Train Scheduling and Rescheduling in the UK with a Modified Shifting Bottleneck Procedure

Banafsheh Khosravi\(^1\), Julia A. Bennell\(^1\), and Chris N. Potts\(^2\)

\(^1\) School of Management, CORMSIS Research Group, University of Southampton
Southampton, SO17 1BJ, UK
B.Khosravi@soton.ac.uk, J.A.Bennell@soton.ac.uk

\(^2\) School of Mathematics, CORMSIS Research Group, University of Southampton
Southampton, SO17 1BJ, UK
C.N.Potts@soton.ac.uk

Abstract
This paper introduces a modified shifting bottleneck approach to solve train scheduling and rescheduling problems. The problem is formulated as a job shop scheduling model and a mixed integer linear programming model is also presented. The shifting bottleneck procedure is a well-established heuristic method for obtaining solutions to the job shop and other machine scheduling problems. We modify the classical shifting bottleneck approach to make it suitable for the types of job shop problem that arises in train scheduling. The method decomposes the problem into several single machine problems. Different variations of the method are considered with regard to solving the single machine problems. We compare and report the performance of the algorithms for a case study based on part of the UK railway network.

1998 ACM Subject Classification G.1.6 Optimization, Integer programming

Keywords and phrases Train Scheduling and Rescheduling, Job Shop Scheduling, Shifting Bottleneck Procedure

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.120

1 Introduction

Meeting the ever-increasing demand for additional rail capacity is a key issue for many train companies. There are two ways of providing the additional capacity for passengers and freight users. One way is to construct new sections of track and another is through the release of capacity on the current rail network. Whereas first option is very costly, the latter is linked to train scheduling which reduces the loss of capacity of the network through better scheduling decisions. The applications of operational research methodologies in combination with advances in technology can provide great incentives for the rail industry.

After the pioneering publication of Szpigel [17], formulating the train scheduling problem as a job shop scheduling problem offered a promising new research direction. However, there have been several job shop scheduling approaches such as mathematical programming techniques by Szpigel [17] and Sahin [16], constraint programming approaches by Oliveira and Smith [12] and Rodriguez [14], and the alternative graph formulation by D’Ariano et

A decomposition of the railway planning process into strategic, tactical and operational levels is proposed by Huisman et al. [8], Caprara et al. [4] and Lusby et al. [10] as dealing with the whole problem is hard and complicated. Train scheduling and rescheduling are the subtasks of the planning process in tactical and operational levels, respectively. For a general overview of operations research models and methods in railway transportation, see Huisman et al. [8], Caprara et al. [4], Lusby et al. [10] and Cacchiani and Toth [2].

This paper aims to refine existing models for train scheduling and rescheduling problems with the goal of obtaining a more generic model that includes important additional constraints. The model is customised to the UK railway network and is evaluated through a case study. The train scheduling and rescheduling problems are addressed in Section 2. Section 3 contains the development of our proposed model. In Section 4, we adapt the shifting bottleneck solution approach for the particular job shop problems that arise in train scheduling. The performance of the proposed methods on a real-world case study based on London and South East area of the UK that is a dense and complex network of interconnected lines is reported in Section 5. Finally, Section 6 presents some conclusions and suggestions for future work.

2 Problem definition

Depending on the level of detail about track topology and train dynamics, the train scheduling and rescheduling problems can be classified as microscopic or macroscopic problems [3]. This paper investigates the train scheduling and rescheduling problems at the micro level including detailed information about the tracks and train movements. Our experimental evaluation is based on a bottleneck area in the South East of the UK where the network has a complicated structure including several junctions and stations.

The movement of a train on the network is controlled for safety reasons by signals which divide the network to track sections called blocks. Given predetermined routes from a given origin to a given destination, a schedule determines starting times of trains entering each block and the order of trains on each block. Each train needs a minimum specified running time to travel on a block. If there is a scheduled stop at a station, the train needs a minimum dwell time for the passengers or freight to board/load and alight/unload. Also, safety considerations impose a headway, which is the minimum time between two consecutive trains travelling on the same block. Various signalling systems are used in different countries. In this study, we consider four-aspect signalling which is common for the main lines of the UK network, as shown in Figure 1: red for stop (danger), yellow for approach (caution), double yellow for advance approach (preliminary caution) and green for clear. Each aspect gives information for 4 blocks ahead, thus enabling the train driver to adjust the speed and to keep sufficient separation between trains to allow safe braking. According to the safety principles, only one train can travel on a block at a time and a conflict occurs when more than one train is assigned to a block. Another issue is the deadlock that arises when certain trains are currently positioned in a way that none can move further without causing
Train Scheduling and Rescheduling in the UK

![Figure 1] 4-aspect signalling system.

