
An exact algorithm for the uncertain version of
parallel machines scheduling problem with the
total completion time criterion
Marcin Siepak1

1 Wroclaw University of Technology/Institute of Informatics
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw
Marcin.Siepak@pwr.wroc.pl

Abstract
An uncertain version of parallel and identical machines scheduling problem with total completion
time criterion is considered. It is assumed that the execution times of tasks are not known
a priori but they belong to the intervals of known bounds. The absolute regret based approach
for coping with such an uncertainty is applied. This problem is known to be NP-hard and
a branch and bound algorithm (B&B) for finding the exact solution is developed. The results of
computational experiments show that for the tested instances of the uncertain problem — B&B
works significantly faster than the exact procedure based on enumeration of all the solutions.
The algorithm proposed has application for further research of quality evaluation for heuristic
and approximate solution approaches for the considered problem (in order to check how far from
the optimality are solutions generated by them) and also in the cases where the requirement is
to obtain the exact solutions for the uncertain problem.

1998 ACM Subject Classification I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Task scheduling, Interval uncertainty, Minmax regret, Branch and Bound

Digital Object Identifier 10.4230/OASIcs.SCOR.2012.53

1 Introduction

P‖
∑
Ci is classical scheduling problem polynomially solvable ([3], [5]). It consists in

scheduling the set of I tasks on the set of J parallel and identical machines. The execution
times pi, i = 1, . . . , I are given. The optimal schedule minimizes the total flow time

∑
i Ci,

i.e. the sum of tasks completion times where Ci is the completion time of the ith task. Such
a schedule, at each point of time maximizes the number of tasks already processed, by first
scheduling those which execution time is the shortest. In order to solve the problem, it
is required to assign tasks to the machines and also fix the tasks execution order on each
machine.

In this paper we consider the uncertain version of P‖
∑
Ci where the execution times

pi are imprecise. The uncertainty is modelled by the concept of a scenario which is an
assignment of possible values into the imprecise parameters of the problem [1]. The set of all
possible scenarios can be described in two ways — in the discrete scenario case, the possible
values of uncertain parameters are presented explicitely and in the interval scenario case
they can take any value between a lower and upper bound. Hereinafter we consider the
interval case where we assume that for each of tasks only the borders of the intervals p

i
and

pi are given where p
i
6 pi and pi ∈

[
p

i
, pi

]
. Such a way of uncertainty description is useful

in the cases where no historical data is available regarding the imprecise parameters, which
© Marcin Siepak;
licensed under Creative Commons License NC-ND

3rd Student Conference on Operational Research (SCOR 2012).
Editors: Stefan Ravizza and Penny Holborn; pp. 53–63

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SCOR.2012.53
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

54 An exact algorithm for the uncertain version of parallel machines scheduling problem

would be required in order to obtain the probability distribution and apply the stochastic
approach and also when there is lack of experts opinions which would be a source of other
representations of uncertain execution times, e.g. in the form of a membership function for
the fuzzy approach.

To solve the nondeterministic case, one can assume the specific values of uncertain
parameters and use the deterministic approach. The quality of such a solution however, may
be poor because assumed values may differ greatly from the actual ones. For the considered
nondeterministic problem, we use therefore the approach based on the absolute opportunity
loss (regret) introduced by Savage in [12] and the concept of minmax regret ([2], [9]) which
requires finding a feasible solution that is ε-optimal for any possible scenario with ε as small
as possible [1].

Minmax regret versions of many classical optimization problems were studied in [1] and
[6]. Newer results were recently obtained in [2], [7], [13], [14].

The paper is organised as follows. The deterministic and uncertain versions of the
considered problem are formulated in Section 2. The solution algorithm proposed is presented
in Section 3. Section 4 is devoted to description of the computational experiments and their
results. In Section 5, the conclusions are presented.

2 Problem formulation

2.1 Deterministic case
Let us introduce the following notation:
I = {1, 2, . . . , I} — set of tasks,
J = {1, 2, . . . , J} — set of machines,
p = [pi]i=1,...,I — vector of task execution times.
Moreover, let x = [xikj]i=1,...,I;k=1,...,I;j=1,...,J be the matrix of binary optimization variables
where xikj = 1 if the ith task is scheduled as the kth to the last task on machine j, and 0
otherwise. Each machine has therefore I virtual positions, where tasks can be assigned to
and parameter k specifies index of the position to the last where a task can be performed.

