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—— Abstract

Testing is a vital part of the software development process. It is even more so in the context of
concurrent languages, since due to undesired task interleavings and to unexpected behaviours of
the underlying task scheduler, errors can go easily undetected. This paper studies the extension
of the CLP-based framework for glass-box test data generation of sequential programs to the
context of concurrent objects, a concurrency model which constitutes a promising solution to
concurrency in OO languages. Our framework combines standard termination and coverage
criteria used for testing sequential programs with specific criteria which control termination and
coverage from the concurrency point of view, e.g., we can limit the number of task interleavings
allowed and the number of loop unrollings performed in each parallel component, etc.
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1 Introduction

Due to increasing performance demands, application complexity and multi-core parallelism,
concurrency is omnipresent in today’s software applications. It is widely recognized that
concurrent programs are difficult to develop, debug, test and analyze. This is even more so in
the context of concurrent imperative languages that use a global memory (called heap in what
follows) to which the different tasks can access. The focus of this paper is on the development
of automated techniques for testing concurrent objects. The actor-based paradigm [1] on
which concurrent objects are based has lately regained attention as a promising solution
to concurrency in OO languages. For many application areas, standard mechanisms like
threads and locks are too low-level and have shown to be error-prone and, more importantly,
not modular enough. The concurrent objects model is based on considering objects as the
concurrency units, i.e., each object conceptually has a dedicated processor (and can run in
parallel with other objects). Communication is based on asynchronous method calls with
standard objects as targets. An essential difference with thread-based concurrency is that
task scheduling is cooperative, i.e., switching between tasks of the same object happens only
at specific scheduling points during the execution, which are explicit in the source code and
can be syntactically identified.
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Test data generation (TDG) is the process of automatically generating test inputs for
interesting coverage criteria. The standard approach to (glass-box) TDG is to perform a
symbolic execution of the program [12, 4, 9, 15, 16, 6, 17], where the contents of variables are
expressions rather than concrete values. Symbolic execution produces a system of constraints
over the input variables consisting of the conditions to execute the different paths. The
conjunction of these constraints represents the equivalence class of inputs that would take
this path. In what follows, we use the term test case to refer to such constraints. The
CLP-based approach to glass-box TDG [8] is based on the idea of translating the program
to be tested (written in some imperative language) into an equivalent CLP program. The
key idea is that test cases can be obtained by executing the CLP-translated program using
the standard symbolic execution mechanism of CLLP. When the original language includes
features which are not supported, or do not have the same behavior, as in CLP, e.g., the
use of a heap or primitives for concurrency different from those of CLP, specific built-in
operations must be implemented entirely in CLP in order to handle them, see [8, 2]. Then,
symbolic execution simply consists in executing the translated CLP program together with
the predefined built-ins. In particular we leverage typical termination and coverage criteria
for sequential programs (e.g., loop-k) to the concurrent setting and, besides, combine them
with novel criteria to ensure interesting coverage of the concurrent behaviors (e.g., we can
limit and control the number of task switches). We ensure fairness in the selection of objects
whose tasks are being tested by applying a coverage criterion that limits task switches at the
object level.

2 Symbolic Execution of Concurrent Objects

In this section, we summarize symbolic execution of concurrent objects, as presented in [2].

Essentially, the process is formalized in two steps: first the program is translated into a
CLP program which contains some built-in predicates to handle the heap and concurrency
primitives and, second, an implementation entirely in CLP of the built-ins is provided such
that symbolic execution can be then performed by just relying on the standard symbolic
execution engine of CLP.

2.1 CLP Translated Programs

The imperative language with concurrent objects we consider is basically the subset of the ABS
language [11] which is relevant to define the TDG framework. A program consists of a set of
classes C, where C is defined as class C[(T x)|{T x; M}. Each “T; x;” declares a field x; of type
T;, and each M; is a method definition which takes the form T m(Ty xq,..., Tn xa){T 2z; 5},
where T is the type of the return value; xq, ..., X, are the formal parameters and T z are local
variables. Finally, § is a sequence of instructions which adhere to the following grammar:

s = x=rhs|await g|returne | if (b){s}[else{s}]||while (b){s} |skip
rhs = e|new C[(€)]]|e! m(e) | x.get