A collision. A deadlock happens usually in complicated networks with bidirectional travels. Thus, being conflict-free and deadlock-free are essential characteristics of a feasible schedule. The above-mentioned operational and safety issues are treated as constraints in our problem.

It is also important to take into account the possibility of delay propagation in a railway network which is due to the high interdependency of the trains. Thus, the objective of our problem is to minimize delay propagation. In summary, the aim of train scheduling is to make the best usage of the existing capacity by allocating trains to blocks. In this study, timetable components including scheduled running time, dwell time and headway and their buffer times or margins are assumed to be fixed and we try to minimize the delay by selecting efficient timings and ordering of trains on blocks. Train scheduling can be performed at a tactical level, which can take up to a year. When trains are operated according to a plan, disruptions can cause deviations to that plan due to various causes such as train delays, accidents, track maintenance, no-shows for crew, weather conditions, etc. Train rescheduling responds to disruptions in an operational level, where a new schedule is required in a matter of minutes or seconds. The same scheduling technique can be implemented for real-time traffic management if the solution method is fast enough.

3 Problem formulation

In this study, we make use of the similarity between train scheduling problem and the well-known job shop scheduling problem. Job shop scheduling assigns jobs to machines in a way that a machine can process only one job at a time. Likewise, a block can be occupied by only one train at a time according to the line blocking which is a safety principle for train movement. Thus, a train traversing a block is analogous to a job being processed on a machine, and is referred to as an operation.

The following notation is used for parameters and decision variables in the mathematical programming formulation for the train scheduling problem.

\[\mathcal{I}: \text{ set of jobs/trains} \]
\[i, j: \text{ indices for jobs } (i = 1, \ldots, I \text{ and } j = 1, \ldots, J) \]
\[r_i: \text{ non-negative release time of job } i/\text{scheduled departure time of train } i \]
\[d_i: \text{ non-negative due date of job } i/\text{scheduled arrival time of train } i \]
\[w_i: \text{ non-negative importance weight of job } i/\text{train } i \]
\[(m_{i1}, \ldots, m_{i,l_i}): \text{ sequence of machines to be visited by job } i/\text{sequence of blocks to be traversed by train } i \]
\[(i, m): \text{ job, machine indices/train, block indices, for } m = m_{i1}, \ldots, m_{i,l_i} \]
\[\mathcal{O}: \text{ set of operations defined by indices } (i, m), \text{ for } i \in \mathcal{I}, m = m_{i1}, \ldots, m_{i,l_i} \]
p_{im}: operation time for job i on machine m/running time for train i on block m

$s_i(m)$: the index of its immediate successor operation (index of its third successor operation) for two-aspect signalling (four-aspect signalling) of (i, m)

$S_i(m)$: a set containing index (i, m) for two-aspect signalling, and additionally containing the indices of its immediate and second successor operation for four-aspect signalling

h_{ijm}: required time delay (headway) between the start of operations (i, m) and (j, m) when job i precedes job j on machine m

x_{ijm}: \[\begin{cases} 1, & \text{if job } i \text{ precedes job } j \text{ on machine } m \\ 0, & \text{otherwise} \end{cases} \]

t_{im}: starting time of job i on machine m

T_i: tardiness of job i

To minimize delay propagation of trains with different priorities, the objective is to minimize total weighted tardiness. The tardiness of a job is calculated from the due date of the job, which is equivalent to the pre-defined time that a train should reach its final destination and therefore leave the network. The release time of a job is similarly defined as the pre-defined time that the train should leave its origin and thus enter the network. Weights can be determined from train priorities. Thus, the train scheduling problem can be formulated as a job shop scheduling problem with additional constraints, and a corresponding mixed integer linear programming (MILP) model is specified below.

