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—— Abstract

Hilbert and Husserl presented axiomatic arithmetic theories in different ways and proposed two
different notions of “completeness” for arithmetic, at the turning of the 20th Century (1900-
1901). The former led to the completion axiom, the latter completion of rewriting. We look into
the latter in comparison with the former. The key notion to understand the latter is the notion
of definite multiplicity or manifold (Mannigfaltigkeit). We show that his notion of multiplicity
is understood by means of term rewrite theory in a very coherent manner, and that his notion
of “definite” multiplicity is understood as the relational web (or tissue) structure, the core part
of which is a “convergent” term rewrite proof structure. We examine how Husserl introduced
his term rewrite theory in 1901 in the context of a controversy with Hilbert on the notion of
completeness, and in the context of solving the justification problem of the use of imaginaries in
mathematics, which was an important issue in the foundations of mathematics in the period.
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1 Introduction

Two characteristic notions of completeness of arithmetic appeared at the same place, Géttingen
in Germany, in 1900-1901, at the same Faculty of Philosophy, one introduced by Hilbert of
the Mathematics Section, and the other introduced by Husserl of the Philosophy Section.
The notion of completeness by Hilbert is well known: completeness in his sense ensures
existence of a categorical model of an axiomatic system. On the other hand, Husserl’s
notion of completeness is not well known: completeness in his sense ensures a mathematical
multiplicity or manifold (Mannigfaltigkeit) to be “definite”. His notion of definite multiplicity
has not been clarified very well until today although many efforts for clarifications have been
made by a large number of former works. The purpose of this paper is to show that Husserl’s
definite multiplicity, hence completeness, can be well understood by the helps of term rewrite
theory.

We explain how Husserl’s notion of completeness is different from Hilbert and how he
reached his idea by interpreting Hilbert’s axiomatization of arithmetic in a slightly different
way. We, in particular, show that Husserl introduced the various basic notions of term rewrite
proofs. His motivation of the study on completeness was originated from “the justification
problem of the use of imaginaries in mathematics”, which is concerned with the conservation
problem in the modern logical sense. He reached his solution in 1901 and presented it at
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the Mathematical Society Meeting invited and organized by Hilbert at Gottingen in the
same year. The lectures is now called his Double Lecture (November and December). as he
gave two talks there. He gave a solution using the notions of syntactic completeness and
consistency (syntactic completeness for the original system and consistency for enlarged
system with imaginaries) as the first rough outline. However he went further to clarify as to
what was the completeness condition, then he explained it by means of, essentially, term
rewrite theory. Husserl introduced his notion of definiteness of multiplicity or manifold to
explain his notion of completeness. We show that a multiplicity of an axiomatic system,
in his sense, is the whole web (or tissue) structure of rewrite equational-proof formation
steps (or reduction moves) and term-formation steps (or moves), and that the notion of
definiteness of a multiplicity corresponds to the notion of convergence in the modern term
rewrite theory. A form of (Knuth-Bendix) completion procedure was also proposed by Husserl
in 1901, in order to make a non-definite multiplicity definite. We shall explain these with
some textual evidences (with the use of Husserl’s several manuscripts in 1901); more detailed
references and quotations as well as more philosophical discussions of the subject will appear
in the subsequent papers. Husserl in fact used the word “term” and considered the notion of
multiplicity as the term-rewrite computational content of an axiomatic system. But he also
used the words, “concept” (of a term), and “object of of a concept” (of term), keeping his

philosophical framework of significative intention-objectivity in the Logical Investigations.

Moreover, the term-rewrite reductions to normal forms was considered as the significative
fulfillment framework of the Sixth Investigation, to some extent. We shall discuss the further
philosophical discussions related to these subjects in the subsequent philosophical paper.!