e == null|thisf|x|n|ete|lexe|e—e

g == ble?|gAg

The central concept of the concurrency model is that of concurrent object. Conceptually, each
object has a dedicated processor and encapsulates a local heap which is not accessible from
outside this object, i.e., fields are always accessed using the this object, and any other object
can only access such fields through method calls. Concurrent objects live in a distributed
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environment with asynchronous and unordered communication by means of asynchronous
method calls, denoted o ! m(g€). Method calls may be seen as triggers of concurrent activity,
spawning new tasks (so-called processes) in the called object. After asynchronously calling
x=0 | m(€), the caller may proceed with its execution without blocking on the call. Here x is
a future variable which allows synchronizing with the completion of task m. In particular, the
instruction await x? allows checking whether m has finished. In this case, execution of the
current task proceeds and x can be used for accessing the return value of m via the instruction
x.get. Otherwise, the current task releases the processor to allow another available task to
take it.

The translation of an ABS program into an equivalent CLP program has been subject of
previous work [2]. An important feature of the translation is that the imperative program
works on a global state which contains the set of created objects. This is simulated by
representing the state using additional arguments of all predicates. Each object of the state
includes the set of fields (which is not accessible outside the object) and its queue of pending
tasks. Tasks can be of three types: call are asynchronous calls, await are tasks suspended
due to an await condition and get are tasks suspended due to a blocking get instruction.
Future variables become ready(_ ) when the corresponding task is completed. The syntax of
the state is:

State =[] ]| [(Num, Object)|State]
Fut = ready(Data)| Var
Q u= []][TasklQ)
Fields == []] [field(f, Data)|Fields)
Object ::= object(C, Fields, Q)
Task == call(Call) | await(Call, Call) | get(Fut, Var, Call)

Intuitively, for each class, the CLP translation represents all its methods (as well as the
intermediate blocks within the methods for loops, conditionals, etc.) by means of predicates
in the CLP program which adhere to the following grammar:

Clause ::= Pred(Args, Args, S, S) : —[G,]B.
Args == []| [Data*|Args]
S = Var
G = Num* Opgp Num®* | Reff\==Refy | Var = Data
Ref = null | Var
B nm= Var #= Num®* Ops Num* | Pred(Args, Args, S, S) | Var=Data |

newObj(C, Ref*, S, S) | getField(Ref*, F'Sig, Var, S) | async(Ref*, Call, S, S) |
setField(Ref*, F'Sig, Var*, S, S) | await(Call, Call, S, S) |
get(Var, Var, Call, S, S) | return(Var*, Var, S, S) | futAvail( Var, Var)

Call == Pred(Args, Args)

Pred = BlockN | MethodN

Data == Num | Ref | Bool

Opr  n= #> | #< | #>= | #=<|#= | #\=
Ops == 4| — | *|/|mod

Num is a number, Var is a Prolog variable and Bool can be either true or false. An asterisk
on any element denotes that it can be either as defined by the grammar or a variable. Each
clause receives as input a possibly empty list of parameters (1st argument) and a global
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class A {
Int n; Int ft; // fields
Int sumFacts(A ob) {
Fut<Int> f: Int res=0;
Int m = this.n;
await this.ft >= 0;
while (m > 0) {
f =ob ! fact(this.ft, this);
await f 7;
Int a = f.get;
res = res + a;
this.ft = this.ft + 1;
m=m-1;
}
return res;
}
Int fact(Int k, A ob){
Fut <Int> f; Int res = 1;
if (k <=0) res =1,
else {
f =ob ! fact(k - 1,this);
await f ?7; res = f.get;
res = k * res;
}
return res;
}
void setN(Int a) { this.n=a; }
void setFt(Int b) { this.ft=b; }
Unit set(Int a, Int b){
this.setN(a); this.setFt(b);

}

'A.sumFacts' ([ This, Ob], [R], Sy, Se) :-
getField( This, fSig(" A’,n), M, S;),
await(awguardy ([ This, Ob], ),

conty ([ This, Ob, M|, [R], Sy, S2).
awguardy ([ This, Ob],[R], S, S) :-
getField( This, fSig(' A’ ft), Ft, S),
geq([Ft, 0], [R]).

conto([This, Ob, M|, [R], S1,S2) -
while([ This, Ob, M, 0],[R], S1, S2).