The objective function is expressed as the sum of tasks completion times [11]:

F (p, x) =
I∑

i=1
pi

J∑
j=1

I∑
k=1

kxikj . (1)

The following constraints are imposed on optimization variables xikj . Each task is
performed on exactly one position of exactly one machine:

J∑
j=1

I∑
k=1

xikj = 1; i = 1, . . . , I. (2)

Maximally one task can be performed on each position of each machine:

I∑
i=1

xikj 6 1; j = 1, . . . , J ; k = 1, . . . , I. (3)

The elements of matrix x are binary optimization variables:

xikj ∈ {0, 1} ; i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , I. (4)

M. Siepak 55

Therefore, formulation of deterministic version of P‖
∑
Ci is as follows

F
′
(p) , F (p, x

′
) = min

x
F (p, x) =

I∑
i=1

pi

J∑
j=1

I∑
k=1

kx
′

ikj (5)

subject to (2), (3) and (4).

2.2 Uncertain case
For the uncertain case, we assume that the exact value of execution time pi is not given, and
this parameter belongs to the interval

[
p

i
, pi

]
where p

i
and pi are known. It means that we

consider uncertain parameters pi described by a set of their possible values in the form of
intervals. No other characteristics of such an uncertainty are assumed or used. A particular
vector p expresses fixed configuration of the execution times and is called a scenario. A set

P =
[
p1, p1

]
× . . .×

[
p

I
, pI

]
(6)

of all scenarios is characterized by the Cartesian product of all the intervals. A scenario
where completion times of all tasks are equal borders of the corresponding intervals p

i
or pi

is called an extreme scenario.
In order to measure solution quality for the nondeterministic problem, we apply absolute

regret as introduced by Savage in [12]. It expresses the difference between value of the total
flow time criterion for given solution x and specified scenario p as well as optimal value of
the total flow time criterion for p:

F (p, x)− F
′
(p). (7)

To find solution of the problem, the robust approach ([1], [9]) is applied. For specified
solution x the uncertain parameters are determined by obtaining so called worst case scenario
denoted by px, i.e. the one which maximizes absolute regret:

z(x) = max
p∈P

[
F (p, x)− F

′
(p)
]
. (8)

The optimal solution x∗ for the uncertain version of P‖
∑
Ci minimizes (8), i.e. z∗ , z(x∗) =

minx z(x) subject to (2), (3) and (4).

3 Solution algorithm

3.1 Deterministic case
The deterministic version of P‖

∑
Ci is polynomially solvable and the optimal solution can

be obtained using SPT (Shortest Processing Time) rule [11]. This procedure sorts all the
tasks in nonincreasing order according to their execution times. They are assigned iteratively
then, i.e. the i’th task is assigned into the first available position to the last (i.e. not occupied
position, such that the value of parameter k is the smallest) on the n’th machine, where

n =
{
J, when (i mod J) = 0
(i mod J), otherwise. (9)

SCOR’12

56 An exact algorithm for the uncertain version of parallel machines scheduling problem

3.2 Uncertain case
The uncertain version of P‖

∑
Ci is NP-hard which results directly from NP-hardness of the

nondeterministic version of a single machine scheduling problem, i.e. 1‖
∑
Ci [10].

Let us denote by Pe the set of extreme scenarios, i.e.

Pe =
{
p1, p1

}
× . . .×

{
p

I
, pI

}
. (10)

and by px the worst-case scenario for solution x.

I Lemma 1. px ∈ Pe for any feasible solution x.

Proof. It is easy to see, that for two feasible solutions x1 and x2 the following equality holds:

F (p, x1)− F (p, x2) =
I∑

i=1
pi

J∑
j=1

I∑
k=1

kx1
ikj −

I∑
i=1

pi

J∑
j=1

I∑
k=1

kx2
ikj

=
I∑

i=1
pi

J∑
j=1

(
kx1

ij − kx2

ij

)
(11)

where for any feasible solution xs:

kxs

ij =
{
k ∈ {1, . . . , J} if ∃k : xs

ikj = 1
0 if ∀k = 1, . . . , I xs

ikj = 0. (12)

As a result of (11) we get:

F (p, x)− F
′
(p) =

I∑
i=1

pi

J∑
j=1

(
kx

ij − kx
′

ij

)
. (13)

Now, in order to maximize (13) and obtain the worst-case scenario, it is enough to assume:

pi =
{

pi, when ∃jx, jx′ ∈ {1, . . . , J} : kx
ijx

> 0 ∧ kx
′

ij
x

′ > 0 ∧ kx
ijx

> kx
′

ij
x

′

p
i
, otherwise.

