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Abstract
Snakemake is a novel workflow engine with a simple Python-derived workflow definition language
and an optimizing execution environment. It is the first system that supports multiple named
wildcards (or variables) in input and output filenames of each rule definition. It also allows to
write human-readable workflows that document themselves. We have found Snakemake especially
useful for building high-throughput sequencing data analysis pipelines and present examples
from this area. Snakemake exemplifies a generic way to implement a domain specific language in
python, without writing a full parser or introducing syntactical overhead by overloading language
features.
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1 Introduction

Workflow systems manage the ever-increasing complexity of computational pipelines in large-
scale bioinformatics applications, e.g. for image processing or next-generation sequencing
data analysis. Existing solutions range from graphical systems, e.g. Biopipe [5], Taverna [11],
Galaxy [2] and GeneProf [4], to frameworks supporting only text based workflow definitions,
e.g. Ruffus [3], Pwrake [14], GXP Make [15] and Bpipe [12]. While graphical solutions are
easy to learn, text-based representations can be advantageous: Workflows can be edited
faster and directly on servers without graphical environments and developers can collaborate
on them via source code management tools.

A basic way to define a workflow is provided by the build system GNU Make [13] that
was originally intended to compile source code but can be used to execute arbitrary pipelines
of command line applications. In contrast to many of the above systems, here the actual
workflow (dependencies, parallelization) is inferred from a given set of rules with input and
output files, rather than relying on an explicit specification. This idea was adapted by Pwrake
and GXP Make, and is also the foundation of Snakemake.

In the spirit of the Python language, Snakemake complements these prior works with a
syntax close to pseudocode. The resulting workflows are human-readable and serve as both
documentation and formal definition. Further, Snakemake provides scalability because it
optimizes the number of parallel processes with respect to provided CPU cores and needed
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threads and can make use of single machines as well as cluster engines without the need to
modify the workflow. In contrast to Pwrake and GXP Make, Snakemake does not rely on
any password-less SSH setup or custom server processes runing on the cluster nodes. Finally,
Snakemake is the first system to support multiple named wildcards and output files in rules,
which we show to be useful in a common bioinformatics workflow.

This paper also presents a uniform way to implement a domain specific language (DSL)
that avoids to write a full parser. The approach avoids unnecessary syntactic overhead to be
exposed to the user (e.g., Python decorators or unintuitively overloaded operators).

The remainder of this paper is structured as follows: In Section 2.1 we describe the DSL
for defining and documenting Snakemake workflows, which is illustrated by an exemplary
pipeline for calling single nucleotide polymorphisms (SNPs) in Section 2.2. Section 2.3 focuses
on the technical implementation of the Snakemake language as a Python-based DSL. The
engine that executes the workflow is described in Section 3, and a final conclusion is drawn
in Section 4.

2 The Snakemake Workflow Language

2.1 Language Definition
A workflow is defined in a Snakefile via a domain specific language close to Python syntax.
It consists of rules that define how to create output files from input files. The workflow is
implied by dependencies between the rules that arise from one rule needing an output file of
another as an input file.

A rule definition in a Snakefile specifies (1) a name, (2) any number of input and output
files and (3) either a shell command or Python code that creates the output from the input.
Input and output files may contain multiple named wildcards and are specified as Python
strings. In extended Backus-Naur Form (EBNF), the Snakemake syntax can be defined as
follows.

snakemake = statement | rule
ni = NEWLINE INDENT

rule = "rule" (identifier | "") ":" ruleparams
ruleparams = [ni input] [ni output] [ni threads] [ni (run | shell)] NEWLINE snakemake

input = "input" ":" parameter_list
output = "output" ":" parameter_list
threads = "threads" ":" integer

run = "run" ":" ni statement
shell = "shell" ":" stringliteral

The terminal symbols NEWLINE and INDENT and the italic non-terminals refer to plain
Python syntax, e.g. statement allows any Python statement, stringliteral denotes a Python
string (i.e. "..." or """..."""), and parameter_list enables the same syntax as for the
parameters of Python functions.

