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Abstract
DNA nanoarchitechtures require carefully designed oligonucleotides with certain non-hybridization
guarantees, which can be formalized as the q-uniqueness property on the sequence level. We study
the optimization problem of finding a longest q-unique DNA sequence. We first present a conve-
nient formulation as an integer linear program on the underlying De Bruijn graph that allows to
flexibly incorporate a variety of constraints; solution times for practically relevant values of q are
short. We then provide additional insights into the problem structure using the quotient graph of
the De Bruijn graph with respect to the equivalence relation induced by reverse complementarity.
Specifically, for odd q the quotient graph is Eulerian, so finding a longest q-unique sequence is
equivalent to finding an Euler tour and solved in linear time with respect to the output string
length. For even q, self-complementary edges complicate the problem, and the graph has to be
Eulerized by deleting a minimum number of edges. Two sub-cases arise, for one of which we
present a complete solution, while the other one remains open.
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1 Introduction

DNA synthesis technology allows to synthesize custom oligonucleotides of up to 80–100
basepairs (bp). Such oligonucleotides may assemble into larger regular structures, such as
grids of 4x4 tiles [6]. These structures in turn provide a basis for attaching other molecules
to protruding DNA arms, such as antibodies to capture specific proteins, which is why
the research field of DNA nanoarchitechtures offers exciting future prospects for molecular
biology and medicine.

Single-stranded DNA molecules form stable double-stranded helices according to the
canonical Watson-Crick base pairing rules (A-T, G-C). The stability of a DNA double
helix is given by a fine balance of interactions, such as hydrogen bonds between bases,
stacking interactions of parallel bonds, and thermodynamic properties, such as the melting
temperature or the free Gibbs Energy of a DNA sequence [9].
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The problem of designing appropriate DNA oligonucleotide sequences for assembly into a
desired structure has been pioneered by Seeman, who in cooperation with Kallenbach devel-
oped the semi-automated SEQUIN software [10] for this purpose. Later, Feldkamp developed
the DNA sequence compiler (dsc [7]) that allows to specify constraints between oligonu-
cleotides as a mini-language and automates the search process by randomized construction
and backtracking on sequences that violate the specifications.

For both approaches, a central aspect of the design problem is that the chosen oligonu-
cleotides must be q-unique (see Section 2). Of course, besides q-uniqueness, other factors
play an important role as well, such as uniform thermodynamic stability of all hybridizing
regions in the desired structure. Here, however, we focus on the theoretical and combinatorial
aspects of q-uniqueness.

We present a novel view on the computational problem of finding a longest q-unique DNA
sequence. This is of practical relevance: A long q-unique sequence can be cut at arbitrary
positions to obtain sets of oligonucleotides of any length that do not interact with each other.
For practically relevant values of q, the problem is straightforwardly solved as an integer
linear program (ILP) defined on a (standard directed) De Bruijn graph (Section 3). This
approach has the advantage that it allows to incorporate quite general constraints (exclusion
of certain substrings such as long homopolymers, inclusion of mandatory substrings, etc.)
and can be solved with standard technology.

Interestingly, as we show in Section 4, the basic design problem can be cast as an Euler
tour problem in an undirected variant of the De Bruijn graph, essentially the original De
Bruijn graph modulo the equivalence relation induced by reverse complementarity. This
graph is Eulerian for odd values of q, and the maximization problem has a closed-form
solution. For even values of q, the graph is not Eulerian, and the problem arises to convert
it into an Eulerian graph with a minimum number of edge (q-gram) deletions. An explicit
solution is obtained when self-complementary edges are allowed in the graph, but when they
are forbidden, a closed-form solution remains open.

2 Preliminaries

The reverse complement s of a sequence s = σ1σ2 · · ·σn over the DNA alphabet Σ =
{A,C,T,G} is defined as s := σnσn−1 · · ·σ1, where A = T, T = A, C = G and G = C.
A length-q string is an element of Σq and called a q-gram. A q-gram that is a substring a
given sequence s is called a q-gram of s. In the following, for a given sequence s and a given
(small) q, we consider the sequence of overlapping q-grams of s. For s = GATTACA and
q = 4, we obtain the q-gram sequence (GATT, ATTA, TTAC, TACA).