Minimize \[z = \sum_{i \in I} w_i T_i \quad (1) \]

subject to

\[T_i \geq t_{i,m_i,l_i} + p_{i,m_i,l_i} - d_i \quad i \in I \quad (2) \]

\[t_{i,m_1} \geq r_i \quad i \in I \quad (3) \]

\[t_{i,m_k} - t_{i,m_{k-1}} \geq p_{i,m_{k-1}} \quad \text{for } i \in I, k = 2, \ldots, l_i \quad (4) \]

\[t_{jm} - t_{im} + B(1 - x_{ijm}) \geq \max\{p_{im}, h_{ijm}\} \quad (i, m), (j, m) \in O \quad (5) \]

\[t_{im} - t_{jm} + B(1 - x_{jim}) \geq \max\{p_{jm}, h_{jim}\} \quad (i, m), (j, m) \in O \quad (6) \]

\[t_{jm} - t_{is_{i}(m)} + B(1 - x_{ijm}) \geq \sum_{(i,k) \in S_i(m)} p_{ik} \quad (i, m), (j, m) \in O \quad (7) \]

\[t_{im} - t_{js_{j}(m)} + B(1 - x_{jim}) \geq \sum_{(j,k) \in S_j(m)} p_{jk} \quad (i, m), (j, m) \in O \quad (8) \]

\[x_{ijm} + x_{jim} = 1 \quad (i, m), (j, m) \in O \quad (9) \]

\[x_{ijm} \in \{0, 1\} \quad (i, m), (j, m) \in O \quad (10) \]

In this formulation, the total weighted tardiness objective function is defined in (1). The tardiness of a job is defined in (2) by considering its starting time on the last machine of its sequence, its processing time on that machine and the due date of the job; this is equivalent to defining a train’s delay. Ensuring that the starting time of a job on the first machine of its sequence is no earlier than its release time is achieved through (3), which means a train can start only after it is ready on the first block. Constraints (4) are called the set of conjunctive
constraints to ensure the processing order of a job on consecutive machines. It determines the running and dwell time constraints for trains. Modified disjunctive constraints (5) and (6) specify the ordering of different jobs on the same machine, and they are adapted to define the minimum headway between consecutive trains. Alternative constraints (7) and (8) force a job to remain on a machine after completing its process until the next machine becomes available. This pair of constraints can represent the signalling system of the network.

Modelling a job shop scheduling problem with a disjunctive graph is introduced firstly by Roy and Sussman [15] and has thereafter been extensively used in solving job shop scheduling problems. In this study, we also make use of a disjunctive graph $G = (N, A, B, C)$ to formulate the train scheduling problem. Despite of the fact that the original graph considers makespan as the objective function, we employ a modified disjunctive graph of Pinedo and Singer [13] which minimizes total weighted tardiness. Figure 2 shows an example of 3 jobs and 4 machines. Set N contains a node for each operation (i, m), a dummy source U and m dummy sinks V_i for each job i. A is the set of conjunctive arcs that connects the pair of consecutive operations on the same job in order to take into account running and dwell time constraints. Set B is the set of disjunctive arcs that are represented by two arcs in opposite directions for every pair of operations (i, m) and (j, m). To represent headway for both following and opposite trains, the length of a disjunctive arc is simply modified as $\max\{p_{jm}, h_{ijm}\}$ to consider the higher value between the running time and the headway.

![Figure 2 Modified disjunctive graph.](image)

Another limitation of the disjunctive graph to be addressed here is that it cannot model the buffer capacity between consecutive machines properly. This is an important issue in many real-life scheduling problems. In our problem, a job needs to stay on a machine after its processing time until the next machine becomes free. So set C includes the pairs of alternative arcs $(i, s_i(m))$ and (j, m) which are added according to the alternative graph of Mascis and Pacciaiarelli [11]. As shown in Figure 2, these arcs are slightly adapted to have alternative arcs of the length $\sum_{(i,k) \in S_i(m)} p_{ik}$ to keep following trains moving on green signals with a fixed speed under four-aspect signalling.

4 Solution method

The train scheduling problem is known to be NP-hard (see [7] and [18]) and a practical size problem can easily result in a huge job shop problem with numerous nodes and arcs. As we cannot solve the proposed MILP model optimally in a reasonable amount of time, it is
preferable to employ local search methods for which computational time is more predictable.

The shifting bottleneck (SB) procedure of Adams et al. [1] is a well-known heuristic for solving a classical job shop scheduling problem that is formulated as a disjunctive graph. The success in applying the SB procedure on benchmark instances in job shop scheduling literature has led to a number of studies that employ the SB approach. It can be also used as a framework for other heuristics such as tabu search, simulated annealing and genetic algorithms. Although there is no theoretical performance guarantee for SB, its empirical performance has a good track record.