while([Args], [R], S, S2) :-

M #=< 0,
return([Res], [R], S1, S2).
while([Args), [R], 1, Sz) :-
M #> 0,
getField( This, fSig('A', ft), F't, S1),
async(0b,” A.fact'([Ob, Ft, This], [F]), S1,S3),
await(awguard; ([F], _),
conty ([ng, F], [R]), 53, Sg)

awguardy ([F],[V]) :- futAvail(F, V).

conty ([ng, F], [R], S] s Sg) -
get(F,A,conts ([Args, A, [R]),S1,52).

contg([wgs, A], [R], Sl y 52) -
Res; #= Res+ A,
getField( This, fSig(' A, ft), Ft, Sy),
Fit, #= Ft+ 1,
setField( This, fSig("A’, ft), Ft;,S1,S3),
M; #= M — 1, while([Args,],[R], Ss, S2).

geq([Ft, Z], [R]) :-
Ft #< Z, R = false.
geq([Ft, Z], [R]) :-

Ft #>= Z R = true.

Figure 1 ABS running example (left). CLP translation of sumFacts (right).

state (3rd argument), and returns an output (2nd argument) and a final global state (4th
argument). The body of a clause may include a sequence of guards followed by a sequence of
instructions, including: arithmetic operations, calls to other predicates, builtins to handle the

concurrency (namely await, get, futAvail and return) and builtins to operate on the heap [8].

The latter includes the builtin newObj(C, R, S;, S2) which creates a new object of class C' in
state S1 and returns its assigned reference R and the updated state Sy; getField(R, FSig, V, S)
which retrieves in variable V' the value of field FSig of the object referenced by R in the state
S and setField(R, FSig, V, 51, S2) which sets the field FSig of the object referenced by R in
S1 to V and returns Ss.

» Example 1. Fig. 1 (left) shows the implementation of a class A, which contains two
integer fields and five methods. Method sumFacts computes Zgi};n*]
invoking fact on object ob. The await instruction before entering the loop allows releasing

the processor if ft is negative. Once it takes a non-negative value, the task can resume its

) k! by asynchronously
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@async(Ref,Call,S1,S2) :- addTask(S1,Ref,call(Call),S2).
(®await(Cond,Cont,S1,S3) :-

Cond =..[_,[This|_],[Ret]], buildCall(Cond,S1,S2,CondCall), CondCall,

(Ret = false -> ’addTask(51,This,await(Cond,Cont),Sg),‘

switchContext(S2,S3)
; buildCall(Cont,S1,S3,ContCall), ContCall).

©get (FV,V,Cont,S1,S3) :- Cont =..[_,[This|_]._],

(var(FV) -> ’addTask(51,This,get(FV,V,Cont),Sg)‘,

switchContext(S2,S3)
; FV = ready(V), buildCall(Cont,S1,S3,ContCall), ContCall).

@return([Ret],[ready(Ret)],S1,S2) :- switchContext(S1,S2).
©futAvail(FV false) :- var(FV), !. futAvail(ready(_),true).
(DaddTask(S1,Ref, T,S2) :- getCell(S1,Ref,object(C,Fs,Q1)),

insert(Q1,T,Q2), setCell(S1,Ref,object(C,Fs,Qz2),S2).
®@switchContext(S1,S3) - S1 = [(Ref,_)|_]. firstTolLast(S1,S2), switchContext_(S2,S3,Ref).
®switchContext_(S,S,Ref1) - S = [(Refz,object(_,_.[ ]))|_].Refi == Refs.
DswitchContext_(S1,S3,Ref1) - \+ (S1 = [(Refz,0bject(_,_,[ ])|_], Refi == Refs),

’extractFirst(Sl ,Task,S2,Answer) ‘

runTaskOrSwitch(Answer, Task,Ref1,S3,S2).
(DrunTaskOrSwitch(true, Task,_Ref,S1,S3) :- ’runTask(Task,Sl,Sg) ‘
®runTaskOrSwitch(false,_Task,Ref,S1,S3) :- firstToLast(S1,S2), switchContext_(S2,S3,Ref).
(DrunTask(call(ShortCall),S1,S2) :- buildCall(ShortCall,S1,S2,Call), Call.
@runTask(await(Cond,Cont),S1,S2) :- await(Cond,Cont,S1,S2).
@runTask(get(FV,V,Cont),S1,S2) :- get (FV,V,Cont,S1,S2).
©buildCall(ShortCall,S1,S2,Call) :- ShortCall =..[RN,In,Out], Call =..[RN,In,Out,S1,S2].

