ = 0 for all i and j′ with aij > 0 and
j′ 6= j do

compute a lower bound xj ≥ p by solving inequalities in {i | aij > 0}
if p ≤ d then xj := max{dpe, 0}
else output “infeasible” and halt
end if
if the resulting system has an inconsistent inequality (with no variable) then output
“infeasible” and halt
else remove inequalities with no variable from the system
end if

end while
Step 3.

while the resulting system has j ∈ V such that aij′ = 0 for all i and j′ with aij < 0 and
j′ 6= j do

compute an upper bound xj ≤ p by solving inequalities in {i | aij < 0}
if p ≥ 0 then xj := min{bpc, d− 1}
else output “infeasible” and halt
end if
if the resulting system has an inconsistent inequality (with no variable) then output
“infeasible” and halt
else remove inequalities with no variable from the system
end if

end while
Step 4. /* Note that each inequalities of the resulting system has exactly one variable.*/

Solve the resulting system.

It is not difficult to see that the algorithm 2.7 above can be implemented in linear time
in the input length and the number of nonzero elements of A.

3 Integer linear systems with index 1

In this section, we assume that integer linear systems have index 1, and prove Theorems 1.1
and 1.2 for this case.

Let (Z,α1, . . . , αn) be an optimal solution of (4). Then we note that |Pi ∩ V(1/2,1]| ≤
1, |Ni ∩ V[0,1/2)| ≤ 1, and |(Pi ∪ Ni) ∩ V{1/2}| ≤ 2 holds for all i = 1, 2, . . .m, since
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otherwise we have Z > 1, a contradiction. Moreover, (Pi ∪ Ni) ∩ V{1/2} 6= ∅ implies
Pi ∩ V(1/2,1], Ni ∩ V[0,1/2) = ∅, which again follows from Z = 1. Define a vector α∗ ∈ Rn by
α∗j = 0 if αj < 1/2, α∗j = 1/2 if αj = 1/2, and α∗j = 1, otherwise (i.e., if αj > 1/2). It is not
difficult to see that α∗ is also an optimal solution of (4).

I Lemma 3.1 ([5]). If Problem (4) has the optimal value Z = 1, then it has a half-integral
optimal solution.

Moreover, such a solution can be computed in linear time.

I Lemma 3.2 ([6]). We can decide whether Problem (4) has the optimal value Z = 1 in
linear time, and if so, we can compute a half-integral optimal solution in linear time.

Let α ∈ {0, 1/2, 1}n denote an optimal solution of Problem (4). To make discussion clear,
we may assume α ∈ {1/2, 1}n without loss of generality. To see this, assume that αj = 0
holds for some j. We then replace the variable xj to a new variable x′j (= d− 1− xj), i.e.,
we substitute xj := d− 1− x′j in the system. It is not difficult to see that the feasibility of
the original integer linear system is equivalent to the one of the resulting system. Since the
coefficient matrix of the resulting system differs A only by the sign of the j-th column of
matrix A, we have a half-integral optimal solution with αj = 1 for the new LP problem (4).
By replacing all variables j with αj = 0, we have the integer linear system such that problem
(4) has an optimal solution α ∈ {1/2, 1}n. We remark that this replacement can be done in
linear time.

Let Q = V{1/2} and H = V{1}. By α ∈ {1/2, 1}n, V can be partitioned into Q and H:

V = Q ∪H. (6)

Then by the discussion at the beginning of this section, we have the following properties.

I Lemma 3.3 (QH-partition [5]). A partition V = Q ∪ H satisfies the following three
conditions:

(a) Each row i of A contains at most two nonzero elements aij with j ∈ Q. Or equivalently,
|(Pi ∪Ni) ∩Q| ≤ 2 holds for all i = 1, 2, . . . ,m.

(b) Each row i of A contains at most one positive element aij with j ∈ H. Or equivalently,
|Pi ∩H| ≤ 1 holds for all i = 1, 2, . . . ,m.