The SB procedure is a deterministic decomposition approach to solve multiple machine problems by selecting each machine in turn and using the solution of the single machine problem to define the processing order of jobs on that machine. According to Pinedo and Singer [13], the solution method includes three main steps of sub-problem formulation, sub-problem optimization and bottleneck selection (Figure 3). To find a feasible solution, we need an acyclic order of operations by selecting exactly one arc of each pair of disjunctive and alternative arcs. Mascis and Pacciarelli [11] provide some key properties and feasibility analysis of a blocking job shop problem. In this paper, a modified SB procedure is proposed for the train scheduling and rescheduling problems. It is inspired by Pinedo and Singer [13] but modified for train scheduling to include additional constraints.

![Figure 3 Shifting Bottleneck (SB) flowchart, adapted from Pinedo and Singer [13].](image)

In general, the proposed SB differs from the conventional SB in solving the single machine problem and finding the bottleneck. While the original SB considers an exact method to solve the single machine problem of minimizing the maximum lateness of jobs having release dates on a single machine (problem $1|r_j|L_{\text{max}}$), the new SB employs a heuristic to solve the single machine problem of minimizing the total weighted tardiness of jobs having release dates on a single machine (problem $1|r_j|\sum w_jT_j$). Bottleneck selection is based on maximum lateness calculations in original SB, whereas the proposed SB makes use of total weighted tardiness evaluations. The proposed SB procedure uses the following notation.

- j, k: job indices
- (j, m): job, machine indices for the operation that processes job j on machine m
- r_{jm}: local release date for operation (j, m)
- p_{jm}: processing time of operation (j, m) of job j
- d^k_{jm}: local due date of operation (j, m) with respect to the due date of job k
- $L((j, m), V_k)$: the longest path from operation (j, m) to V_k, the sink corresponding to job k
- C_{jm}: completion time of job j on machine m
- C_k: completion time of job k
- T_{jm}^k: tardiness of operation (j, m) with respect to the due date of job k

In the following, we introduce three main steps of the new SB algorithm. In the first
algorithm, we develop a heuristic based on a well-known priority rule for $1|\sum w_j T_j$ which is called the apparent tardiness cost (ATC) rule. The ATC is a dynamic rule that calculates a ranking index for each job to be sequenced next on a machine. Under this rule, the highest ranking job is selected among the remaining jobs to be processed next. Here, the single machine heuristic embeds an adaptation of the ATC rule developed by Pinedo and Singer [13]. Because of the ATC index, we refer to our first SB algorithm as SB-ATC.

SB-ATC algorithm

- Generate an instance of $1|\sum w_j T_j$ and for each operation calculate

 $$r_{jm} = L(U, (j, m)),$$

 (11)

 $$d_{jm}^k = \begin{cases} \max\{C_k, d_k\} - L((j, m), V_k) + p_{jm} & \text{if } L((j, m), V_k) \text{ exists,} \\ \infty & \text{otherwise.} \end{cases}$$

 (12)

- Select the operation (j, m) with the highest index

 $$I_{jm}(t) = \sum_{k=1}^{n} \frac{w_k}{p_{jm}} \left(- \frac{(d_{jm}^k - p_{jm} + (r_{jm} - t))^+}{K\bar{p}} \right),$$

 (13)

 where t is the time that the machine becomes available, \bar{p} is the average processing time of jobs assigned to machine m, and K is a scaling parameter whose value can be determined through computational tests.

- Choose a machine m with its corresponding sequence of operations that minimizes

 $$\sum_{k=1}^{n} w_k \left(\max_{(j, m) \in N_m} T_{jm}^k \right), \quad T_{jm}^k = \max\{C_{jm} - d_{jm}^k, 0\},$$

 (14)

 where N_m is the set of nodes corresponding to the operations processed on machine m.

The second SB algorithm is based on an active schedule generation (ASG) heuristic to solve the single machine problems. The so-called SB-ASG selects the job with the smallest release date among potential candidates with $r_{jm} < ECT$, where ECT is the smallest possible completion time of the job to be scheduled next. The third SB algorithm is developed on the basis of the Schrage scheduling heuristic and is therefore named SB-SCH. In SB-SCH, among potential candidates with $r_{jm} \leq EST$, where EST is the smallest possible starting time of the job to be scheduled next, it selects the job with $d_{jm}^* = \min_k d_{jm}^k$.

