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Abstract
Although Answer Set Programming (ASP) systems are highly optimised, their performance is
sensitive to the size of the input and the inference it encodes. We address this deficiency by
introducing a new extension to ASP solving. The idea is to integrate external propagators
to represent parts of the encoding implicitly, rather than generating it a-priori. To match the
state-of-the-art in conflict-driven solving, however, external propagators can make their inference
explicit on demand. We demonstrate applicability in a novel Constraint Answer Set Programming
system that can seamlessly integrate constraint propagation without sacrificing the advantages
of conflict-driven techniques. Experiments provide evidence for computational impact.
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1 Introduction

Developing a powerful paradigm for declarative problem solving is one of the key challenges
in the area of knowledge representation and reasoning. A promising candidate is Answer
Set Programming (ASP; [24, 16, 33, 43, 37, 2]) which builds on Logic Programming and
Nonmonotonic Reasoning. Its success depends on two factors: efficiency of the solving
capacities, and modelling convenience. Efficient ASP solvers [26, 22, 36, 32] match the
state-of-the-art in conflict-driven solving [41], including conflict-driven learning, lookback-
based heuristics, and backjumping. However, their performance is sensitive to the size of
problem encodings which can quickly become infeasible, for instance, through the worst-case
exponential number of loops in a logic program [34], or constructs that are naturally non-
propositional, like constraints over finite domains. A variety of extensions to ASP have been
proposed that deal with some of these issues via integration of other declarative problem
solving paradigms. Recently, for example, we have witnessed the development of Constraint
Answer Set Programming (CASP) that integrates Constraint Programming (CP) with ASP,
supporting constraints over finite domains, and most importantly, global constraints. While
this approach certainly increases modelling convenience and can drastically decrease the size
of an encoding, it does not fully carry over to conflict-driven solving technology [12].

We address this problem and present a new computational extension to ASP solving,
called Lazy Nogood Generation. Motivated by the success of Lazy Clause Generation [46]
in Constraint Satisfaction Problem (CSP) solving, the key idea is to generate (parts of)
the problem encoding on demand, only when new information can be propagated. We
make several contributions to the study of Lazy Nogood Generation in ASP. First, we
lay the foundations of external propagation based on a uniform characterisation of answer
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sets in terms of nogoods. This provides the underpinnings to represent conditions on the
answer sets of a logic program without encoding the entire problem a-priori. However,
external propagators can make parts of the encoding explicit, in particular, when they can
trigger inference. As we shall see, our techniques generalise existing ones, e.g., loop formula
propagation [22], and weight constraint rule propagation [21]. Second, we specify a decision
procedure for ASP solving with Lazy Nogood Generation. It is centred around conflict-driven
solving and integrates external propagation. Third, we demonstrate applicability. We show
how to seamlessly integrate constraint propagation with our framework, resulting in a novel
approach to CASP solving. Finally, we empirically evaluate a prototypical implementation
and compare to the state-of-the-art in ASP and CASP solving.

2 Background

Many tasks from the declarative problem solving domain can be defined as CSP, that is a tuple
(V,D,C) where V is a finite set of constraint variables, each v ∈ V has an associated finite
domain dom(v) ∈ D, and C is a set of constraints. A constraint c is a k-ary relation, denoted
R(c), on the domains of the variables in S(c) ∈ V k. A (constraint variable) assignment is
a function A that assigns to each variable v ∈ V a value from dom(v). For a constraint c
with S(c) = (v1, . . . , vk) define A(S(c)) = (A(v1), . . . , A(vk)). The constraint c satisfied if
A(S(c)) ∈ R(c). Otherwise, we say that c is violated. Let CA = {c∈C | A(S(c))∈R(c)}. An
assignment A is a solution iff C = CA. CP systems are oriented towards solving CSP and
typically interleave backtracking search to explore assignments with constraint propagation
to prune the set of values a variable can take. The effect of constraint propagation is studied
in terms of local consistency. E.g., a binary constraint c is called arc consistent iff a variable
in S(c) is assigned any value, there exists a value in the domain for the other variable
in S(c) \ {v} such that c is not violated. An n-ary constraint c is called domain consistent
iff v ∈ S(c) is assigned any value, there exist values in the domains of all other variables
in S(c) \ {v} such that c is not violated. Observe that, in general, a constraint propagator
that enforces domain consistency prunes more values than one that enforces arc consistency
on a binary decomposition of the original constraint. CSPs can be encoded with ASP [43],
which is founded on Logic Programming.