Figure 2 Implementation of Concurrency Builtins.

execution and enter the loop. Observe that an asynchronous call from sumFacts as follows
f = ob ! fact(3, this); will add the task fact(3, this) to the queue of ob. When this task starts
to execute it will add the task fact(2,0b) on the object this, which in turn will add the call
fact(1,this) on ob and so on, in such a way that the factorial is computed in a distributed
way between the two objects. Note that the calls are synchronized on future variables. This
means that until the recursive call fact(1, this) is not completed the other tasks are suspended
on their await conditions. Fig. 1 (right) shows the CLP translation of method sumFacts. We
use Args and Args; to abbreviate, resp., This, Ob, M, Res and This, Ob, M;, Res;. Methods
and intermediate blocks (like conty) are uniformly represented by means of predicates and
are not distinguishable in the translated program. The list of input arguments of all rules
includes: the this reference, the list of input parameters of the corresponding ABS method,
and for intermediate blocks, their local variables. The list of output argument is always a
unitary list with the return value. Loops in the source program are transformed into guarded
rules (e.g., rule while). An important point to note is that, for all await and get statements,
we introduce a continuation predicate (like cont;, 0<i<2) which allows us to suspend the
current task (if needed) and then resume its execution at this precise point.
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2.2 Implementation of Concurrency Builtins

Fig. 2 shows the CLP implementation of the builtins to handle concurrency of [2]. Boxes

are used to indicate code that needs to be changed in order to define the TDG framework.

Asynchronous calls are handled by predicate @ which adds the asynchronous call Call to
the queue of tasks of the receiver object Ref producing the updated state S3. The call
to addTask/4 searches the state for the object pointed to by reference Ref by means of
getCell/3 [8], adds the task to its queue (using insert/3) and updates the state with the
updated object (using setCell/3 [8]).

The fact that objects do not share memory ensures that their execution states are not
affected by how distribution (or parallelism) is realized. Namely, distribution is implemented
as follows: each object executes its scheduled task as far as possible and, when a task
finishes or gets blocked, simulation proceeds circularly with the next object in the state. In
contrast, concurrency occurs at the level of objects in the sense that tasks in the object
queue are executed concurrently. The concurrency model of our language only specifies that
the execution of the current task must proceed until a call to ®, ©, or @ is found. The
scheduling policy which decides which task executes next (among those ready for execution)
is left unspecified.

Rule @ is used when the execution of the current task can no longer proceed (hence it
releases the processor). The implementation gives the turn of execution to the first task
(according to the scheduling policy) of the following object (the next one in the state). This is
implemented by always keeping the current object in the head of the state, and moving it to
the last position when its current task finishes or gets blocked. If the current object has some
pending task in its queue (J), predicate extractFirst/4 bounds Answer to true. Otherwise, it is
bound to false and the following object is tried ®. The execution of the whole application
finishes when there is no pending task in any object @.

Await ® first checks its condition Cond by means of the meta-call CondCall. If the
condition holds (Ret gets instantiated to true), a meta-call to the continuation Cont is made
(meta-call ContCall). Otherwise (Ret is false), an await task is added to the queue of the
current object and we switch context. Predicate © builds a full call from a call without
states and two states. The evaluation of await conditions can involve return tests on future
variables. This is represented in our CLP programs by a call to €. We use the special term
ready(V) to know whether the execution has finished. Rule © checks whether the future

variable is a CLP variable or is instantiated to ready(_ ) and returns, resp., false or true.

When a method finishes its execution, we reach a return statement @ which instantiates the
future variable V associated to the current task to ready(V). This allows that, if the task
that requested the execution of this one was blocked awaiting on this future variable, it can
proceed its execution when it is re-scheduled. Namely, © first checks if the task can resume
execution because its future variable has become instantiated. In such case, the continuation
of this get is executed (meta-call ContCall). Otherwise, the current task is added to the queue
and context is switched.

3 From Symbolic Execution to TDG

Having a CLP symbolic execution engine for concurrent objects is an important piece when

defining the CLP-based TDG framework, but there are still many other missing pieces.
Firstly, we need to define a TDG engine which incorporates relevant coverage criteria (CC).