A sequence s is said to be q-unique [7] if the following requirements are fulfilled.
1. Every q-gram occurs at most once in s.
2. If a q-gram occurs in s, then its reverse complement does not.
Note that the second requirement implies that (for even q) no self-complementary q-gram
may occur in s. For odd q, self-complementary q-grams do not exist.

The q-uniqueness requirements (for small values of q) ensure that the designed sequence
does not hybridize to itself in a stable way, except at exact reverse complementary counterparts,
which are not part of the designed sequence, but introduced deliberately at a later stage.
The first requirement ensures that each q-gram of s has exactly one reverse complementary
counterpart and hence binds at a well-defined location to the reverse complement of s. If
this requirement is violated, switching may occur, as shown in Figures 1a, 1b, which leads to
unstable DNA structures. The second requirement ensures that s does not bind to itself; the
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Figure 1 Sequences violating the q-uniqueness requirements. (a), (b): The q-gram TCT occurs
twice, which leads to two alternative hybridizations. (c), (d): Existence of (self-)complementary
q-grams results in the possibility of the sequence folding unto itself or binding to another molecule
of the same type.

adverse case is shown in Figures 1c, 1d.
We note that there exist 4q DNA q-grams. The number of self-complementary q-grams is

zero if q is odd, and 4q/2 if q is even. Thus, an upper bound on the number of q-grams that
can be used in a q-unique sequence is Mq := 4q/2 if q is odd, and Mq := (4q − 4q/2)/2 if q is
even. If self-complementary q-grams are allowed (a variant of the problem that is irrelevant
in practice, but combinatorially interesting), the Mq-bound for even q is increased by 4q/2.
Thus M ′q = 42/2 if q is odd and M ′q = (4q + 4q/2)/2 if q is even.

The optimization problem at hand is to find a q-unique sequence of maximal length. In
the following, we study the question whether the upper bound Mq can be achieved. For this,
the Mq selected q-grams would have to be ordered such that consecutive q-grams overlap by
(q − 1) characters. We use a De Bruijn graph as a convenient data structure to study the
optimization problem.

3 An Integer Linear Program on the De Bruijn Graph

We briefly recall the definition of a (directed) De Bruijn graph (DBG).

I Definition 1 (De Bruijn graph). The De Bruijn graph of order q ≥ 2 over the alphabet Σ
has vertices and edges

V := Σq−1,

E := {(σ1s, sσ2) : σ1, σ2 ∈ Σ, s ∈ Σq−2}.

Thus, the vertices are (q − 1)-grams and the edges represent q-grams by connecting two
vertices such that the source’s (q − 2)-suffix equals the sink’s (q − 2)-prefix.

Traversing a DBG using every edge at most once and avoiding edges labeled with self-
complementary q-grams and complementary q-grams of used edges results in a path that
describes a q-unique sequence. The optimization problem of finding a longest q-unique
sequence can now be cast as an edge selection problem in the DBG: Find an edge sequence
of maximal length that forms a path (or cycle), such that each edge is traversed at most
once, traversal of an edge implies non-traversal of its reverse complement, and (for even q)
no self-complementary edges are traversed.

This problem in turn can be conveniently cast as an integer linear program (ILP); see
Table 1. Three sets of binary indicator variables are defined: (xe)e∈E , (av)v∈V , and (zv)v∈V .
The variable xe indicates whether edge e is selected. Variables av and zv indicate the start
vertex and end vertex of a path, respectively. The objective function naturally maximizes
the number of selected edges.
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Table 1 ILP for selecting a maximal number of edges under q-uniqueness constraints. Selected
edges may form cycles and/or one path. All variables are binary indicator variables: edge selection
indicators xe, path start indicators av, and path end indicators zv. Functions γ, In and Out are
defined in the text.

Maximize
∑

e∈E
xe

subject to 0 ≤ xe ≤ 1, xe ∈ Z ∀e ∈ E,
0 ≤ av ≤ 1, av ∈ Z ∀v ∈ V,
0 ≤ zv ≤ 1, zv ∈ Z ∀v ∈ V,

xe + xγ(e) ≤ 1 ∀e ∈ E,∑
e∈In(v)

xe + av =
∑

e∈Out(v)

xe + zv ∀v ∈ V,

∑
v

av ≤ 1,∑
v

zv ≤ 1,

av + zv ≤ 1 ∀v ∈ V.