A (normal) logic program P over an alphabet A is a finite set of rules r of the form
a0 ← a1, . . . , am,∼am+1, . . . ,∼an where ai ∈ A are atoms for 0 ≤ i ≤ n. A default literal is
an atom a or its default negation∼a. The atom H(r) = a0 is called the head of r and the set
of default literals B(r) = {a1, . . . , am,∼am+1, . . . ,∼an} is called the body of r. For a set of
default literals S, define S+ = {a | a∈S} and S− = {a |∼a∈S}. For restricting S to atoms E ,
define S|E = {a | a∈S+ ∩ E} ∪ {∼a | a∈S− ∩ E}. For X ⊆ A define external support for X
as ESP (X) = {B(r) | r∈P, H(r)∈X, B(r)+ ∩X = ∅}. The set of atoms occurring in P is
denoted by At(P ), and the set of bodies in P is B(P ) = {B(r) | r∈P}. For regrouping rules
sharing the heads in X ⊆ A, define PX = {r∈P | H(r)∈X}, and for bodies sharing the
same head a, define B(a) = {B(r) | r∈P, H(r) = a}. A logic program with externals over E
is a logic program P over an alphabet distinguishing regular atoms A and external atoms E ,
such that H(r) ∈ A for each r ∈ P . Let Y ⊆ E . For a logic program P over externals from E
define the pre-reduct P (Y ) = {H(r)← B(r)|A\E | r∈P, B(r)+|E ⊆ Y, B(r)−|E ∩Y = ∅}. A
splitting set for a logic program P [35] is a set E ⊆ A if H(r) ∈ E then B(r)+ ∪B(r)− ⊆ E
for each r ∈ P . Observe that, if E is a splitting set of P , it splits P into a logic program PE
over E and a logic program PA\E with externals over E . The semantics of a logic program P

is given by its answer sets. A set X ⊆ A is an answer set of P , if X is a minimal model
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190 Answer Set Solving with Lazy Nogood Generation

of the reduct PX = {H(r)← B(r)+ | r∈P, B(r)− ∩X = ∅} [24]. Let E be a splitting set
of P . The set Z ⊆ A is an answer set of P iff Z = X ∪ Y such that X is an answer set of PE
and Y is an answer set of PA\E(Y ) (Splitting Set Theorem, [35]). Although our semantics
is propositional, modern ASP systems support non-ground logic programs and construct
atoms in A from a first-order signature via a grounding process, systematically substituting
all occurrences of first-order variables by terms, resulting in a (ground) instantiation.

Following [22], the answer sets of a logic program P can be characterised as Boolean
assignments over At(P ) ∪ B(P ) that do not conflict with the conditions induced by the
completion [9] and all loop formulas of P [30], expressed in terms of nogoods [11]. Formally,
a (Boolean) assignment A is a sequence (σ1, . . . , σn) of (signed) literals σi of the form Ta or
Fa where a is in the scope of A, e.g., S(A) = At(P ) ∪B(P ). The complement of a literal σ
is denoted σ. True and false variables in A are accessed via AT and AF, respectively. A
nogood represents a set δ = {σ1, . . . , σn} of signed literals, expressing a condition conflicting
with any assignment A if δ ⊆ A. If δ \A = {σ} and σ 6∈ A, we say that δ is unit and asserts
the unit-resulting literal σ. A total assignment, that is AT ∪AF = S(A) and AT ∩AF = ∅,
is a solution for a set of nogoods Γ if δ 6⊆ A for each δ ∈ Γ.

3 Nogoods of Logic Programs with Externals

We generalise [22] and describe nogoods capturing completion and loop formulas for a logic
program P with externals over E . For β = {a1, . . . , am,∼am+1, . . . ,∼an} ∈ B(P ), define

∆β =
{
{Ta1, . . . ,Tam,Fam+1, . . .Fan,Fβ},
{Fa1,Tβ}, . . . , {Fam,Tβ}, {Tam+1,Tβ}, . . . , {Tan,Tβ}

}
.