Within the SB solution process, arcs are added gradually to the problem through subproblem optimization step. We need to ensure that the disjunctive and alternative arcs to be added do not lead to infeasible solutions. Assume that machine m is selected in the bottleneck selection step. All jobs on that machine are sequenced by using one of the mentioned single machine heuristics. The disjunctive arcs can be added based on the sequence of the jobs on machine m. Consequently, we add an alternative arc from $(i, s_i(m))$ to (j, m) if there is a disjunctive arc from (i, m) to (j, m). The next step is to use the static implication rules of D’Ariano et al. [6] to add implied alternative arcs for the following trains running on common blocks. Further, we fix the implied arcs among the jobs on a machine for all trains on common blocks. Through this process, the main characteristics of a timetable to be conflict-free and deadlock-free are guaranteed.
A First Come First Served (FCFS) algorithm is also implemented, which is a simple dispatching rule. It is close to the dispatcher’s behaviour in a real-time decision-making environment. Our proposed SB algorithms are tested against FCFS in terms of the solution quality.

5 Computational results

In this section, we discuss a real-world implementation of the proposed SB algorithms. The experiments are based on the London Bridge area in the South East of the UK, chosen because it is a dense and complicated network of interconnected lines for passengers in and out of London, East Sussex and the Channel Tunnel. Figure 4 shows the configuration of the network. It is a critical corridor with known capacity and performance issues, which are made more complex by the addition of a new high speed line. The partial network we consider is about 15 km long including busy stations like London Charing Cross, London Waterloo, London Cannon Street, New Cross and Deptford, and a total of 28 platforms. The network includes 135 blocks with unidirectional and bidirectional traffic. Passenger trains start their journey from either Charing Cross or Cannon street and travel through 75 blocks in order to leave the network, or they enter the network and travel through 76 blocks terminating at one of the mentioned stations.

![Figure 4 London Bridge diagram.](image)

Our experimental data focus on the off-peak services because there is an on-going strong growth in off-peak period commuters. The timetable cycles every 30 minutes for the passenger trains and includes 27 trains. The train timetables, running times and track diagrams are provided by the primary train operator for this region of the UK. Using this data we simulate real-life traffic conditions in one cycle under different types of disruptions in the network by perturbing the known running times on certain blocks. Disruptions are classified into three types as follows. A minor disruption is where no individual delay is more than 15 minutes. A general disruption is where multiple services are running with delays between 15 to 30 minutes. A major disruption is where the majority of train services are delayed by over 30 minutes. All algorithms are developed in MS Visual C++ 2010 and run on a PC with a dual core, 3.00GHz and 4GB RAM. Computational experiments compare the total delay for the schedule arising from the FCFS dispatching rule and the SB algorithms.
In the first set of experiments, we generate 18 problem instances across three types of disruptions on single and multiple blocks. Note that we need the running times of at least two blocks to be perturbed to create a major disruption. Random perturbations are generated on the most common blocks and/or bidirectional blocks which tend to be the most critical ones. An instance is classified as a minor, general or major disruption based on its FCFS output. If FCFS results in a deadlock, we put the instance in the same class as the most similar instance, in terms of perturbation, with no deadlock. We denote each type of disruption with a code. M and MM show minor disruptions on a single block and multiple blocks respectively. Similarly, G and GG represent general disruptions on a single block and multiple blocks. Major disruptions on two and multiple blocks are indicated by A and AA.

Table 1 summarizes the results of our first set of experiments comprising a single run for each of 18 generated instances. In the first and second columns of the table, we define the disruption type and the instance code. The third, fourth and fifth columns indicate which block(s) and train(s) are affected and the size of the perturbation, respectively. The remaining columns display the results of the FCFS, SB-ATC, SB-ASG and SB-SCH delays in minutes. The best result(s) for an instance among all algorithms are shown in bold. If we consider the minimum value among three types of SB algorithms, they clearly outperform FCFS as FCFS ends up with either a worse result or a deadlock in 16 out of 18 instances. SB results are as good as FCFS in G3 and they are slightly worse than FCFS only in MM1. As we expected, FCFS algorithm results in a deadlock in many instances as the network is complicated with bidirectional travels. So FCFS schedules trains in a way that they cannot move further without causing a collision, whereas feasibility is guaranteed by SB algorithms no matter what type of disruption occurs. There is no special trend among the results of three types of SB algorithms and none of them leads to better results for all instances.