Let γ(e) denote the edge labeled with the reverse complement of e’s label. To ensure
q-uniqueness, we must not select both edge e and its complement, thus xe + xγ(e) ≤ 1 for all
edges e ∈ E. If e = γ(e), this becomes 2xe ≤ 1, which implies xe = 0 because of the integer
constraints.

Let In(v) and Out(v), respectively, be the set of incoming and outgoing edges of vertex v.
To ensure the chosen edges form a path or cycle, we require that for every vertex the number
of incoming edges equals the number of outgoing edges. If the path is not a cycle, the start
vertex has one incoming edge less than outgoing edges, and the end vertex has one outgoing
edge less than incoming ones. Thus we require

∑
e∈In(v) xe + av =

∑
e∈Out(v) xe + zv for all

v ∈ V . To ensure that we obtain at most one start vertex and one end vertex and that they
are not identical, we require

∑
v av ≤ 1,

∑
v zv ≤ 1 and for all v ∈ V : av + zv ≤ 1.

Table 1 summarizes the ILP. Its conditions do not ensure that the solution is a single
path. Instead, the solution may consist of one or more cycles and at most one path. To
ensure a single path or cycle, further constraints may be added: Assume that the optimal
solution of the ILP in Table 1 consists of two vertex-disjoint components, such as two cycles
on vertex sets V ′ and V ′′, respectively. Then we add a constraint requiring the existence
of an edge between V ′ and V ′′ and solve the ILP again. This technique of adding violated
constraints on demand is called cutting-plane method. However, we found that the solution
of the ILP from Table 1 already produced a single cycle or path, i.e., adding cutting planes
was not necessary.

Table 2 shows the ILP’s solution for 2 ≤ q ≤ 8. The ILP was implemented in Python with
the python-zibopt library [8] and solved with the SCIP solver [1]. The obtained solutions
were single cycles for odd q and single paths for even q. The ILP’s optimal solution agrees
with the upper bound Mq for odd q (cf. Section 2), but differs for even q ≥ 4. These findings
suggest that for odd q, the problem is trivial and that the solution agrees with the upper
bound. However, self-complementary q-grams appear to complicate the problem. We now
present a different approach that proves that for odd q, the above conjecture holds, and that
the solution can be obtained in linear time (without resorting to an ILP).
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Table 2 ILP results on DNA De Bruijn graphs of order 2 ≤ q ≤ 8. |Eq|: number of edges, |Esc
q |:

number of self-complementary edges, Mq: Upper bound on the number of selectable q-grams (see
Section 2), opt: optimal ILP solution value (≤Mq), diff: Mq − opt.

q |Eq| |Esc
q | Mq opt diff

2 16 4 6 6 0
3 64 0 32 32 0
4 256 16 120 115 5
5 1024 0 512 512 0
6 4096 64 2016 1959 57
7 16384 0 8192 8192 0
8 65536 256 32640 32279 361

4 Euler Tours of the De Bruijn Quotient Graph

To represent the double-stranded nature of DNA directly in the graph, the central idea is to
collapse vertices and edges whose label is the reverse complement of each other into a single
vertex or edge. Formally, we define an equivalence relation ≡ by s ≡ t := (s = t or s = t).
Each equivalence class has size 1 (for self-complementary sequences) or 2 (all others). The De
Bruijn graph modulo ≡ on edges and vertices is called De Bruijn Quotient Graph (DBQG).
It was introduced by Anderson et al. [2] in a different context (to construct universal DNA
footprints). Each vertex of the quotient graph is jointly labeled with a (q − 1)-gram and its
reverse complement; each edge represents a q-gram and its reverse complement.

I Definition 2 (De Bruijn quotient graph, DBQG). The De Bruijn quotient graph of order
q ≥ 2 over the DNA alphabet Σ has vertices and edges

Ṽq := {{s, s} : s ∈ Σq−1},

Ẽq :=
{{
{σ1s, s σ1}, {sσ2, σ2 s}

}
: σ1, σ2 ∈ Σ, s ∈ Σq−2

}
,

where s denotes the reverse complement of a sequence s.