Intuitively, the nogoods in ∆β enforce the truth of body β iff all its elements are satisfied.
For an atom a ∈ At(P ) with B(a) = {β1, . . . , βk}, define

∆a =
{
{Tβ1,Fa}, . . . , {Tβk,Fa}, {Fβ1, . . . ,Fβk,Ta}

}
.

Let ∆EP =
⋃
β∈B(P ) ∆β∪

⋃
a∈At(P )\E ∆a. The solutions for ∆∅P correspond to the models of the

completion of P [22]. To capture the effect of loop formulas induced by a set L ⊆ At(P ) \ E ,
for a ∈ L define λ(a, L) = {{Ta} ∪ {Fβ | β ∈ ESP (L)}}. The set of loop nogoods
is ΛEP =

⋃
L⊆At(P )\E,L 6=∅{λ(a, L) | a∈L}. Let P be a logic program and X ⊆ A. Then, X is

an answer set of P iff there is a (unique) solution for ∆∅P ∪Λ∅P such that AT∩At(P ) = X [22].
We combine this result with the Splitting Set Theorem [35].

I Proposition 1. Let P be a logic program, E a splitting set for P , and X ⊆ A. Then, X is
an answer set of P iff there is a (unique) solution A for ∆∅PE

∪ Λ∅PE
∪∆EPA\E

∪ ΛEPA\E
such

that AT ∩ (At(PE) ∪At(PA\E)) = X.

An efficient algorithm for computing solutions to ∆∅P ∪ Λ∅P is Conflict-Driven Nogood
Learning (CDNL, [22]). It combines search and propagation by recursively assigning the
value of a proposition and performing unit-propagation to determine its consequences [41].

4 Lazy Nogood Generation

Instead of generating all nogoods ∆∅P ∪ Λ∅P a-priori, referred to as eager encoding, we
introduce external propagators to generate nogoods on demand, i.e., only when they are
able to propagate new information. We call this technique Lazy Nogood Generation, gen-
eralising an approach to encoding constraints over finite domains into sets of clauses by
executing constraint propagation during SAT search and recording the propagation in terms
of clauses (Lazy Clause Generation; [46]). Formally, an external propagator for a set of
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nogoods Γ is a function π that maps a Boolean assignment to a subset of Γ such that for
each total assignment A if δ ⊆ A for some δ ∈ Γ then δ′ ⊆ A for some δ′ ∈ π(A). In other
words, an external propagator generates a conflicting nogood from Γ iff some nogood in Γ
is conflicting with the total assignment. We call an external propagator conflict-optimal, if
this condition holds for each (partial) assignment. Notice that, even for a conflict-optimal
external propagator, unit-propagation on Γ can infer more unit-resulting literals than unit-
propagation on lazily generated nogoods. To close this gap, we define inference-optimal
external propagators. An external propagator π for a set of nogoods Γ is inference-optimal
if π is conflict-optimal and for each non-conflicting assignment A if δ \A = {σ} such that
σ 6∈ A for some δ ∈ Γ then δ′ \A = {σ} for some δ′ ∈ π(A). The correspondence between
external propagation and the set of nogoods it represents can be formalised as follows.

I Proposition 2. Let ∆ be a set of nogoods, and π be an external propagator for Γ ⊆ ∆.
Then, the assignment A is a solution of ∆ iff A is a solution of (∆ \ Γ) ∪ π(A).

One of the advantages of Lazy Nogood Generation over eager encodings is space efficiency.
For instance, the worst-case exponential number of loops in a logic program P makes an eager
encoding of the conditions induced by Λ∅P infeasible [34]. Non-optimal external propagation,
however, can check whether an unfounded set [50] has to be falsified in linear time [7], and
determines nogoods in Λ∅P on demand via directed unfounded set inference [22]. To reflect
Lazy Nogood Generation also on the language level of ASP, we make use of splitting [35] for
outsourcing conditions over E ⊆ A into PE . Instead of making PE explicit, however, a set
of external propagators Π can be provided that precisely represent the conditions induced
by PE . We will write At(Π) to access E . The previous propositions yield the following result.