An important problem in symbolic execution is that, since the input data is unknown, the
execution tree to be traversed is in general infinite. Hence it is required to integrate a
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termination criterion which guarantees that the length of the paths traversed remains finite
while at the same time an interesting set of test cases is generated, i.e., certain code coverage
is achieved. The challenge when developing the TDG framework is integrating CC on the
CLP-translated programs which achieve the desired degree of coverage on the original ABS.

3.1 Task-Level Coverage and Termination Criteria

Given a task executing on an object, we aim at ensuring its local termination by leveraging
existing CC developed in the sequential setting to the context of concurrent objects. We
focus on the loop-count criteria [10] which limits the number of times we iterate on loops
to a threshold K| (other existing criteria would pose similar problems and solutions). If we
focus on a single task, this task-level CC can be integrated, as in the sequential CLP-based
approach [8], by keeping track of the ancestor sequences for every call unfolded in the task.
The main idea is that loop iterations are detected because recursive calls are performed.
However, in order to distinguish a recursive call from an independent call to the same
(recursive) predicate, we need to track the ancestors of each call. This can be implemented
by using a global ancestor stack for the task such that each time an atom A is unfolded using
arule H:—By, ..., B,, the predicate name of A (F//N where N is the arity) is pushed on the
ancestor stack. Additionally, a '$pop$’ mark is added to the new goal By, ..., By, $pop$’ to
delimit the scope of the predecessors of F'//N such that, once those atoms are evaluated, we
find the mark '$pop$’ and can remove F/N from the ancestor stack. This way, the ancestor
stack, at each stage of the computation, contains the ancestors of the next atom to be selected
for resolution.

Due to the coexistence of multiple tasks in the concurrent setting, the problem is more
complicated and we need to construct the list of ancestor predicates for each available task
and besides, as tasks can suspend their execution, be able to recover this information when
they resume. Thus, the new syntax for tasks is:

Task ::= call(Call) | await(Call, Call, AncSt) | get(Fut, Var, Call, AncSt)

where AncSt is a list of elements of the form F/N. Additionally, we introduce atoms of the
form taskSuspendMark to indicate to the TDG engine that a task is going to suspend and
hence its ancestor stack needs to be stored. This is achieved by replacing the framed code in
® and © in Fig. 2, resp., by:

(await) taskSuspendMark(AncSt), add Task(Sy, This,await(Cond,Cont,AncSt),Ss3),
(get)  taskSuspendMark(AncSt), addTask(S1, This,get(FV,V,Cont,AncSt),S2),

3.2 Task-Switching Coverage and Termination Criteria

Applying the task-level CC to all tasks does not guarantee termination. This is because we
can switch from one task to another an infinite number of times. For example, consider the
symbolic execution of ob; ! fact(n,oby). We circularly switch from object ob; to object ob,
an infinite number of times because each asynchronous call in one object adds another call on
the other object (see Ex. 1). This is not detected by the task-level CC because each method
invocation is a new task that has no ancestors. The same problem can happen even with a
single object, e.g., in method sumFacts when executing await (ft >= 0), there is an infinite
branch in the evaluation tree, corresponding to the case ft < 0 which is re-tried forever.



E. Albert, P. Arenas, and M. Gémez-Zamalloa

The number of task switches can be limited by simply allowing K executions of predicate
©® (Fig. 2). However, it might happen that, due to excessive task switching in certain objects,
others are not properly tested (i.e., their tasks exercised) because the global number of
allowed task switches has been exceeded. For example, suppose that we add the instructions
B oby = new B(); oby ! q(); before the return in method sumFacts, where B is a class that
implements method q but whose code is not relevant. Then, as the evaluation tree for the
while loop generates an infinite number of task switches, the evaluation of the call oby ! m();
is not reached. In order to have fairness in the process and guarantee proper coverage from
the concurrency point of view, we propose to limit the number of task switches per object
(i.e., per concurrency unit). For this purpose, objects are now of the form:

Object ::= object(C, Fields, Q, NT)

where NT is the number of tasks which have been extracted from its queue. Besides, similarly
to the treatment of the task-level CC, we introduce special markers by replacing the framed
code of rule () by:

taskStartMark(Sy, Task), incNumTasks(S1,S2), runTask(Task,S2,S3),

which allows the TDG engine to realize that there has been a task switching and hence the
limit needs to be checked. Predicate incNumTasks adds 1 to the number of task switches NT'
of the first object in Sy, i.e., the object selected by extractFirst.