2.2 Example: A SNP-Calling Pipeline
Listing 1 shows a single nucleotide polymorphism (SNP) calling pipeline in the context of
next generation sequencing, implemented as a Snakemake workflow. SNP calling is a typical
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Listing 1 Example Snakefile for read mapping and SNP calling.
1 SAMPLES = "100 101 102 103".split ()
2 REF = "hg19.fasta"
3 DBSNP = "dbsnp.vcf"
4
5 rule all:
6 input : "calls /{ sample }. vcf". format ( sample = sample )
7 for sample in SAMPLES
8
9 rule map_reads :

10 input : ref = REF , reads = "{ sample }.{ group }. fastq"
11 output : temp("{ sample }.{ group }. sai")
12 threads : 8
13 shell : "bwa aln -t{ threads } {input.ref} {input.reads} > { output }"
14
15 rule sai_to_bam :
16 input : REF , "{ sample }.1. sai", "{ sample }.2. sai",
17 "{ sample }.1. fastq", "{ sample }.2. fastq"
18 output : protected ("{ sample }. bam")
19 shell : "bwa sampe \
20 -r’@RG \\ tID :{ wildcards . sample }\\ tSM :{ wildcards . sample }’\
21 {input} | samtools view -Sbh - > { output }"
22
23 rule sort:
24 input : "{name }. bam"
25 output : "{name }. sorted .bam"
26 shell : " samtools sort {input} { wildcards .name }. sorted "
27
28 rule index:
29 input : "{name }. sorted .bam"
30 output : "{name }. sorted .bam.bai"
31 shell : " samtools index {input}"
32
33 rule realign_targets :
34 input : ref = REF , dbsnp = DBSNP
35 output : "known. intervals "
36 shell : "gatk -T RealignerTargetCreator -R {input.ref }\
37 -known {input.dbsnp} -o { output }"
38
39 rule realign :
40 input : bam = "{ sample }. sorted .bam",
41 bai = "{ sample }. sorted .bam.bai",
42 ref = REF , intervals = "known. intervals "
43 output : " realigned /{ sample }. sorted .bam"
44 shell : "gatk -T IndelRealigner -I {input.bam} -R {input.ref }\
45 --targetIntervals {input. intervals } -o { output }"
46
47 rule call_snps :
48 input : bam = " realigned /{ sample }. sorted .bam",
49 bai = " realigned /{ sample }. sorted .bam.bai",
50 dbsnp = DBSNP , ref = REF
51 output : "calls /{ sample }. vcf"
52 shell : "gatk -T UnifiedGenotyper --dbsnp {input.dbsnp }\
53 -I {input.bam} -R {input.ref} -o { output }"
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task e.g. in cancer genomics [10]. In this example, paired-end sequence reads are given as
.fastq files for four samples with IDs from 100 to 103, and shall be mapped to the human
reference genome. Afterwards, reads are realigned to avoid artifacts due to the mapping
heuristic, and finally SNPs are called. The Snakefile consists of seven rules that each start
with the keyword rule followed by their name and the indented definitions of input and
output files and executable shell commands.

In lines 1–3, a list of sample IDs is created, the desired genome reference and the database
of known SNPs is specified in plain Python. As Snakemake rules can intermix with any
Python statement, accessing configuration files or environment variables, even waiting for
user input or opening a graphical user interface is possible. In line 9, the rule map_reads aligns
the sequence reads to the reference genome with the BWA software [7], which is assumed to
be installed on the system. Specified in braces inside the input and output files, the rule uses
two named wildcards, since it shall be applied to the first and the second read of each read
pair (wildcard {group}) from each sample (wildcard {sample}). BWA creates suffix array
intervals (.sai-files) which are converted to the common format for aligned reads in the
rule sai_to_bam (line 15). These two rules illustrate major patterns for accessing input and
output files inside a rule. In the rule map_reads, input files are named and can be accessed as
attributes of the input-object (e.g. {input.ref} in line 13). In rule sai_to_bam, all input files
are accessed at once (separated by a space) via {input} (line 21).

BWA’s internal .sai-files can be deleted once the .bam-files are created, which are in
turn worth to be write-protected to avoid accidental deletion. Snakemake supports this by
marking files as temp (line 11) or protected (line 18), respectively.

Next, the rule realign (line 39) uses the GATK [9] to ensure that the read alignments
are free of artifacts from the mapping heuristic. It depends on the rules sort (line 23) and
index (line 28) being applied to the alignments from BWA to create an index for the .bam
file using samtools [8].