I Theorem 3. Let P be a logic program, E a splitting set for P , Π a set of external propagators
for ∆∅PE

∪Λ∅PE
, and X ⊆ A. Then, X is an answer set of P iff there is a (unique) solution A

for ∆EPA\E
∪ ΛEPA\E

∪
⋃
π∈Π π(A) s.t. AT ∩ (At(PE) ∪At(Π)) = X.

External propagation provides a form of modularity that allows programmers to select
encodings which propagate better, but were previously avoided for space-related reasons.
E.g., in [12] we describe eager encodings that simulate constraint propagators for the all-
different constraint which achieve arc, bound, or range consistency. A constraint propagator
that can achieve domain consistency exists [48] but it cannot be simulated efficiently [6].
Because of the fact that external propagators generate nogoods only on demand, however, we
can implicitly represent encodings via Lazy Nogood Generation that are otherwise infeasible.

5 Conflict-Driven Nogood Learning with Lazy Nogood Generation

We develop a decision procedure for answer set solving with Lazy Nogood Generation based
on CDNL [22]. It is centred around conflict analysis according to the First-UIP scheme [41].
That is, a conflicting nogood is iteratively resolved against other nogoods until a conflicting
nogood that contains a unique implication point is obtained. This guides backjumping.
Recording the resolved nogood enables conflict-driven learning, which can further prune
the search space. For controlling the set of recorded nogoods, deletion strategies can be
applied (cf. [42]). In contrast to CDNL we will integrate external propagators that perform
Lazy Nogood Generation in order to represent conditions on the answer sets of a logic
program that are not encoded eagerly. Much like their eager counterpart, lazily generated
nogoods can contribute to conflict analysis and lookback-based search heuristics. This can
improve propagation. Different to eagerly encoded nogoods, however, the amount of lazily
generated nogoods can be controlled via deletion.
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192 Answer Set Solving with Lazy Nogood Generation

Input : A logic program P with external propagators Π.
Output : An answer set of P if one exists.

1 A← ∅ // Boolean assignment
2 ∇ ← ∅ // set of recorded nogoods
3 dl← 0 // decision level
4 loop
5 (A,∇)← Propagation(P,Π,∇,A)
6 if δ ⊆ A for some δ ∈ ∆At(Π)

P ∪∇ then
7 if dl = 0 then return no answer set
8 (ε, k)← ConflictAnalysis(δ, P,∇,A)
9 ∇ ← ∇∪ {ε}

10 A← A\{σ ∈ A | k < dl(σ)}
11 dl← k

12 else if AT ∪AF = At(P ) ∪B(P ) ∪At(Π) then
13 return AT ∩ (At(P ) ∪At(Π))
14 else
15 σd ← Select(P,Π,∇,A)
16 A← A ◦ (σd)
17 dl← dl + 1

Algorithm 1 CDNL-LNG.

5.1 Main Algorithm
Algorithm 1 specifies our main procedure, CDNL-LNG. It takes a logic program P with
external propagators Π, and starts with an empty assignment A and an empty set ∇ that
will store recorded nogoods, including lazily generated nogoods. The decision level dl is
initialised with 0. Its purpose is counting decision literals in the assignment. We use dl(σ)
to access the decision level of literal σ. The following loop is very similar to CDNL. First,
Propagation (Line 5) extends A and ∇, as described in the next section. If this encounters
a conflict (Line 6), the ConflictAnalysis procedure generates a conflicting nogood ε by
exploiting interdependencies between nogoods in ∆At(Π)

P ∪∇ through conflict resolution, and
determines a decision level k to continue search at. Then, ε is added to the set of recorded
nogoods ∇ in Line 9. This can prune the search space and lead to faster propagation.
Lines 10–11 account for backjumping to level k. Thereafter ε is unit and triggers inference
in the next round of propagation. If ConflictAnalysis, however, yields a conflict at
level 0, no answer set exists (Line 7). Furthermore, we distinguish the cases of a complete
assignment (Lines 12–13) and a partial one (Lines 14–17). In case of a complete assignment,
the atoms in AT correspond to an answer set of P . In the other case, A is partial and no
nogood is conflicting. Then, a decision literal σd is selected by some heuristic, added to A,
and the decision level is incremented. While ConflictAnalysis and Select are similar to
the ones in CDNL, we extend Propagation to accommodate Lazy Nogood Generation.