3.3 A CLP-based TDG Engine for Concurrent Objects

Fig. 3 presents a TDG engine, named unfold, which receives as input parameters the method
call to be tested Root (last parameter), a list of atoms to be evaluated (initially Root),
two constants K, and Kg to limit, resp., the number of loop iterations and the number of

task switches per object and the ancestor stack AncSt of the current task (initially empty).

Rule @ corresponds to the end of a successful derivation, it stores (using storeTestCase/1)
the computed test case, namely the initial call Root instantiated with the bindings for the
input/output parameters and the states, and the constraint store. The task-level CC is
handled in rules @, @ and ). Essentially, rule (7) checks if the number of iterations has not
been exceeded (checklter traverses the list of ancestors AncSt) and, if not, it adds the '$pop$’
mark as explained in Sec. 3.1. Later, when this mark is reached in rule @), the top of the
stack is popped. In rule @, when a task is suspending, the argument of taskSuspendMark
gets unified with the current stack (fourth argument of unfold) to be later recovered, and
execution proceeds. The treatment of the task switching criteria is captured by rule @) which
detects the mark introduced in Sec. 3.2 and invokes checkNtasks to check if the number of
task switches in the current object exceeds Ks. If the task to be started now is an await or get,
predicate recoverAncStack(Task, AncSt,) recovers its ancestor stack; if it is a call, initializes
AncSt, to empty. As we have seen in Sec. 3.2, after finding such mark, there is a call to
incNumTasks.

The two remaining rules treat the builtins and the constraints. In particular, rule ©
handles the ABS builtin predicates in Fig. 2 which make callbacks to the program. They are
treated differently from rule (7) because the loop-count criteria does not have to be applied
on them. Rule ® covers external predicates, i.e., constraints and the auxiliary predicates in
Fig. 2. The difference w.r.t. rule ® is that here we execute them (making call(A)) since the
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@ unfold([ ], _K), _Ks,__AncSt, Root) :- storeTestCase(Root).
@ unfold(['$pop$’|R], K|, Ks, [__|AncSt], Root) :- !, unfold(R, K|, K, AncSt, Root).
@ unfold([taskStartMark(S, Task)|R], K|, Ks, AncSt, Root) :- |,
checkNtasks(S, Ks),
recoverAncStack(Task, AncStp),
unfold(R, Kj, K, AncSt,, Root).
@ unfold([taskSuspendMark(AncSt)|R], K|, Ks, AncSt, Rt) - 1,
unfold(R, K|, Ks, AncSt, Rt).
® unfold([A|R], K|, Ks, AncSt, Rt) :- isExternal(A), !
call(A), unfold(R, K|, Ks, AncSt, Rt).
® unfold([A|R], K|, Ks, AncSt, Root) :- functor(A, F, Ar), isAbsBuiltin(F/Ar), !,
clause(A, B), append(B, R, NG),
unfold(NG, K, Ks, AncSt, Root).
@ unfold([A|R], K|, Ks, AncSt, Root) :- functor(A, F, Ar), checklter(AncSt, F, Ar, K)),
clause(A, B), append(B, [$pop$’|R], NG),
unfold(NG, K|, Ks, [F/Ar|AncSt], Root).
checklter([ ], __,_,K) - K > 0.
checklter([F/Ar|As], F, Ar,K) :- I, K > 1,K; is K—1,checklter(As, F, Ar, Ky).
checklter([__|As], F, Ar, K) : —checklter(As, F, Ar, K).
checkNtasks([(__,object(_, , ,NTs))|_],K) :- NTs < K.

incNumTasks(H, Hp) :- H = [(Ref, object(CN, Fs, Q, K))|RH],

Kpis K+ 1,

H, = [(Ref, object(CN, Fs, Q, K,))|RH].
recoverAncStack(await(__,__, AncSt), AncSt).
recoverAncStack(get(_, _,_, AncSt), AncSt).

recoverAncStack(call(_), [ ]).