(14)

From (14) it results immediately, that ∀i either pi ∈ px or p
i
∈ px and consequently px ⊂ Pe

for each solution x. J

3.3 Branch and bound algorithm
As a consequence of NP-hardness of the uncertain version of P‖

∑
Ci, we apply Branch and

Bound procedure (B&B) [4] which allows to obtain the exact solution for small instances of
the problem faster than the algorithm based on a simple enumeration (denoted as EXCT).
B&B can therefore be applied to larger instances of the uncertain problem, which solving
using EXCT procedure would take unacceptably long time in the real life systems. According
to B&B, the main complex and hard to solve input problem denoted as OPT is decomposed
into a finite number of subproblems OPT1, OPT2, ..., OPTq where the corresponding subsets
of feasible solutions Q1, . . . , Qq, fulfill conditions Ql∩Qm = ∅ for l 6= m and Q1∪. . .∪Qq = Q,
where Q is a set of feasible solutions for OPT . The process of decomposition can represented
in a form of partition tree where the root corresponds to the input problem OPT and
the nodes represent individual subproblems. For each subproblem, until it is fulfilled by
maximally one solution — a further decomposition can be performed.

M. Siepak 57

B&B remembers in each iteration the best solution x́ found so far and the corresponding
value of the objective function z(x́) or its upper bound zUB(x́). This algorithm also requires
knowledge of the feasible initial solution which can be obtained by applying any approximate
or heuristic algorithm. For the purpose of considered uncertain problem, we obtain it by
assuming the execution times are equal middles of the corresponding intervals and solving
the deterministic version of the problem.

Let x̂l be the optimal solution for OPTl. Solving the subproblem directly can still be
a process of high complexity, therefore instead of finding x̂l — a relaxation of OPTl is
performed and optimal solution x̃l for the relaxed subproblem is sought. The relaxation
generally consists in decreasing subproblem’s complexity by weakening some of its restrictions
and making it easier to solve. As a consequence of relaxation — solution x̃l may not
necessirely be feasible for OPTl, however it fulfills condition z(x̃l) ≤ z(x̂l), therefore it can
be treated as a lower bound for the subproblem, i.e. z(x̃l) = zLB(x̂l).

Listing 1: Partition tree browse procedure
1 Generate subproblem CurrentSubproblem at the first level of partition tree by
assigning the first task into the last position of the first machine;

2 repeat
3 if CurrentSubproblem is not closed then

// If subproblem is not closed - then we generate a child node.
4 CurrentSubproblem ← GenerateChild(CurrentSubproblem);
5 i ← i + 1;

6 x́ ← TryToCloseSubproblem(CurrentSubproblem, i, I, x́);
7 else

// If subproblem is closed - we try to generate its neighbour
then.

8 NeighbourSubproblem ← GenerateNeighbour(CurrentSubproblem);
9 if NeighbourSubproblem was created then

10 CurrentSubproblem ← NeighbourSubproblem;

11 x́ ← TryToCloseSubproblem(CurrentSubproblem, i, I, x́);
12 else
13 CurrentSubproblem ← ParentSolution;
14 i ← i − 1;

15 Close CurrentSubproblem ;
16 end
17 end
18 until CurrentSubproblem is root node;

All the subproblems are generated dynamically during execution of B&B, so their total
number denoted as q is known after execution of the algorithm is completed. In order to solve
OPT , it is required to close each of generated subproblems. The closure of a subproblem
implies that that it will not be decomposed anymore, as doing so — would not lead to
finding the optimal solution. The individual subproblem OPTl can be closed when any of
the following conditions is fulfilled:

(a) No feasible solution exists that fulfills OPTl.
(b) Any of conditions zLB(x̂l) > z(x́) or zLB(x̂l) > zUB(x́) hold, so as a result optimal

solution of OPTl cannot be optimal for OPT .
(c) A solution x̃l is found which is feasible for the non relaxed version of OPTl.