5.2 Propagation
A specification of our Propagation procedure is shown in Algorithm 2. It works on a
logic program P with external propagators Π, a set of recorded nogoods ∇, and an as-
signment A. Propagation interleaves unit-propagation on nogoods ∆At(Π)

P and recorded
nogoods ∇ including lazily generated nogoods from external propagators. We start with
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Input : A logic program P with external propagators Π, recorded nogoods ∇,
Boolean assignment A.

Output : An extended assignment and set of recorded nogoods.

1 loop
2 repeat // unit-propagation
3 if δ ⊆ A for some δ ∈ ∆At(Π)

P ∪∇ then return (A,∇)
4 Σ← {δ ∈ ∆At(Π)

P ∪∇ | δ\A = {σ}, σ /∈ A}
5 if Σ 6= ∅ then let σ ∈ δ\A for some δ ∈ Σ in
6 A← A ◦ (σ)

7 until Σ = ∅
8 foreach π ∈ Π do
9 Σ← π(A) // external propagation

10 if Σ 6= ∅ then break
11 if Σ = ∅ then
12 Σ← LoopFormulaPropagation(P,A) // loop formula propagation
13 if Σ = ∅ then return (A,∇)
14 ∇ ← ∇∪ Σ

Algorithm 2 Propagation.

unit-propagation (Lines 2–7), resulting either in a conflict, i.e., some nogood is conflict-
ing (Line 3), or in a fixpoint possibly extending A with unit-resulting literals. If there is no
conflict, Propagation performs external propagation following some priority (Lines 8–10).
Based on A, each propagator may encode inference in a set of lazily generated nogoods Σ
which is added to the set of recorded nogoods ∇ at the end of the loop in Line 14. The
LoopFormulaPropagation procedure (Line 12; [22]) works similarly to ensure that no
loop formula is violated, i.e., no loop nogood in ΛAt(Π)

P is conflicting. This only has an effect
if the logic program is non-tight [18]. Note that external propagation is interleaved by unit-
propagation in order to assign unit-resulting literals immediately and detect conflicts early.
Our algorithm also favours external propagation over loop formula propagation, motivated
by the fact that external propagators can affect the assignment to atoms in At(Π), possibly
falsifying external support for a loop in P .

6 Constraint Answer Set Solving via Lazy Nogood Generation

One difficult task for ASP solving with Lazy Nogood Generation remains, i.e., to design
efficient external propagators. A research area that is largely concerned with efficient
propagation is CP. We here follow the idea from [46] and apply CP techniques to generate
lazy nogoods representing constraints over finite domains. To reflect this on the language
level, we make use of CASP, a paradigm that naturally merges CP and ASP.

CASP abstracts from non-propositional constraints by incorporating constraint atoms
into logic programs. We access the constraint atom associated to a constraint c via the
function At(c). A constraint logic program is a tuple P = (V,D,C, P ), where V,D,C are the
same as in the definition of a CSP, and P is a logic program with externals over constraint
atoms C = {At(c) | c ∈ C}. A fundamental difference to traditional CP is that, in CASP,
each constraint c is reified via At(c). Its truth value is determined by the conditions induced
by P and an assignment A to the variables in S(c). The set of constraint atoms CA = {At(c) |
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Input : A Boolean assignment A.
Output : A set of lazily generated nogoods.

1 ∇ ← ∅ // set of lazily generated nogoods
2 if Tval(v, i) ∈ A for some i ∈ dom(v) then
3 ∇ ← {{Tval(v, i), Tval(v, j)} | j ∈ dom(v)\{i}, Fval(v, j) 6∈ A}
4 if Tval(v, i) 6∈ A for some i ∈ dom(v) ∧ ∀j ∈ dom(v)\{i} Fval(v, j) ∈ A then
5 ∇ ← {{Fval(v, i) | i ∈ dom(v)}}
6 return ∇

Algorithm 3 An external propagator for the value encoding Γv.

c ∈ CA} correspond to the constraints satisfied by A. Let P be a constraint logic program
and A an assignment. The pair (X,A) is a constraint answer set of P iff X is an answer
set of P (CA) (cf. [23]). Given that assignments A and their effect on each constraint can
be represented in a logic program [43], the task of computing constraint answer sets can be
reduced to the one of computing answer sets of P with external propagators for generating
assignments A and capturing the inference of constraint propagation.