The actual SNP calling with GATK takes place in the rule call_snps (line 47); the result
is saved to .vcf-files. Here, the alignments created by the rule realign are used. Further,
another .bam-index has to be created, hence the rule index is used a second time.

When Snakemake is invoked without a specific target, the first rule (here called all) in
line 5 is executed, which ensures that the .vcf-files and hence all needed intermediate files
are created for each sample.

In place of shell commands, Snakemake allows to write pure Python code using a run
block instead of a shell block to create the output files of a rule. For example, we may want
to plot the coverage histogram as a quality control.

from matplotlib . pyplot import hist , savefig
rule plot_coverage_histogram :

input : "{ sample }. bam"
output : hist = "{ sample }. coverage .pdf"
run:

hist(list(map(int ,
shell (" samtools mpileup {input} | cut -f4",
iterable = True ))))

savefig ( output .hist)

Here, we use the hist function of Python’s matplotlib module [6] and parse the output of
Snakemakes shell function, that invokes samtools to calculate a per-nucleotide coverage.
This demonstrates how to apply Python code to the result of shell commands.

The example workflow illustrates the readability of the language and how the workflow
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rules document themselves. The advantage of conceptually separating a rule’s name from the
output file(s) it produces becomes evident, as does the benefit of mutiple named wildcards
for input and output files.

2.3 Implementation
In general, two extreme approaches for implementing a domain specific language are thinkable:
a full parser can be generated, or in-language facilities can be overloaded. The first allows a
concise syntax, the second (that can be approached e.g. by Python decorators or operator
overloading) can sometimes lead to syntactical overhead and unintuitive constructs. Here we
present a third way, using a finite automaton that translates tokens from the Snakemake
language to a sequence of Python tokens, that are interpreted by the ordinary Python
interpreter. Thereby, only a small subset of tokens needs to be altered. Formally, the
procedure can be specified by an automaton that recognizes the Snakemake grammar
(Section 2.1) and an emission function that emits Python language terminal symbols based
on the current state and token.

I Definition 1 (Snakemake Language Automaton). Given the Snakemake grammar, let NT
be the set of non-terminals and T be the set of terminal symbols. Over the alphabet of
tokens Σ = T , the Snakemake language automaton is denoted as (Q, q0, F,Σ, δ) with states
Q = NT , start state snakemake ∈ NT , and a single final state F = {statement}. The
transition function δ : Σ×Q→ Q is given by the EBNF grammar of Section 2.1.

The above finite automaton definition is possible because in the Snakemake grammar each non-
terminal is uniquely determined by a prefix of terminal symbols. We extend the automaton
with an emission function e : Q× Σ→ {(t0, t1, . . . ) | t0, t1, . . . ∈ T ′}, where T ′ is the set of
terminal symbols in the Python language, such that rule definitions are converted to Python
API calls. For example, the rule map_reads from Listing 1 is translated to the following
Python code using the (less user-readable) function decorator syntax (function decorators
are higher-order functions that operate on Python functions). This internal representation is
evaluated by the Python interpreter.

@rule(" map_reads ")
@input (ref = REF , reads = "{ sample }.{ group }. fastq")
@output (temp("{ sample }.{ group }. sai"))
@threads (8)
@run
def __map_reads (input , output , wildcards , threads ):

shell ("bwa aln -t { threads } {input.ref} {input.reads} > { output }")

In Snakemake, multiple named wildcards are allowed in input and output files. To
determine if a rule can create a requested file, its defined output files are matched against
the requested file. Thereby, wildcards are replaced by the Python regular expression .+ per
default (i.e. any non empty string is matched in a greedy fashion). The substring a wildcard
matches to is then propagated to the input files. When the rule map_reads is requested to
create a certain file, e.g. 100.1.sai, the wildcard {sample} matches 100 and {group} matches
1, so that the input file 100.1.fastq is expected. Multiple wildcards may in some cases
introduce the problem of ambigous matches. To avoid such problems, wildcards can be
restricted to particular regular expressions. In this case, to force the greedy matching to
the intended solution, {group} could be replaced by {group,[12]}, such that the regular
expression [12] is used instead of .+. The regular expression syntax is that of Pythons re
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map_reads
sample: 101

group: 2

sai_to_bam

map_reads
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map_reads
sample: 103
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Figure 1 Directed acyclic graph of jobs for the example workflow from Listing 1.

module, which is almost identical to PERL 5’s regular expressions, except for some corner
cases.