SCOR’12

58 An exact algorithm for the uncertain version of parallel machines scheduling problem

If none of the above conditions occurs, then OPTl must be decomposed into further
subproblems. Closing the subproblem based on condition (c) when additionally z(x̃l) < z(x́)
occurs, means that a new best solution was found, therefore substitution x́ = x̃l can be
performed.

Each node of the partition tree specifies unambiguously the partial allocation matrix x̃,
which at the last, I’th level indicates the complete solution x of the scheduling problem. At
the i’th level of the partition tree (i = 1, . . . , I), i− 1 tasks have already been assigned to
the machines and the allocation of the i’th task is performed, while (I − i) tasks will be
assigned on the next levels i+ 1, i+ 2, . . . of the tree (unless the subproblem can be closed
before that). The procedure presented on Listing 1 generates and browses the partition tree.
The following notation is used: CurrentSubproblem — subproblem corresponding to the
currently processed node, i — level of partition tree corresponding to CurrentSubproblem,
I — total number of tasks.

According to the procedure presented on Listing 1 — if a current subproblem could not
be closed (Line 3), then we decompose it (GenerateChild procedure — Line 4). Otherwise
— we try to generate its neighbour (GenerateNeighbour procedure — Line 8), and if that
succeds, we assign neighbour as the current node and try to close it (TryToCloseSubproblem
— Line 6).

The procedure GenerateChild applied for CurrentSubproblem at the i’th level of parti-
tion tree generates the first child only which is allocated at level (i+ 1) and the attempt to
close it is performed immediately after it has been created (Line 6). If closure fails to succeed,
then GenerateChild procedure is applied in the next iteration (Line 4), in order to generate
child node at level (i+ 2). Otherwise — if it was closed successfully, then its neighbour is
tried to be generated in the next iteration using GenerateNeighbour procedure (Line 8).
Each execution of GenerateNeighbour applied for any node generates at most one its direct
neighbour or returns empty value when no neighbour node could be generated. Returning
empty value causes that the procedure goes to the parent node which is automatically
closed then (Line 15) and its neighbour is tried to be generated in the next iteration of
the algorithm (Line 8). The existence of neighbour node is determined by the analysis of
CurrentSubproblem to which GenerateNeighbour procedure is applied.

Listing 2: TryToCloseSubproblem procedure
Input :CurrentSubproblem, i, I, x́
Output : x́

1 Find solution x̃ for the relaxed version of CurrentSubproblem;
2 if zLB(x̃) ≥ zUB(x́) then
3 Close CurrentSubproblem ; // We close the current subproblem
4 else
5 if i == I then

// That means x̃ is a feasible solution for the nonrelaxed
subproblem

6 Close CurrentSubproblem;
7 if zUB(x̃) < zUB(x́) then
8 x́ ← x̃ ; // x̃ is the best solution we currently have
9 end

10 end
11 end
12 return x́

M. Siepak 59

The subprocedure TryToCloseSubproblem presented in Listing 2 evaluates the partial
solution related to the current node and checks if the subproblem related to it can be closed,
so no more children of that node would be generated.

The child node is generated according to the following property which improves solution
quality and is true for each optimal solution [11]:

Property: If job i is assigned to position k > 1 on machine j, then there is also a job
assigned to position k − 1 on the machine j. Otherwise scheduling job i on position k − 1
would improve the total assignment cost.

While generating child at i’th level of the tree (GenerateChild procedure), we try to
assign task i+ 1 into the latest available position (i.e. the one where value of corresponding
parameter k is the smallest, as parameter k specifies the position to the last) of the first
available machine. The indexes of available machines and positions depend however on the
assignment of tasks 1, . . . , i on the corresponding previous levels of the partition tree. Let us
denote by kj the value of k for the earliest position occupied (by any task) on machine j.
That means, kj equals the highest value of k corresponding to position occupied on machine
j in the current partial solution. As an example, let’s assume that I = 10, J = 2 and k2 = 4.
So, the task currently assigned as the earliest on machine 2 is performed as the 4’th to the
last. Let us denote by kMaxj the earliest possible position where the current task can be
assigned to on machine j in order to fulfill the above property. In case of the presented
example, kMax1 must equal 6, which means that current task can be performed on machine
1 the earliest at position 6’th to the last. Assigning this task any earlier on machine 1
would cause unnecessary increase of the total completion time criterion (1), as the property
presented above would not be fulfilled then. Therefore, while performing GenerateChild
procedure, first we determine parameters kj , (j = 1, ..., J) for each machine. Then we try to
assign task i+ 1 into machine j, starting from j = 1. We iteratively analyse position k’th to
the last on the j’th machine within range k = 1, . . . , kMaxj and check if it is available. If the
position is free, then we assign there the current task, and GenerateChild procedure stops.
Otherwise we try to perform the assignment of task (i+ 1) on machine (j + 1). Parameter
kMaxj is calculated according to the following formula:

kMaxj = max {kj , I − k1 − . . .− kj−1 − kj+1 − . . .− kJ} . (15)

While building neighbour node for the CurrentSubproblem at the i’th level of the tree we
use the knowledge of indexes for machine and position of where the i’th task has been assigned
in CurrentSubproblem. Let us denote these indexes as jCurr and kCurr respectively. The
procedure starts from trying to assign the task into the next available (i.e. not occupied)
position on machine jCurr where parameter k corresponding to that position is greater
than kCurr. So, the i’th task is tried to be assigned iteratively on machine jCurr into the
position earlier than it has already been assigned on this machine in the node corresponding
to CurrentSubproblem. If all the positions up to the one where k = kMaxjCurr were
occupied, then the assignment is tried to be performed starting from the last position (i.e.
k = 1) of the next machine (jCurr+ 1) until k = kMaxjCurr+1. The procedure stops, when
the task assignment was successfully made or when position kMaxJ on the J ’th machine was
processed and no assignment could be performed due to the occupancy of all the processed
positions (the empty value is returned then).

3.4 Lower bound calculation
Having given partial solution ẋ corresponding to a specified node at the ith level of the
partition tree, calculation of the lower bound zLB is required for this subproblem. In order to

SCOR’12

60 An exact algorithm for the uncertain version of parallel machines scheduling problem

perform it, we start from determining parameters kj , j = 1, . . . , J for each machine (similarly
like in case of GenerateChild procedure) and generate series of finite sequences mj = (mjs

)
where each sequence contains values of parameter k of those positions on machine j which
have not been occupied by any task yet (starting from k = 1 up to kj). That means, each
element of mj specifies index of a position to the last on machine j, where one of non assigned
yet tasks will need to be allocated to (in order to fulfill the property presented in Section
3.3) — and as a result its execution time will be multiplied by the value of k corresponding
to that position. Let mj denote the number of elements of mj and m be a sequence of pairs
(mjs

, j) , s = 1, . . . ,mj ; j = 1, . . . , J concatenating elements of sequences mj . In order to
calculate the lower bound, we generate all the possible combinations of size m (m is the
length of m) from these tasks which have not been assigned to any machines yet, i.e. tasks
i+ 1, . . . , I. Then, for each combination set, denoted as N we generate all the permutations
of N . Let n = (ns), s = 1, . . . ,m be a single permutation sequence. Now, we modify ẋ
and allocate task ns into the machine and position to the last specified by element s of
sequence m (s = 1, . . . ,m). For ẋ modified in such a way we calculate the value of absolute
regret. Then we start again from the initial partial solution ẋ and modify it using the next
permutation sequence calculating absolute regret right after the modification is done. Such
a process is repeated until all the permutation sequences for all the combination sets have
been analysed. The smallest calculated value of absolute regret is the lower bound for the
relaxed version of subproblem and the corresponding ẋ is the optimal solution for the relaxed
subproblem (we denote such a solution as x̃).

In order to calculate absolute regret (7) for ẋ— knowledge of the worst case scenario pẋ is
required. The occurrence of parameter k in every addend of (1) causes however, that finding
pẋ is NP-hard problem, as it requires analysis of all the extreme scenarios, which number is
2|Pe|. Therefore, Listing 3 presents how to efficiently generate p̂ẋ which is approximation of
unable to calculate effectively scenario pẋ and as a result — how to obtain lower bound of
absolute regret.