To begin with, CASP solving via Lazy Nogood Generation requires a propositional
representation of assignments to constraint variables. In the value encoding, an atom val(v, i),
representing v = i, is introduced for each variable v ∈ V and value i ∈ dom(v). Intuitively,
the atom val(v, i) is true if v takes the value i, and false if v takes a value different from i (cf.
[51]). To insure that an assignment A represents a consistent set of possible values for v, we
encode the conditions that v must not take two values, i.e., {Tval(v, i),Tval(v, j)} 6⊆ A for
all i, j ∈ dom(v), i 6= j, and that v must take at least one value, i.e., Fval(v, i) 6∈ A for some
i ∈ dom(v), in the set of nogoods Γv = {{Tval(v, i),Tval(v, j)} | i, j ∈ dom(v), i 6= j} ∪
{{Fval(v, i) | i ∈ dom(v)}} [12]. We employ external propagators to represent the nogoods
in Γv. Algorithm 3 provides a specification of an inference-optimal external propagator for
this task. It takes a Boolean assignment A and returns a set of lazily generated nogoods,
initialised in Line 1, that are unit or conflicting. Lines 2–3 insure that if v is assigned a
value i then all other values are removed from its domain, while Lines 4–5 deal with the
condition that there is at least one value that can be assigned to v. This procedure can be
made very efficient, e.g., by using watched literals [42]. Another representation for constraint
variables is the bound encoding, where an atom is introduced for each variable v ∈ V and
value i ∈ dom(v) to represent that v is bounded by i, i.e., v ≤ i (cf. [49]). Similar to the
value encoding, we can define nogoods that insure a consistent Boolean assignment [12]. A
combination of value and bound encoding is also possible.

We see atoms from the value and bound encoding as primitive constraints, as all constraints
can be decomposed into nogoods over them, e.g., by describing changes in the variables’
domains inferred by constraint propagation. This way, constraint propagators can be encoded
eagerly or lazily. Transforming a constraint propagator into an external propagator is
straightforward: Rather than applying domain changes directly, the constraint propagator
has to be made encoding its inferences in form of nogoods over primitive constraints [46].

I Example 4. An external propagator for encoding the reified all-different constraint c is
specified in Algorithm 4. Provided with a Boolean assignment A, it starts with an empty set
of lazily generated nogoods, followed by a distinction into two cases. First, if the constraint
is to be satisfied, i.e., TAt(c) ∈ A, then for each variable in the scope of the constraint that
has a value assigned, a nogood is generated that asserts the removal of this value from the
domain of all other variables in the scope of the constraint (Lines 2–3). On the other hand,
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Input : A Boolean assignment A.
Output : A set of lazily generated nogoods.

1 ∇ ← ∅ // set of lazily generated nogoods
2 if TAt(c) ∈ A then foreach v ∈ S(c) s.t. Tval(v, i) ∈ A for some i ∈ dom(v) do

3
∇ ← ∇∪ {{TAt(c), Tval(v, i), Tval(w, i)} | w ∈ S(c)\{v},

i ∈ dom(w), Fval(w, i) 6∈ A}
4 else
5 foreach v ∈ S(c) s.t. Tval(v, i) ∈ A for some i ∈ dom(v) do
6 if w ∈ S(c)\{v} s.t. Tval(w, i) ∈ A then
7 if FAt(c) 6∈ A then
8 ∇ ← {{TAt(c), Tval(v, i), Tval(w, i)}}
9 return ∇

10 if ∀v ∈ S(c) ∃i ∈ dom(v) s.t. Tval(v, i) ∈ A then
11 ∇ ← {{FAt(c)} ∪ {Tval(v, i) | v ∈ S(c), i ∈ dom(v), Tval(v, i) ∈ A}}

12 return ∇

Algorithm 4 An external propagator for encoding the reified all-different constraint c.

if the constraint is not set to be satisfied, the algorithm checks whether two variables in the
scope of the constraint have the same value assigned (Lines 5–9). If so, the all-different
constraint is violated and a nogood asserting that the constraint atom is set to false will be
returned (unless FAt(c) ∈ A, in which case the constraint atom is already false). If, however,
no such two variables can be found and all variables in the scope of the constraint have a
value assigned, then the all-different condition is satisfied and a nogood is generated that
asserts the truth of the constraint atom (Lines 10–11). Observe that this propagator enforces
arc consistency on the binary decomposition of the reified all-different constraint if At(c)
is true, but propagates weakly if At(c) is false. However, propagators that achieve higher
levels of local consistency are also possible [48].