We observe that in the DBQG of order q,

|Ṽq| = [4(q−1) + 4(q−1)/2]/2, |Ẽq| = 4q/2 if q is odd,

|Ṽq| = 4(q−1)/2, |Ẽq| = [4q + 4q/2]/2 if q is even.

A key characteristic of the quotient graph is that it contains paths not corresponding to
valid sequences. Although the edges of the quotient graph are undirected, choosing one of
the edge labels determines a direction. As a consequence, a vertex v which is reached via an
edge e1 must be left via an edge e2, such that the label of v, the (q− 1)-suffix of a label of e1
and the (q − 1)-prefix of a label of e2 are identical. Since in this case, we may also enter v
via e2 and leave via e1, we refer to e1 and e2 as admissible edge pair. Consider the vertex
{ACT, AGT} in Figure 2. By entering it via CACT, the vertex label ACT is selected. Now
only the edges starting with ACT can be followed to leave the vertex, here {ACTC, GAGT},
{ACTG, CAGT}, {ACTT, AAGT}, or {ACTA, TAGT}.

An admissible path in the DBQG is a path whose internal vertices are entered and left
via admissible edge pairs. We consider only admissible paths from now on and “path” always
refers to admissible path.
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Figure 3 Vertex types of a DBQG with odd q.

The structure of the DBQG is more complex than the structure of the original DBG due
to the presence of additional self-loops. In the DBG, an edge e is a self-loop from v to v if
and only if e is labeled with a homopolymer, e.g., AA. . . A = Aq and v is labeled with the
corresponding homopolymer of length q − 1. However, in the DBQG, an edge e is a self-loop
if its label is either a homopolymer or self-complementary (this new case only occurs for
even q). In the following sections, we precisely discuss this fact’s implications on the graph
structure and the maximization problem.

Each self-loop is part of two admissible edge pairs: First the entering edge and the loop
are one admissible edge pair and then the loop and a leaving edge are the second one.

We define a vertex to be balanced if all incident edges can be arranged in admissible edge
pairs, including self-loops. A DBQG is Eulerian if there exists a path or cycle that uses each
edge exactly once. The following lemma is an adaptation of the same lemma for standard
undirected graphs and proved in exactly the same way.

I Lemma 3. A DBQG is Eulerian if and only if each vertex is balanced.

If the DBQG is Eulerian, an Euler tour may be constructed in linear time with a slight
modification of the Hierholzer algorithm [4].

Note that a path that traverses each edge at most once and that does not traverse
any self-complementary edge corresponds by definition to a q-unique double-stranded DNA
sequence.

4.1 The Case of Odd q

Using the DBQG, we can understand why finding a longest q-unique sequence is easy when
q is odd. In particular, the optimization problem can be solved in linear time with respect to
the resulting q-unique sequence.

I Theorem 4. For odd q, the DBQG is an Eulerian graph [2]. Each Euler tour is a cycle
whose overlapping concatenated edge labels specify a q-unique sequence of maximum length.
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Figure 4 Vertex types of a DBQG with even q.

Proof. Recall from Section 1 that for odd q, the upper bound on the number of selectable
q-grams is Mq = 4q/2 = |Ẽq|. Thus if an Euler tour exists, each possible q-gram is used
exactly once, and the upper bound is attained.

To prove that an Euler tour exists (this was already noted in [2]), we need to show that
each vertex is balanced according to Lemma 3. Thus we consider the possible vertex types
in a DBQG of odd order; see Figure 3. There are self-complementary vertices (the vertex
label is self-complementary), homopolymer vertices (the vertex label is the repetition of a
single nucleotide) and standard vertices. Note that the self-loop of a homopolymer vertex
can be traversed when entering and leaving the vertex via an admissible edge pair. While
the incident edges differ in number and type, each vertex is balanced. J

4.2 The Case of Even q

As in the odd case, we consider all types of vertices in a DBQG for even q, see Figure 4 and
note that the graph is not Eulerian due to unbalanced vertices with one self-complementary
edge (Figure 4d). It follows that an Euler tour cannot exist, and the bound Mq cannot be
attained, explaining the differences in Table 2.