Listing 3: Calculation of the lower bound for absolute regret
Input : ẋ
Output : z̃— lower bound for absolute regret z

1 Obtain scenario p = [pi]i=1...,I ;
2 for i← 1 to I do
3 Generate scenario p̃ ← p;
4 Assign p̃i ← p

i
in scenario p̃;

// z̃(p,ẋ)=F (p, ẋ)− F ′(p) for any p

5 if z̃(p̃,ẋ)>z̃(p,ẋ) then
6 p ←p̃;
7 end
8 end
9 return z̃(p,ẋ)

3.5 Upper bound calculation

For the initial solution generated assuming execution times equal middles of the intervals
and also for each solution x feasible for the input problem OPT (e.g. the one generated
at the leaf of partition tree), calculation of the upper bound zUB is necessary. In order to
perform it, we propose to find sets Pm and Ps of scenarios fulfilling the following conditions

M. Siepak 61

∀pm ∈ Pm : F (pm, x) ≥ F (px, x) and ∀ps ∈ Ps : F ′ (ps) ≤ F ′ (px). The value of zUB is
then calculated using the following formula:

zUB (x) = min
pm,ps

[F (pm, x)− F ′(ps)] . (16)

In order to build set Ps, we apply the procedure presented on Listing 4:
Listing 4: Generation of set Ps

1 zmax ← 0;
2 Generate scenario p ←

[
p

i

]
i=1...,I

;

3 for i← 1 to bI/2c do
4 repeat
5 Get next scenario pi by modifying i execution times in p from the lower to the

upper bounds of the corresponding intervals;
// z̃(p,x)=F (p, x)− F ′(p) for any p

6 if z̃(pi,x)≥zmax then
7 if z̃(pi,x)>zmax then
8 Clear set Ps;
9 zmax ←z̃(pi,x);

10 end
11 Add pi to set Ps;
12 end
13 until all possible scenarios pi have been processed;
14 end

The procedure of finding set Pm follows the one as on Listing 4 with the difference, that
scenario p = [pi]i=1...,I is used instead of p (Line 2) and while performing each iteration,
scenarios having i execution times equal lower bounds of the corresponding intervals (Line
5) are processed (i = 1, . . . , bI/2c). After obtaining sets Ps and Pm, the upper bound is
calculated according to (16).

4 Computational experiments

All the algorithms have been written in c# and performed on Intel Core i5, 2.40GHz, 4.00
GB of RAM. In order to test the quality of developed B&B, we compared it with the
exact algorithm based on enumeration of all the possible solutions. The test instances of
the uncertain problem were generated according to the procedure presented in [8]. First
we introduced parameter C = {10, 50, 100}. For each C the experiments were performed
separately. Starting from C = 10, for the i’th task (i = 1, . . . , I) we generated p

i
randomly

from the interval [1, C] and pi randomly from the interval
[
p

i
, p

i
+ C

]
according to the

uniform probability distribution. Parameter C specifies the influence of uncertainty on the
problem — the higher its value is, the bigger may be the difference between the lower and
the upper bound of the intervals for the imprecise parameters. For each C and each of
I = 5, . . . , 14 five instances of the uncertain problem were generated and solved independently.

The results of computational experiments for different values of C and J = 2 are presented
in Table 1. Column I reports the total number of tasks, Enum and B&B represent the
average execution time (in seconds) of the algorithm based on enumeration and Branch and
Bound procedure while running it 5 times for different instances of the uncertain problem of

SCOR’12

62 An exact algorithm for the uncertain version of parallel machines scheduling problem

Table 1 The results of experiments for B&B and enumeration procedure.

C = 10 C = 50 C = 100

I Enum B&B ADV I Enum B&B ADV I Enum B&B ADV

5 0.02 0.01 50% 5 0.06 0.01 83.3% 5 0.1 0.04 60%

6 0.202 0.124 38.6% 6 0.24 0.13 45.8% 6 0.18 0.12 33.3%

7 2.62 1.66 36.6% 7 2.76 1.74 37% 7 2.3 1.6 30.4%

8 24.13 13.7 43.2% 8 23.11 12.52 45.8% 8 28.42 14.53 48.9%

9 170 95 44.1% 9 242 120 50.4% 9 309 174 43.7%

10 1087 536 50.7% 10 1353 521 61.5% 10 1493 667 55.3%

11 4108 1781 56.6% 11 4714 2014 57.3% 11 5014 1935 61.4%

12 24990 9985 60% 12 26043 10148 61% 12 29091 10306 64.6%

13 — 27730 — 13 — 29990 — 13 — 31237 —

14 — 71470 — 14 — 77353 — 14 — 81382 —

the same size. Column ADV represents the percentage execution time advantage of B&B
over the exact algorithm.