While constraint propagators encode their inference into unit or conflicting nogoods, unit-
propagation processes this information within the next iteration. Unit-propagation, constraint
propagation, and loop formula propagation are repeated until a fixpoint is reached or a
conflict is encountered. By generating a conflicting nogood, e.g., a constraint propagator can
yield that the underlying constraint is violated.

7 Experiments

We have implemented our approach with Lazy Nogood Generation for constraint variables,
the all-different and integer linear constraints within a new version of our prototypical
CASP system inca [54] which is based on the latest development version of clingo (3.0.92; [53]).
The default setting uses an all-different propagator that enforces arc consistency, while
incaDC enforces domain consistency, representing an infeasible encoding. To compare with
the state-of-the-art, we include clingcon (2.0.0-beta; [53]) in our analysis. It also extends
clingo, but integrates the CP solver gecode (3.7.1;[52]). Similar to our approach, clingcon
is based on CDNL and abstracts from the constraints via constraint atoms, but it employs
gecode to check the existence of a constraint variable assignment that does not violate any
constraint (according to the assignment to constraint atoms). In turn, the CP solver can yield
a conflict or propagate constraint atoms by generating nogoods over constraint atoms that
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Table 1 Average time in seconds over completed runs on Quasigroup, Graceful Graph, Packing,
and Numbrix benchmarks. Number of completed runs are given in parenthesis.

benchmark class clingo clingcon clingconDC inca incaDC

Quasigroup Completion (200) 106.6 (93) 34.4 (9) 4.6 (200) 86.2 (171) 24.7 (200)
Quasigroup Existence (21) 25.7 (18) 61.4 (10) 88.2 (11) 60.3 (20) 26.6 (20)
Graceful Graphs (10) 3.0 (9) 15.7 (4) 31.3 (7) 5.2 (6) 12.6 (10)
Packing (50) 104.1 (1) 33.1 (50) 33.1 (50) 24.6 (50) 24.6 (50)
Numbrix (12) 10.4 (12) 17.4 (12) 51.3 (12) 1.3 (12) 5.2 (12)
weighted, penalised time 228.3 267.0 124.6 103.1 24.2

occur in the constraint logic program. This constitutes a very limited form of Lazy Nogood
Generation. We have set clingcon to generate nogoods by looking at dependency between
constraints according to the irreducibly inconsistent set construction method in “forward”
mode, when we noticed that this option significantly improves the performance of clingcon.
Furthermore, the setting clingconDC uses domain consistency propagation. Our experiments
also consider eager encodings for a comparison with the state-of-the-art in ASP solving, given
through clingo. We conducted experiments on Quasigroup Completion (n = 40), Quasigroup
Existence (QG1-4: n = 7 . . . 9; QG5: n = 12 . . . 14; QG6-7: n = 10 . . . 12) and Graceful
Graphs benchmarks that stem from [12], Packing benchmarks from [8] and Numbrix [45]
puzzles. Experiments were run on a Linux PC, where each run was limited to 600 sec CPU
time on a 2.00 GHz core and 2 GB RAM. A summary of our results is provided in Table 1.

Although more benchmark classes are needed for a meaningful comparison, we can draw
a few interesting conclusions. First, execution time can improve when CP constructs are
treated by external propagation rather than encoding them eagerly. The latter can lead to
huge encodings, in particular, when large domains are involved. In fact, the encoding of the
Packing problem that was given in the system track of the competition quickly reaches the
memory limit of 2 GB in 49 over 50 instances, while the CASP systems clingcon and inca
solve every instance within a reasonable amount of space and time. Second, the advantage
of generating nogoods to describe the inferences of constraint propagators is that CDNL
can exploit constraint interdependencies for directing search, and most importantly conflict
analysis. The fact that clingcon does not encode CP constructs into nogoods, by design, is
likely to be the reason for its limited success in our experiments, where clingcon is particularly
ineffective on Quasigroup problems. Third, experiments show that our approach, represented
through inca, combines the best of both worlds: It can avoid huge encodings via abstraction to
external propagation while retaining the ability to make the encoding explicit. It outperforms
the state-of-the-art in CASP solving on individual benchmark classes, and is more robust
over all benchmark instances. On most benchmarks, a dedicated treatment of infeasible
all-different encodings via external propagation has further improved performance.