As deadlocks arise in many instances solved by FCFS algorithm, we generate many more instances and only retain the cases where FCFS does not result in deadlock. Table 2 provides the results for these new instances and for the no-deadlock instances in Table 1. It also provides the delay for the original timetable where there is no disruption. As before, each row shows a single run of the instance and the best result(s) for each instance are displayed in bold. As expected, the minimum delay among all SB algorithms is lower than FCFS in 10 out of 13 instances. Only in the second instance of general disruption, SB algorithms perform as well as FCFS in G3 and they are slightly worse than FCFS only in MM1. As we expected, FCFS algorithm results in a deadlock in many instances as the network is complicated with bidirectional travels. So FCFS schedules trains in a way that they cannot move further without causing a collision, whereas feasibility is guaranteed by SB algorithms no matter what type of disruption occurs. There is no special trend among the results of three types of SB algorithms and none of them leads to better results for all instances.

In general, our experiments show that SB procedure is a promising approach for solving disruptions with less delay compared to FCFS and avoids deadlock. However, more detailed analysis is needed to understand the impact of the dispatch rule. SB also suffers from long computational times, that are not practical for real-time decision. For complex cases run times are up to 26 minutes, whereas FCFS computation time is less than a minute. Computational times for all three versions of SB are similar. However, there is scope for developing a more efficient implementation of SB.
Table 1 Performance of SB algorithms vs FCFS for 3 types of disruption.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Affected block(s)</th>
<th>Affected train(s)</th>
<th>Increase</th>
<th>FCFS (mins)</th>
<th>SB-ATC</th>
<th>SB-ASG</th>
<th>SB-SCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor disruption on a single block</td>
<td>M1</td>
<td>120</td>
<td>22, 23</td>
<td>5</td>
<td>63.50</td>
<td>52.08</td>
<td>62.50</td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>4</td>
<td>4, 6, 18, 20</td>
<td>4</td>
<td>102.33</td>
<td>98.67</td>
<td>87.42</td>
</tr>
<tr>
<td></td>
<td>M3</td>
<td>24</td>
<td>2, 3, 5</td>
<td>5</td>
<td>157.17</td>
<td>136.42</td>
<td>62.50</td>
</tr>
<tr>
<td>Minor disruption on multiple blocks</td>
<td>MM1</td>
<td>15/24</td>
<td>15, 16/2, 5</td>
<td>4.5/4.5</td>
<td>97.83</td>
<td>120.42</td>
<td>105.58</td>
</tr>
<tr>
<td></td>
<td>MM2</td>
<td>72/77</td>
<td>10, 24/8, 13</td>
<td>4/4</td>
<td>124.58</td>
<td>92.67</td>
<td>92.67</td>
</tr>
<tr>
<td></td>
<td>MM3</td>
<td>20/58</td>
<td>2, 3/13, 22</td>
<td>4.5/4.5</td>
<td>184.42</td>
<td>171.17</td>
<td>171.17</td>
</tr>
<tr>
<td>General disruption on a single block</td>
<td>M1</td>
<td>58</td>
<td>9, 12, 25</td>
<td>5</td>
<td>Deadlock</td>
<td>291.67</td>
<td>293.58</td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>71</td>
<td>11, 13, 14</td>
<td>10</td>
<td>Deadlock</td>
<td>170.33</td>
<td>184.50</td>
</tr>
<tr>
<td></td>
<td>M3</td>
<td>132</td>
<td>12, 24, 25</td>
<td>6</td>
<td></td>
<td>124.92</td>
<td>147.83</td>
</tr>
<tr>
<td>General disruption on multiple blocks</td>
<td>GG1</td>
<td>20/120</td>
<td>3, 6/23, 25</td>
<td>10/10</td>
<td>315.75</td>
<td>169.33</td>
<td>283.42</td>
</tr>
<tr>
<td></td>
<td>GG2</td>
<td>15/47</td>
<td>2, 15, 16/4, 7</td>
<td>5/5</td>
<td>190.50</td>
<td>227.42</td>
<td>189.25</td>
</tr>
<tr>
<td></td>
<td>GG3</td>
<td>50/120</td>
<td>12, 13, 20/22, 24, 27</td>
<td>10/10</td>
<td>Deadlock</td>
<td>321.58</td>
<td>466.25</td>
</tr>
<tr>
<td>Major disruption on two blocks</td>
<td>A1</td>
<td>52/47</td>
<td>8-11, 22-25</td>
<td>17/30</td>
<td>Deadlock</td>
<td>1103.42</td>
<td>1342.17</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>4/59/</td>
<td>4-7, 18-21</td>
<td>8-14</td>
<td>Deadlock</td>
<td>3216.08</td>
<td>3919.25</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>58/94</td>
<td>8-14, 22-27</td>
<td>15-21</td>
<td>Deadlock</td>
<td>5753.58</td>
<td>4477.67</td>
</tr>
<tr>
<td>Major disruption on multiple blocks</td>
<td>AA1</td>
<td>14</td>
<td>2, 3, 16, 17</td>
<td>25</td>
<td>Deadlock</td>
<td>2478.25</td>
<td>2657.00</td>
</tr>
<tr>
<td></td>
<td>AA2</td>
<td>56</td>
<td>12-14, 26, 27</td>
<td>25</td>
<td>Deadlock</td>
<td>5472.25</td>
<td>5647.00</td>
</tr>
<tr>
<td></td>
<td>AA3</td>
<td>120</td>
<td>22-24</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA4</td>
<td>4</td>
<td>4-7, 18-21</td>
<td>25</td>
<td>Deadlock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA5</td>
<td>15</td>
<td>1-3, 15-17</td>
<td>25</td>
<td>Deadlock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA6</td>
<td>58</td>
<td>8-14, 22-27</td>
<td>25</td>
<td>Deadlock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA7</td>
<td>94</td>
<td>15-21</td>
<td>25</td>
<td>Deadlock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Performance of SB algorithms vs FCFS for deadlock-free instances.