(c) If row i of A contains a positive element aij with j ∈ H, then the elements aik with k ∈ Q
are all zeros. Or equivalently, Pi ∩H 6= ∅ ⇒ (Pi ∪Ni) ∩Q = ∅ for all i = 1, 2, . . . ,m.

For a QH-partition of V , let S denote the set of rows i of A such that aij = 0 for all
j ∈ Q. Let A[S,H] denote the submatrix of A whose row and column sets are S and H,
respectively, and let bH and xH respectively denote the restriction of b and x to H. Then by
Lemma 3.3 (a), linear system A[S,H]xH ≥ bH is Horn, i.e., each row of A[S,H] contains at
most one positive element. It is known that any Horn system has a unique minimal solution
if it is feasible. Let x∗H ∈ DH be such a solution for A[S,H]xH ≥ bH . Since Lemma 3.3
(c) implies that any element aij with i 6∈ S and j ∈ H is nonpositive, we can see that the
original integer linear system is feasible if and only if so is the system obtained from it by
substituting xH = x∗H . Thus we consider the system obtained by fixing xH = x∗H . Since the
resulting system is quadratic (i.e., each row contains at most two nonzero elements), we can
solve it, for example, by the algorithm proposed in [14]. We summarize this algorithm in
Algorithm 3.4.

STACS’12



620 Trichotomy for Integer Linear Systems Based on Their Sign Patterns

I Algorithm 3.4.
Step 1.

Compute a QH-partition of V
Step 2.

if the integer linear system xH ∈ DH and A[S,H]xH ≥ bH is infeasible then output
“infeasible” and halt
else compute a unique minimal solution x∗H ∈ DH of the system and substitue xH := x∗H
end if

Step 3.
if the resulting system is infeasible then output “infeasible” and halt
else compute an integer solution x∗Q ∈ DQ of the resulting system, and output the vector
(x∗H , x∗Q) and halt
end if

I Lemma 3.5. Algorithm 3.4 solves the integer linear system with index 1 in time polynomial
in n, m and d.

Proof. Since the correctness of algorithm 3.4 follows from the discussion before the description
of the algorithm, we discuss its time complexity only.

By [6], Step 1 can be executed in linear time. Steps 2 and 3 can be done in polynomial
time in n, m, and d [29, 14]. Therefore, in total, the algorithm requires polynomial time in
n, m, and d. J

I Lemma 3.6. For unit matrix A, Algorithm 3.4 solves the integer linear system with index
1 in polynomial time.

Proof. The lemma follows from the fact that Horn and quadratic integer linear systems are
solvable in polynomial time, if A is unit [8, 17]. J

We next show the weak NP-hardness of the problem.

I Lemma 3.7. ILS=(1) is weakly NP-hard.

Proof. It is known [20] that solving Horn or quadratic system is weakly NP-hard. We show
that Horn and quadratic systems both have index at most 1. Since the integer linear system
with index less than 1 is solvable in linear time, this proves the lemma.

Let I = (A, b, d) be a Horn system. Then we assign all the variables αj to 1. Since each
row of A contains at most one positive element, we have η(I) ≤ 1. On the other hand if I is
quadratic, then by assigning all the variables αj to 1/2, we have η(I) ≤ 1, since each row of
A contains at most two nonzero elements. J

4 Integer linear systems with index η with 1 < η ≤ 1 + c logd n
n

In this section, we consider the case in which 1 < η(I) ≤ 1 + c logd n
n , and complete the proof

of (2) in Theorem 1.3 and (1) in Theorem 1.4. Our positive results can be regarded as
generalizations of the ones for ILS=(1).

A partition of V into Q, H, and Y , i.e., V = Q ∪H ∪ Y is called QHY -partition, if Q
and H satisfy all the conditions in Lemma 3.3.