Figure 3 Implementation of TDG engine.

predicate is not part of the CLP program. The execution of unfold([Root], K;, K, | ], Root),
where Root="C.m/(In, Out,S;, S2), computes an incomplete derivation tree for method
m of class C, the different branches of the tree are obtained by backtracking. Successful
branches are obtained in @ and incomplete branches by @) and (@) when the termination
tests stop the derivation. (Go#) denotes a state with goal G and computed constraint store
0. Then, given the set of branches (derivations) for the derivation tree 7 associated to
(unfold([Root], K}, K5, [ ], Root)o{}), where Root="C.m/(In, Out, S;, S2), the test cases for m
are the set of constraint stores 6 associated to each output state (eof) of a successful branch
in T (computed in D), where € is an empty goal.

» Example 2. Let us obtain the test cases for method sumFacts with K=1, K;=2. The exe-
cution of unfold([Root], 1, 2,[ |, Root) with Root="A.sumFacts'(In, Out, Sy, Sz), first applies
rule @ which bounds In to the list [This, Ob] and Out to [R]. Predicate checklter succeeds
(the ancestor stack is empty). The first instruction in 'A.sumFacts’ (see Fig. 1 right) is a
getField which bounds Sy to [(Id;, object(A, [field(n, _)|_],[],0))|_]. Afterward, we find a
call to await which is handled by rule ©), which in turns executes the rule ® of await in
Fig. 2. Here, the condition awguardy in the await adds to the list of fields of S; the literal
field(ft, ). The execution of the guard returns false and addTask inserts the task in the
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queue of object Id; with the annotation taskSuspendMark. Next, switchContext will take the
task and annotate it with taskStartMark. Now, rule @) is applied and checkNtasks fails since
the number of task switches (incremented by switchContex) for Id; is greater than 2. By
backtracking, we generate the branch in which Ft > 0 which leads to executing conty and,
after unfolding the first clause of predicate while, the first test case is computed. In this
test case, S1/(Idy,object(’A’,[field(n, N1), field(ft,Ft1)|_],[],0))|_], R/0, the constraint
store contains N;<0, Ft1>0, and S7; = S2. Again, by backtracking the second clause for
while is tried. At this point, the ancestor stack is [conty /4, sumFacts/4]. The async call intro-
duces a new object (Idg, object(A, _F,[call(’ A.fact’)], 0)) in the queue of Id;. The execution
of the await spawns the task 'A.fact’ which returns 1. Thus, the second test case is com-
puted Sy/[(Idy,object('A’,[field(n,1), field(ft, 0)|_], [],0)), (Ide, object(" A", _,[],0))|_],
Sa/[(Idy,object(’A',[field(n,1), field(ft, D)|_],[ ],1)), (Ida,object('A’,__,[],1))|_] and
R/1. Note that the number of task switches for both objects Id; and Ide changes from
0 in the initial state S; to 1 in the final state S;. No more solutions are computed since
the execution of fact is stopped after two task switches coming from the await in its body
and checklter fails when evaluating again predicate while as the stack of ancestors contains
already [...,while,...]. Therefore, the two criteria are needed to ensure termination: K to
limit the number of task switches between the two objects and K| to limit the number of
loop iterations in the while loop.

4 Conclusions, Related and Future Work

We have presented a novel approach to automate test case generation for concurrent objects,
entirely implemented in CLP, which ensures completeness of the test cases w.r.t. several
interesting criteria. The coverage criteria prune the tree in several dimensions: (1) limiting
the number of iterations of loops at the level of tasks, (2) limiting the length of the queue of
tasks of the objects such that the number of task interleavings that are tried remains finite,
(3) limiting the number of task switches allowed in each concurrency unit. The technique is
complete on the orderings in which tasks can be selected for execution, even allowing that
different policies are applied on different objects. We argue that our CLP-based framework
is at the same time practical and highly flexible and constitutes thus a promising approach
to TDG of concurrent languages.

In future work, we plan to study the application of our framework to a thread-based
concurrency model like Java [13, 5, 18]. The main conceptual difference with the actor-based
model is that task scheduling is preemptive. Therefore, at any point, the current task can
be suspended and interleaved with another one. Specific coverage criteria should be defined
to control such interleavings in a way that the size of the symbolic execution tree remains
reasonable and at the same time interesting test cases can be obtained. It seems that the
combination with dynamic analysis is useful for this purpose [3]. We also want to investigate
the application of further coverage criteria [14, 18, 7] to detect bugs related, for instance, to
happen-before relations.