3 The Snakemake Execution Engine

When Snakemake is invoked with a Snakefile, it determines a plan of rule executions that are
needed to create the requested output. We call the planned execution of a rule a job. Since
one rule can be executed for multiple wildcard values, more than one job for each rule is
possible. A job may need certain input files that are created by other jobs, which gives rise
to a directed acyclic graph (DAG) that represents the execution plan (see Figure 1). The
nodes of the DAG are jobs, and a directed edge between job A and B means that the rule
underlying job B needs the output of job A as an input file. A path in the DAG represents a
sequence of jobs that have to be executed serially. Importantly, two disjoint paths in the
DAG can be executed independently from each other, i.e., in parallel.

On top of per-job parallelism, the number of threads that a single job uses can be specified
in a rule, via the parameter threads (line 12 of Listing 1), which defaults to 1 if it is not
specified. The number of threads can be accessed in the shell command by the variable
threads and thus passed to external tools that support multithreading. Snakemake tries to
maximize parallelism (i.e. minimize the number of idle cores) up to a given threshold of
available CPU cores. Considering that each job can use one or more threads as explained
above, the parallel job scheduling problem can be cast as follows.

I Definition 2 (Parallel Job Scheduling). Let J be the set of jobs that are ready to execute
(i.e. do not depend on missing input files), and tj be the number of threads for job j ∈ J .
Let T be the given threshold of available cores; if a job requests more threads (i.e. tj > T ),
the threads are reduced to T . Thus the problem is to find E∗ among all E ⊆ J such that∑

j∈E min(tj , T ) is maximized while the sum remains bounded by the number of currently
idle cores.

The parallel job scheduling problem is a classical binary knapsack problem and can
be solved by dynamic programming in pseudo-polynomial time. Given current CPU core
numbers, the solution is instantaneous. The problem is solved every time a new job becomes
ready to execute and idle cores exist. Snakemake first executes the jobs in the solution E∗.

Solving above problem to schedule jobs allows Snakemake to scale to environments with
a hard limit of used CPU cores, e.g., when multiple users share the same compute server, by
choosing T appropriately. Further, using only as many threads as there are cores available
can be beneficial for performance since it reduces the amount of context switching.
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Apart from running on single machines, Snakemake contains a generic mechanism that
allows the execution of jobs on a batch system or a compute cluster engine. For this, a
submit command that handles shell scripts (e.g. qsub) and a shared file system accessible by
all cluster nodes has to be available. Snakemake compiles every job into a shell script and
submits it with the given command once it is ready to execute. It then queries about the
existence of a certain guard file that indicates that the job is finished in regular intervals.

Per default, Snakemake only executes rules if the output files are not present or the
modification time of the input files is newer. Together with the automatic deletion of output
files from incomplete rule executions (e.g. due to a failing shell command), this enables
Snakemake to avoid duplicate work when resuming workflows.

To analyse the workflow, Snakemake provides options to perform a dry-run without actual
execution of jobs, give the reason for each executed job and print the DAG to the graphviz
.dot format [1] for visualization (see Figure 1).

4 Conclusion

Snakemake is a pythonic workflow system inspired by GNU Make, that allows to define a
workflow in terms of rules that create output files from input files and thereby automatically
handles dependencies and parallelization. It is the first workflow system to support multiple
named wildcards and output files in rules. We show that this is especially useful in bioinform-
atics workflows. Further, Snakemake offers a simple Python-like syntax with high readability,
and allows to efficiently intermix Python and shell commands. This removes the need to
write external shell or PERL scripts for simple format conversions, and additionally allows
to run complex algorithms within the workflow. Further, this allows to make use of web
services, e.g. using specialized libraries or the built-in Python http client and XML parsing
facilities.

Our approach exemplifies an automaton-based implementation of a domain-specific
language without the need to generate a full parser or creating syntactical overhead by
overloading language features.

By optimizing the schedule of jobs against a given threshold of available cores while
taking also intra-job parallelism into account, a Snakefile scales from single core workstations
over multi-core servers to compute clusters of different architectures, without the need to
modify the workflow.
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