If we have a QHY -partition with small Y , then the integer linear system can be solved
by assigning all possible assignments to variables in Y . For this purpose, we make use of the
following result.
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I Lemma 4.1 ([5]). A QHY -partition with |Y | < 6n(η(I)−1) can be computed in polynomial
time.

By using this lemma, if γ is a function of n with γ ≤ 1 + c logd n
n , then we have a

QHY -partition with |Y | ≤ 6c logd n. Note that each of the d|Y | assignments to the variables
of Y produces a problem instance I∗ with η(I∗) ≤ 1. Each such instance is solvable in
pseudo-polynomial time by Lemma 3.5, and if A is unit, it is solved in polynomial time by
Lemma 3.6. Moreover, since d|Y | ≤ n6c, we have that the integer linear systems can be solved
in pseudo-polynomial time if the system has index at most 1 + c logd n

n for some constant c,
and in polynomial time if the system is in addition unit.

5 Strong NP-hardness for integer linear systems

In this section, we show the strong NP-hardness for the integer linear systems, i.e., we prove
(2) in Theorems 1.2 and 1.4, which implies (3) in Theorems 1.1 and 1.3.

We first show that ILS≤(γ) is NP-hard, if γ ≥ 1 + 1
nδ

for some constant δ < 1. To do
this, we reduce the Boolean satisfiability problem (SAT) to our problem.

Given a CNF ϕ =
∧m

i=1

(∨
j∈Pi

xj ∨
∨

j∈Ni
xj

)
, we construct an integer linear system as

follows:

∑
j∈Pi

xj +
∑

j∈Ni
(1− xj) ≥ 1 (i = 1, . . . ,m)

x ∈ {0, 1}n.
(7)

Namely, A is a matrix defined by

aij =


1 j ∈ Pi

−1 j ∈ Ni

0 otherwise,
(8)

b is a vector defined by

bi = 1− |Ni| (i = 1, . . . ,m), (9)

and d = 2.
It is not difficult to see that ϕ is satisfiable if and only if there exists a x ∈ Dn such that

Ax ≥ b. Since this reduction is polynomial, solving the integer linear system is in general
NP-hard. Moreover, as mentioned in the introduction, our index η is a generalization of the
complexity index of SAT defined by Boros et al. [5].

I Lemma 5.1. Let Z(ϕ) denote the complexity index of CNF ϕ defined in [5], and η(I)
denote the complexity index of the integer linear system defined as (7). Then we have
Z(ϕ) = η(I).

We now refer the following theorem due to Boros et al. [5], where SAT(γ) denotes the
set of instances ϕ of SAT such that Z(ϕ) ≤ γ.

I Theorem 5.2 ([5]). SAT(γ) is strongly NP-hard, if γ ≥ 1 + 1
nδ

for some constant δ < 1.

By combining Theorem 5.2 with Lemma 5.1, we have the following result.

I Lemma 5.3. Let γ be a function of n such that γ ≥ 1 + 1
nδ

for some constant δ < 1. Then
ILS≤(γ) is strongly NP-hard, even if A is unit.
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Note that Lemma 5.3 implies that for any constant γ > 1, ILS≤(γ) is NP-hard, even if A
is unit. In order to show (2) in Theorems 1.2, we consider the following simple reduction.

Let A (resp., A′) be a unit m× n (resp., m′ × n′) matrix with the optimal value γ (resp.,
γ′) of (4). Consider the following integer linear system:(

A 0
0 A′

)(
x

x′

)
≥
(

0
b′

)
,

where 0 denote a zero matrix (or vector) of appropriate size, and b′ denote a vector in Rm′ .
We can see that this system has a solution if and only if A′x′ ≥ b′ has a solution, since x = 0
clearly satisfies Ax ≥ 0. If we choose A′x′ ≥ b′ from strongly NP-hard instances with γ′ ≤ γ,
we have the following results.

I Lemma 5.4. Let γ be a constant with γ > 1 and ILS=(γ) 6= ∅. Then ILS=(γ) is strongly
NP-hard, even if A is unit.
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