Roughly speaking, by completeness of arithmetic Hilbert meant the maximal extension of
a model to reach a categorical (unique) model, which is the continuum, while Husser]l meant
the minimal term model based-reductive proofs web (tissue) structure, which is, roughly
speaking, his notion of definite multiplicity. Husserl argued, against Hilbert, that this way to
understand completeness is needed to solve the problem of justifying the use of imaginaries
in mathematics.? Husserl distinguished the two notions of completeness clearly from the
point of view of the justification problem of imaginaries, as if the axiomatic system were
complete in the Hilbert sense (which he called “essentially complete” compared with his
“outer-essentially complete”), the purpose of him to investigate in the problem would be
hidden since no possibility of extending the original complete axiomatic system to an enlarged
system with imaginearies would remain[Hua XII, p.445] . Hence, in order to understand the
background issues and the motivation how Husserl reached a theory of rewriting proofs, we
explain the problem of justifying the use of imaginaries in mathematics briefly. The problem
of justification of the imaginaries had been one of the issues in philosophy of mathematics
since Leibniz in the 17th Century, but in particular in the period of the end of the 19th
Century. Husserl reached in 1901 to a general theory of convergent term rewriting and
completion in the context of attacking this question.

The question of justifying the use of imaginaries in mathematics had been raised by
various scholars both in mathematics and in philosophy at the turning of the century, and

! In this paper, we do not compare our work with former works related to the Double Lecture, except for
a limited number of references and comments. We shall discuss further comparisions in the subsequent
paper.

It is also noted that Hilbert first considered an axiomatic foundations of geometry and reduced his
foundational issues on consistency of geometry to that of (real number) arithmetic, while Husserl did in
the opposite way; he believed his term rewrite theory on arithmetic should work with geometry.
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the research question was in the air.? A typical way of the questioning was: “How can we
justify the use of imaginary numbers in the course of proving a proposition or calculating an
equation referring only to concepts on real numbers? Can such a proof or calculation through
imaginaries be always transformed to a proof or calculation referring only to concepts on
real numbers?”

Another example would be: “How can we justify an analytic proof techniques for proving
of a theorem on elementary number theory?”

Husserl considered various cases of a relatively real system and its enlarged system with
relatively imaginaries with respect to the real, and attacked the problem of imaginaries in a
general arithmetical setting in 1901, to tried to find a general condition (from the term-rewrite
theoretic view) to settle the problem.* Hilbert in his peak period of logic-foundational studies
(in the 1920’s) also considered a general framework of enlarged system with imaginaries,
although Hilbert stuck to a fixed “contentual” finitist mathematical system for the original
“real” system.’

The problem of justification of imaginaries in mathematics in the Husserl-Hilbert style is
understood (at least roughly). as the problem to show (a sort of) “conservative relation” of
axiomatic systems. Consider two formal axiomatic systems S; C S2 where

Sy: original [real] system,
So: enlarged system with some imaginaries

[Conservation Property] For any real proposition A of Sy, if A is provable in Sy then A is
always provable in S, namely,
SQ FA=— Sl H A7

then Sy is called a conservative extension of Sy (and S is called a conservative subsystem of
S5)©

3 See [Hartimo 2007] [Hartimo 2010] for the historical background and context at the end of the Century
on the problem of justification of the use of imaginaries around the turning of the century.

They include any variant of the usual formal axiomatic natural number theory, as well as any formal the-
ory of integers, of rationals, of real numbers, of complex numbers, etc.[Schuhmann and Schuhmann 2001,
p.105-p.106], [Hua XII, p.442-p.443] as well as (propositional) logical calculus [Hua XII, p.487-p.488]
5 Cf. [Hilbert 1926], also [Detlefsen 1947] and [Kreisel 1958], for Hilbert’s consistency proof program. It
is possible that Hilbert’s (revised) presentation of the consistency program in the mid 1920’s, using the
conservation problem framework, was a result of the influence of Husserl’s 1901 talk to Hilbert, which
was pointed out in [Okada 1987].