While performing experiments we solved the uncertain problem consisting of up to 12
tasks using the exact algorithm. For the higher number of tasks, the calculation time took
more than 24 hours and we stopped the computations. The Branch and Bound procedure
solved the problem consisting of up to 14 tasks. The experiments generally show that both
of the algorithms work longer while increasing the value of C. For I = 12, B&B works even
64.6% faster than the exact procedure, so as a result we could retrieve the exact solution
in approximately 2 hours 52 minutes instead of 8 hours 5 minutes while using the exact
procedure. The results also show that the execution time advantage of B&B over the exact
algorithm increases while increasing the total number of tasks (I). The above observations
are limited of course to the tested instances of the uncertain problem.

5 Conclusions

In this paper we have developed and tested a Branch and Bound algorithm for the uncertain
version of P‖

∑
Ci where the uncertain parameters are expressed in the forms of intervals

and only their lower and upper bounds are known. Such a version of the problem is known
to be NP-hard. The computational experiments for small instances of the problem show that
this procedure finds an optimal solution significantly faster than the exact algorithm based on
analysis of all the possible solutions. The algorithm proposed has therefore applications for
further research of developing efficient approximate and heuristic procedures — in order to
test how far from the optimality are the solutions generated by those procedures. Moreover
the methodology of building and browsing the partition tree can be applied while extending
developed B&B algorithm to solve the uncertain version of more complex problem than
considered in this paper, i.e. R‖

∑
Ci. We also recommend to use this method in the cases

when the requirement of obtaining the optimal solution has priority — and is more important
than the computation time.

M. Siepak 63

References
1 H. Aissi, C. Bazgan, and D. Vanderpooten. Minmax and minmax regret versions of com-

binatorial optimization problems: A survey. European Journal of Operational Research,
197:427–438, 2009.

2 I. Averbakh and J. Pereira. Exact and heuristic algorithms for the interval data robust
assignment problem. Computers & Operations Research, 38:1153–1163, 2011.

3 J. Bruno, E. G. Coffman, Jr., and R. Sethi. Scheduling independent tasks to reduce mean
finishing time. Communications of the ACM, 17:382–387, 1974.

4 M. J. Brusco and S. Stahl. Branch-and-bound applications in combinatorial data analysis.
Springer, 2005.

5 W. A. Horn. Minimizing average flow time with parallel machines. Operations Research,
21:846–847, 1973.

6 A. Kasperski. Discrete Optimization with Interval Data: Minmax Regret and Fuzzy Ap-
proach (Studies in Fuzziness and Soft Computing). Springer, Berlin, Heidelberg, New York,
2008.

7 A. Kasperski, A. Kurpisz, and P. Zielinski. Approximating a two-machine flow shop schedul-
ing under discrete scenario uncertainty. European Journal of Operational Research, 217:36–
43, 2012.

8 A. Kasperski and P. Zielinski. Minimizing maximal regret in linear assignment problems
with interval data. Technical Report 07, Raport Serii PREPRINTY, Wroclaw, 2004.

9 P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Kluwer Aca-
demic Publishers, Dortrecht, Boston, London, 1997.

10 V. Lebedev and I. Averbakh. Complexity of minimizing the total flow time with interval
data and minmax regret criterion. Discrete Applied Mathematics, 154:2167–2177, 2006.

11 M. L. Pinedo. Scheduling - Theory, Algorithms and Systems. Springer, New York, 2008.
12 L. J. Savage. The theory of statistical decision. Journal of the American Statistical Asso-

ciation, 46:55–67, 1951.
13 M. Siepak and J. Jozefczyk. Minmax regret algorithms for uncertain p||cmax problem with

interval processing times. In Proceedings of 21’st International Conference on Systems
Engineering, Las Vegas, USA, 2011.

14 A. Volgenant and C. W. Duin. Improved polynomial algorithms for robust bottleneck
problems with interval data. Computers & Operations Research, 37:900–915, 2010.

SCOR’12

	Introduction
	Problem formulation
	Deterministic case
	Uncertain case

	Solution algorithm
	Deterministic case
	Uncertain case
	Branch and bound algorithm
	Lower bound calculation
	Upper bound calculation

	Computational experiments
	Conclusions