Finding a longest q-unique sequence now becomes the following problem: Given an
undirected graph G = (V,E), find an Eulerian graph G∗ = (V,E∗) with E∗ ⊆ E such that
|E \ E∗| is minimal. We call this process Eulerization-by-deletion. (This use of the term
Eulerization is non-standard, as the literature reserves the term for Eulerization by duplication
of existing edges.) In standard undirected graphs, Eulerization-by-deletion is polynomially
solvable via minimum-weight perfect matchings [3, 5], where in our case the weight corresponds
to the path length between the matched odd-degree vertices. Unfortunately this approach
cannot be directly applied to the DBQG because of the restrictions imposed by admissible
edge pairs.

We consider two cases for even q. The first one is of theoretical interest and assumes that
the self-complementary edges still exist in the DBQG (i.e., self-complementary q-grams are
allowed). We present a simple construction to optimally Eulerize the DBQG, so finding a
maximal q-unique sequence is polynomially solvable. The second case is the original problem,
where self-complementary edges are removed. For this case, we also present a construction
to Eulerize the graph such that an Eulerian path exists; however, this construction is not
optimal. Therefore, we only obtain a lower bound on the number of selectable edges, and
the complexity remains open.

DBQG with self-complementary edges. Four types of vertices exist in the graph (Figure 4);
only the vertices with one self-complementary edge (Figure 4d) are unbalanced. We investigate
the the odd-degree vertices and their relations in the graph assuming q ≥ 4.



M. D’Addario, N. Kriege, and S. Rahmann 89

TAA
TTA

GAT
T

AA
TC

TTAA

AT
AA

TT
AT

CAT
A

TA
TG

A
A
T
G

C
A
T
T

CAT
ATG

CATG

GATC

ATC
GAT

G
ATG

C
ATC

ATAG
CTAT

ATA
TAT

ATAT

TAA
TTA

TTAGCTAA

TTAA

AT
AA

TT
AT

ATACGTAT

T
TA

C
G

TA
A

TATA

TAC
GTA

GTAC

CTAG

TAG
CTA

G
TA

G
C
TA

C

ATAG
CTAT

(a) Bat-group: To obtain an Euler tour in the graph, four
edges of this group must be deleted. Two of these must be
incident to the central vertex. Every other vertex is incident
to exactly one deleted edge. Non-deletable edges between
these vertices are not shown.

As
sT

AsT

sA
Ts

TsA
AsA

Ts
T

A
sCG

sT

AsG
CsT

Cs
sG

CsG

G
sG

C
sC

CsATsG
G
sC

sC
Gs

GsA
TsC

(b) Kite-group: The substring s of
length q−2 is self-complementary. To
obtain an Euler tour in the graph, two
edges of this group must be deleted
and each vertex is incident to exactly
one deleted edge.

Figure 5 Substructures in DBQG with even q.
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Figure 7 Path of length q/2 − 1 obtained
by cyclic permutation of self-complementary
edge CCTAGG into AGGCCT. When the self-
complementary edges and the path are removed,
all vertices on the path are balanced.

A bat-group is a set of 7 vertices centered around a vertex labeled {σ(σσ)q/2−1, σ(σσ)q/2−1},
σ ∈ Σ (Figure 5a). There are only 2 bat-groups (the central vertex is labeled with ATAT. . . A
or CGCG. . . C); each bat-group contains 8 self-complementary edges. The central vertex is
balanced, but the other six are not. At least four edges must be deleted to balance each
vertex in such a group, and Figure 5a shows several ways to achieve this.

Let s be a self-complementary (q−2)-gram. Then the kite-group of s is the set of 4 vertices
that are not part of a bat-group and are labeled with {σs, s σ}, for all σ ∈ Σ (Figure 5b).
Each kite-group contains four self-complementary edges. Because of the two bat-groups,
there are (4q/2−16)/4 kite-groups in the graph (for q = 4, there are none). At least two edges
must be deleted to balance each vertex in a kite-group, and Figure 5b shows all possibilities
to achieve this. In more detail, Figure 6 shows that a single edge (the central edge in the
figure) between two problematic vertices can be deleted, leaving both vertices balanced. For
the balance, the self-complementary edge in each of the vertices is essential.
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Figure 8 Alternative permutation path to delete: Vertex v1 in (a) and vertex v′
1 in (b) are the

cyclic permutation pair described in Section 4; so are v2 in (a) and v′
2 in (b). Now, (a) shows a

shorter path from v1 to v2 and (b) a longer one from v′
1 to v′

2.