The conservative delation problems, hence the justification problems, had been discussed in history of
the development of mathematics (although the property cannot always be expected as Godel showed in
his Incompleteness Theorem (1931). Note that both Leibniz and Gédel emphasizes the usefulness of
introducing imaginaries by pointing out the effect of speeding-up and servayability of proving the real
propositions. Leibniz, pointed out usefulness of placing Lemma (hence the use of cut-rule in the sense
of Gentzen, while the investigation into rewriting of a proof with cut-rules (hence with lemmas) into a
cut-free direct proof was one of the main research paradigms employed by the Hilbert School in the
1030’s in order to solve the conservation-justification problem. In the case of Leibniz, he needed the
use of infinitesimal (real) numbers, such as dz, and infinite (real) numbers, 1/dz in his introduction
of differential and integral calculus in the 17th Century. Of course, he himself faced the question how
to justify the use of such numbers. Now, there are two well known ways to justify the use; one is to
introduce the “contextual” rewriting with of “limit”; for example, df (z)/dz is defined contextually with
the e-§ “description”, which was introduced by Cauchy, only in the beginning of the 19th Century,
then more logically by Bolzano and Weierstrass (Husserl worked as an assistant to Weierstrass before
he moved to philosophy.). The other way is to introduce nonstandard analysis; Abraham Robinson,
in the 1950-60’s, was first who adapted Tarskian model theory/formal semantics theory to Leibniz
representation dx as the nonstandard real numbers in his introduction of non-standard analysis, where
the notion of elementary extension of a model is essential. Leibniz himself also suggested the first way,
but also expressed that a certain algebraic or abstract rewriting works in practice (cf. [Okada 1987])
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Husserl prepared various manuscripts in the winter semester of 1901, and presented his
“solution” to the problem, which he believed to work for various arithmetic systems at two
successive talks, which is now called the Double Lecture, at the Gottingen Mathematical
Society Meeting organized by Hilbert. At the first talk he claimed, among others, the
following.

(Claim «) If the following are satisfied, then the use of imaginaries is justified.

(1) the original narrower system is (syntactically) complete, and
(2) the enlarged system is consistent.

Namely, the above two conditions imply the conservation property i.e., the enlarged
system is a conservative extension over the original, hence the use of imaginaries introduced
in an enlarged system is justified under these conditions.”

He explained his notion of completeness more precisely by the use of the notion of
multiplicity or manifold (Mannigfaltigkeit). The notion of completeness is characterized by
“definiteness” of a multiplicity. The word “multiplicity” of an axiomatic system and the word
“domain of an axiomatic system” were exchangeably used by him.® The originality of this
paper is to clarify (or propose to read) the notion of definite multiplicity of Husserl in terms
of term rewrite theory. In fact, Husserl went beyond just the notion of syntactic completeness
by going into the notion of (definite) multiplicity. Since his notion of enlargement of definite
multiplicity guarantees consistency”, he expresses his claim as follows.

(Claim $) An axiomatic theory is complete “If the [an] axiomatic mathematical theory
determines its mathematical domain (multiplicity) “definitely,” without leaving any ambiguity
in the structure of the “domain”, and then the use of imaginaries is justified”.

Husserl called a multiplicity which is determined definitely a definite multiplicity.

Before we go to the next Section, for philosophical readers we make here a remark; Husserl
reached his notion of definite multiplicity with term rewriting theory as the result of his
various different former studies of him. The following different questions and studies merged
at the same time in 1901 winter when he reached the solution.

1. justification of the use of imaginaries in mathematics,
mathematical multiplicity /manifold,

3. general conditions of extending/overloading mathematical operators/functions (consistent
overloading use of function symbols), or now called of overloading (of function symbols)
in Computer Science,

4. general theory of decision problem for an axiomatic equational system.

(&,

phenomenological notion of significative fulfillment as a fulfillment of arithmetic terms .
6. studies in categorial intuition (or syntax-oriented intuitive evidence, including intuition
on formal arithmetic).

This was pointed out in [Okada 1987] and [Majer 1997].

This fact might have misled the commentators to understand the notion as a set theoretical model of
the axiomatic system for the long time history of study over 60 years.

as we shall see later, he considered extending an original system under the condition that normal
(irreducible) constructor terms do not collapse

9
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Unfortunately in this short paper we cannot explain and discuss the whole picture of how
Husserl united 1-6 above during his development in his philosophy of logic and mathematics.
We would like to pick up some minimum backgrounds and issues from these lists, and discuss
a birth of an ideas of definite multiplicity and rewriting theory by Husserl. We leave more
detailed discussions on the controversy between Hilbert and husserl, from the philosophical
and mathematical points of view in the subsequent papers.

2 Hilbert’s axiomatic system of arithmetic and Husserl’s
interpretation of Hilbert’s system toward term rewrite theory

Hilbert published in 1900 his article on his formulation of arithmetic axioms in 1900 (in the
same line as his “Foundations of geometry (1899)”. Husserl modified Hilbert’s axiomatization
of arithmetic in 1901, which shows us some important differences between the attitudes
of the two figures on the notion of completeness.'® Husser]l presented a formal axiomatic
system in a form very similar to Hilbert’s, with a slight modification. Here, this similarity
and slight modification are both important, in our opinion, to understand Husserl’s notion of
completeness, and of his term rewrite based-notion of multiplicity.