—— References

1 G.A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, 1986.

2 E. Albert, P. Arenas, and M. Gémez-Zamalloa. Symbolic Execution of Concurrent Objects
in CLP. In Practical Aspects of Declarative Languages (PADL’12), volume 7149 of LNCS,
pages 123-137. Springer, January 2012.

107

ICLP’12



108

Towards Testing Concurrent Objects in CLP

10

11

12

13

14

15

16

17

18

Jun Chen and Steve MacDonald. Towards a better Collaboration of Static and Dynamic
Analyses for Testing Concurrent Programs. In Workshop on Parallel and Distributed Sys-
tems: Testing, Analysis, and Debugging (PADTAD’08), page 8. ACM, 2008.

L. A. Clarke. A System to Generate Test Data and Symbolically Execute Programs. I[EFE
Transactions on Software Engineering, 2(3):215-222, 1976.

O. Edelstein, E. Farchi, E. Goldin, Y. Nir, Ratsaby G, and S. Ur. Framework for Testing
Multi-Threaded Java Programs. Concurrency and Computation: Practice and Experience,
15(3-5):485-499, 2003.

Christian Engel and Reiner Héhnle. Generating Unit Tests from Formal Proofs. In Tests
and Proofs, First International Conference (TAP’07), volume 4454 of LNCS, pages 169-188.
Springer, 2007.

M. Factor, E. Farchi, and Y. Malka Y. Lichtenstein. Testing Concurrent Programs: A
Formal Evaluation of Coverage Criteria. In Seventh Israeli Conference on Computer-Based
Systems and Software Engineering (ICCSSE ’96), pages 119-126, 1996.

M. Gémez-Zamalloa, E. Albert, and G. Puebla. Test Case Generation for Object-Oriented
Imperative Languages in CLP. Theory and Practice of Logic Programming, ICLP’10 Special
Issue, 10 (4-6), 2010.

A. Gotlieb, B. Botella, and M. Rueher. A CLP Framework for Computing Structural Test
Data. In Computational Logic, pages 399-413, 2000.

W.E. Howden. Symbolic Testing and the DISSECT Symbolic Evaluation System. [EFE
Transactions on Software Engineering, 3(4):266-278, 1977.

E. B. Johnsen, R. Hahnle, J. Schéfer, R. Schlatte, and M. Steffen. ABS: A Core Language
for Abstract Behavioral Specification. In Formal Methods for Components and Objects
(FMCO 2010, Revised Papers), volume 6957 of LNCS, pages 142-164. Springer, 2012.

J. C. King. Symbolic Execution and Program Testing. Communications of the ACM,
19(7):385-394, 1976.

B. Long, D. Hoffman, and P. A. Strooper. Tool Support for Testing Concurrent Java
Components. IEEE Trans. Software Eng., 29(6):555-566, 2003.

Shan Lu, Weihang Jiang, and Yuanyuan Zhou. A Study of Interleaving Coverage Criteria.
In ESEC/SIGSOFT FSE, pages 533-536. ACM, 2007.

C. Meudec. ATGen: Automatic Test Data Generation using Constraint Logic Programming
and Symbolic Execution. Softw. Test., Verif. Reliab., 11(2):81-96, 2001.

R. A. Miiller, C. Lembeck, and H. Kuchen. A Symbolic Java Virtual Machine for Test Case
Generation. In JASTED Conf. on Software Engineering. IASTED/ACTA Press, 2004.

T. Schrijvers, F. Degrave, and W. Vanhoof. Towards a Framework for Constraint-Based
Test Case Generation. In International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’09), volume 6037 of LNCS, pages 128-142. Springer, 2010.
Juichi Takahashi, Hideharu Kojima, and Zengo Furukawa. Coverage Based Testing for
Concurrent Software. In IEEFE International Conference on Distributed Computing Systems
Workshops (ICDCS 2008), pages 533-538. IEEE Computer Society, 2008.



	Introduction
	Symbolic Execution of Concurrent Objects
	CLP Translated Programs
	Implementation of Concurrency Builtins

	From Symbolic Execution to TDG
	Task-Level Coverage and Termination Criteria
	Task-Switching Coverage and Termination Criteria
	A CLP-based TDG Engine for Concurrent Objects

	Conclusions, Related and Future Work