<table>
<thead>
<tr>
<th>Timetable</th>
<th>Delay (mins)</th>
<th>FCFS</th>
<th>SB-ATC</th>
<th>SB-ASG</th>
<th>SB-SCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor disruption</td>
<td>32.17</td>
<td>27.67</td>
<td>30.92</td>
<td>30.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>63.50</td>
<td>52.08</td>
<td>62.50</td>
<td>73.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>102.33</td>
<td>98.67</td>
<td>87.42</td>
<td>114.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>157.17</td>
<td>136.42</td>
<td>155.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disruption</td>
<td>96.00</td>
<td>119.67</td>
<td>99.92</td>
<td>99.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>124.92</td>
<td>147.83</td>
<td>124.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>315.75</td>
<td>169.33</td>
<td>283.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>190.50</td>
<td>227.42</td>
<td>189.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major disruption</td>
<td>5977.80</td>
<td>6463.38</td>
<td>5368.97</td>
<td>6161.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3557.42</td>
<td>3288.50</td>
<td>3288.00</td>
<td>3289.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3527.58</td>
<td>3422.00</td>
<td>3390.83</td>
<td>3390.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3504.58</td>
<td>3475.00</td>
<td>3475.00</td>
<td>3475.00</td>
<td></td>
</tr>
</tbody>
</table>
6 Conclusions and future work

In this paper, the train scheduling and rescheduling problems are modelled as a job shop scheduling problem with additional constraints. The problem is formulated as a MILP using a modified disjunctive graph. We describe a new optimization framework based on the SB procedure to solve the problem. Three variants of the SB algorithm are suggested and compared with the most commonly used FCFS dispatching rule. Our experiments focus on a section of the UK rail network that is dense, complicated and congested. It provides a problem instance that is among the most computationally difficult job shop problems where the graph is extremely large. It is clear that simply finding a feasible solution is nontrivial, since the FCFS algorithm frequently results in a deadlock. Hence, the proposed optimization algorithm, which found feasible solutions to all instances, is very promising to model and solve this large and complex problem with all the practical constraints. Further research to improve the solution time and quality of the algorithm includes investigating more efficient heuristics that can be embedded in the current framework and exploiting potential computational speedups.

Acknowledgements We thank the School of Management, the former LASS Faculty of the University of Southampton and the LANCS Initiative for partially funding and supporting this project. We are also grateful to Southeastern, the train operating company, for providing data.

References