8 Related Work

Related work on the integration of ASP with other declarative problem solving paradigms
is plentiful, and roughly falls into one of three categories: translation-based approaches,
modular approaches, and integrated approaches. In translation-based approaches, all parts of
an (extended) ASP model are eagerly encoded into a single language for which highly efficient
off-the-shelf solvers are available. Niemelä [43] provides a simple mapping of constraints
into ASP given by allowed or forbidden combinations of values. We have demonstrated
efficiency in [12], describing what type of local consistency the unit-propagation of an ASP
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solver achieves on value, bounds, and range encodings. Specialised encodings for grammar
and related constraints are presented in [14]. There is also a substantial body of work on
encoding constraints into SAT [51, 25, 4, 15, 49, 5] which can be translated into ASP [43].
Similarly, (extended) ASP models can be translated, e.g., into SAT [27], SAT with inductive
definitions [38], and difference logic [28]. In a modular approach, theory-specific solvers
interact in order to compute solutions. Baselice et al. [3] and Mellarkod and Gelfond [39]
combine systems for solving ASP and CP that do not ground constraint variables. Instead,
constraint variables are handled in a CP solver. Dal Palú et al. [10] employ a CP system
for intermediate grounding and the computation of answer sets. The approach taken by
Balduccini [1] consists of writing logic programs whose answer sets encode a desired CSP,
which is, in turn, solved by a CP system. Järvisalo et al. [29] obtain the overall semantics
from the ones of individual modules, including CP modules. While above modular approaches
see ASP and CP solvers as blackboxes, Mellarkod et al. [40] integrate a CP solver into the
decision engine of a backtracking-based ASP solver. Gebser et al. [23] integrate constraint
atoms with conflict-driven techniques by extending the conflict analysis of an ASP solver.
An implementation of their approach is given through the CASP system clingcon. The
abstraction from the inference performed by constraint propagation, however, limits the
exploitation of constraint interdependencies. ASP solving via Lazy Nogood Generation
was first outlined in [13], and falls into the category of integrated approaches. The related
work closest to this paper is Lazy Clause Generation [46], a SAT-based approach to CSP
solving where lazy clause generators encode the inference of propagation rules into clauses.
However, our approach is fundamentally more general then Lazy Clause Generation, where
the truth value of each constraint atom is known a-priori and every nogood is represented by
a clause. Nogoods can also be represented by other ASP constructs, such as cardinality rules,
weight constraint rules [44], and aggregation [47, 19]. Gebser et al. [20] show that constraint
variables can be conveniently expressed by means of cardinality rules. Elkabani et al. [17]
provide a generic framework which provides an elegant treatment of such extensions to ASP,
employing constraint propagators for their handling, though, without support for conflict-
driven techniques. A thorough approach to integrating propagators for weight constraint
rules within a conflict-driven framework is presented in [21].

Alternative computation models that aim at limiting the need for preliminary grounding
but do not integrate ASP with other declarative paradigms have also been proposed (e.g., [31]).

9 Conclusion

We presented a comprehensive extension for ASP solving to address the scalability and effi-
ciency of ASP, called Lazy Nogood Generation. Founded on a nogood-based characterisation
of external propagation, our techniques allow for representing encodings that are otherwise
infeasible. However, external propagators can make parts of the encoding explicit whenever
it triggers inference. We presented key algorithms that are centred around conflict-driven
learning, and seamlessly applied our techniques to CASP solving by employing constraint
propagation. Experiments show that our prototypical implementation is competitive with
the state-of-the-art. We expect further significant computational impact given the empirical
evidence provided by Lazy Clause Generation [46]. Moreover, Lazy Nogood Generation
generalises Lazy Clause Generation, as every nogood can be syntactically represented by a
clause, but other ASP constructs are also possible. Future work considers the exploitation of
ASP constructs like aggregation and loops. Many questions on modelling and solving CASP
also remain open, concerning encoding optimisations and further language extensions.
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