Summarizing, to Eulerize the graph, it is both necessary and possible to delete δ :=
2 · 4 + (4q/2 − 16)/4 · 2 = 4q/2/2 edges. As we are equally satisfied with an Eulerian path
instead of a cycle, we allow two unbalanced vertices and re-add two edges.

I Theorem 5. In the DBQG for even q with self-complementary edges, an Eulerian subgraph
with N ′q := |Ẽq| − δ + 2 = 4q/2 + 2 edges exists; larger Eulerian subgraphs do not exist.

DBQG without self-complementary edges. When self-complementary edges are omitted,
deleting an edge connecting two odd-degree vertices may leave them unbalanced (consider
Figure 6 without the self-loops and with the central edge removed). Identifying an edge-
minimal set of paths between pairs of these vertices, whose deletion leaves all vertices
balanced, appears difficult and remains an open problem.

Here we present a systematic but sub-optimal construction. Consider a self-complementary
q-gram of the form st, where s and t have length q/2 and are reverse complements of each
other, and consider the vertices incident to st and its cyclic permutation ts. There is a path
of length q/2− 1 between these vertices (see Figure 7).

As there are two vertices with two self-complementary edges (Figure 4c), there are
4q/2/2− 2 such (s, t) pairs. Since an Eulerian path instead of a cycle suffices, one of these
paths may remain, resulting in ∆ := (4q/2/2− 3)(q/2− 1) edge deletions.

I Theorem 6. In the DBQG for even q without self-complementary edges, an Eulerian
subgraph with

Nq := (|Ẽq| − 4q/2)−∆ = (4q − 4q/2)/2− (4q/2/2− 3)(q/2− 1)

edges exists. Larger Eulerian subgraphs may exist.

For even q ≥ 6, the value of Nq does not match the optimal ILP solution and is therefore
suboptimal (e.g., q = 6: Nq = 1958, optimum 1959; q = 8: Nq = 32265, optimum 32279).
For q = 6, we can manually improve the Eulerization to match the ILP solution: Due to the
symmetry of some self-complementary edges it is possible to find an alternative shorter path
between two self-complementary edges. Figure 8 shows this alternative pairing. Deleting only
the path in Figure 8a and preserving that in Figure 8b saves exactly one edge. In general,
the problem of optimal Eulerization in this case remains open.
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5 Discussion and Conclusion

We presented two approaches to generate q-unique sequences, via an ILP and an Euler tour
in a De Bruijn quotient graph.

For odd q, the DBQG is Eulerian and an adaptation of a standard algorithm for finding
Euler tours yields an optimal algorithm. Additionally, the number of different longest
q-unique sequences is related to the number of Euler tours in the DBQG, which can be
computed by a small modification (accounting for admissible pairs instead of all edges) of
the BEST Theorem (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte, [11]) for standard
undirected graphs.

For even q, the DBQG turns out not to be Eulerian, and edges must be removed to
Eulerize it. In the variant where self-complementary edges are allowed, we presented an
optimal Eulerization by deleting edges, proving this problem variant to be as easy as the case
of odd q. When self-complementary edges are forbidden, the cyclic permutation construction
gives suboptimal results compared to the optimal ILP solution for even q ≥ 6.

In practice, the design problem of q-unique sequences is generally restricted to q ∈ {3, 4, 5},
but augmented by additional constraints: Some substrings might be prescribed (existing
DNA libraries that must be used) and others forbidden (homopolymers of certain length,
q-grams with too extreme GC-content). The ILP formulation supports such constraints by
fixing certain variables and provides reasonable performance for relevant values of q.

Respecting constraints with the approach based on the DBQG corresponds to the removal
of certain edges. Clearly, conducting a thorough structural analysis for individual constraints
is prohibitive. Therefore, this work poses the general problem of Eulerizing a given quotient
graph by removing a minimum number of edges, such that each vertex has even degree and
allows admissible edge pairings.
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