Hilbert’s presentation of axioms for arithmetic in question is composed of four groups of
axioms, as well known:

I. Axioms of linking (junction)
II. Axioms of calculation
III. Axioms of ordering
IV. Axioms of continuity (composed of the Archimedean axiom and the axiom of completeness
(closure) saying that the model of the axiomatic system is categorical, in the sense that
the maximal closure of the models is unique..)

Now we go through to check Husserl’s modified understanding of Hilbert’s axiomatic system
of arithmetic.

Axioms of Continuity The Group IV (the continuity) is composed of the Archimedean
axiom (IV-1) and the axiom of completeness (IV-2). The axiom of completeness says the that
the only maximally extended model (unique up to isomorphism) of the models of axiomatic
system of (I)-(IV-1) is the model of the whole system (I)-(IV).!

Although this completeness axiom is placed to intend to give the unique determination of
semantical model-structure by mean of a syntactic axioms,, the expression of the completeness

10 Husserl’s analysis on Hilbert’s axioms of arithmetic appeared only in Schumann-Schumman’s
edition [Schuhmann and Schuhmann 2001] of the Double Lecture manuscript, not in the original
edition[Hua XII]. Tt is plausible that this part (Husserl’s critical modification of Hilbert’s axiomatic
system) was written by Husserl only after his first lecture of the Double-Lecture after the discussion
with Hilbert, where Hilbert was among the audience. Hilbert had already published “on the number
concept” in 1900 [Hilbert 1900] in which he presented formal axiomatic system for arithmetic with his
notion of completion.

1 Hilbert expresses categoricity of the model of its own axiomatic system. Hilbert expressed the axiom of
completeness as follows in [Hilbert 1900] [Ewald 1996], He wrote:

It is not possible to add to the system of numbers another system of things so that the axioms I,
II, IIT and IV-1 [namely, all the axioms except this completeness axiom itself] are also all satisfied
in the combined system; in short, the numbers form a system of things which is incapable of being
extended while continuing to satisfy all the axioms.

Here, a “system of things” means a “model” in the contemporary logical sense.
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axiom itself refers to the semantic notion. Hence, it cannot be understood in the framework
of the contemporary syntax-semantics distinction. Husserl proposed to stay on the syntactic
side to express axioms. This is the starting point of Husserl’s way of considering his notion
of completeness.

Hence, Husserl, of course, abandoned the axioms Group IV, i.e., axioms of continuity. He
explained before Hilbert in the audience that the Hilbertian completeness axiom excludes
possibility of extending axiomatic system with imaginaries because the completeness axiom of
Hilbert requires maximality (non-extendability) of the model,, (hence excludes the question
of imaginaries itself under this axiomatic setting.'?

Axioms of Linking The linking axioms (Group I) in both Hilbert’s and Husserl’s formation
state that the primitive operation symbols (function-symbols) carry out a linking among
the terms on the term formations (generations). Namely, when “+” (“x”, respectively) is
used with terms, say s and ¢, a new term s + ¢ (s x t) is formed: + links the two terms s
and ¢ to the new composed terms s + ¢, and s x t. Although Husserl’s presentation of the
axiomatic system of arithmetic (he presented, as an example, system of rational number) was
surprisingly similar to Hilbert’s there is an important difference between them on this Linking
Axioms. For Hilbert the new linkage s+t (or stimest) gives a “determinant” number. On the
other hand, Husser]l was concerned with possibility of indeterminacy with concrete presence
of calculation axioms,. In fact, he was concerned with non-confluent rewrite calculations and
non-terminating rewrite calculation. For him, determinacy of terms needs to be characterized
by means of the term rewrite structure imposed by the Calculation Axioms, which is the
basis of his notion of multiplicity.'3

In the case of Husserl, for a term, say ¢ (in Husserl’s terminology, operational complexity),
“t” is called “provably existent” when t is reduced to be a constructor-based normal term,
say n, with the help of the axioms of calculation. Husserl’s completeness and definiteness
of multiplicity means, as we shall see in next Section, that this linking edges for the term-
formations are most compactly, hence minimally determined, in accordance with the minimal
term-model, while Hilbert’s completeness or closure axiom means that the linkages are fixed
in the maximally expanded way in the sense of the categorical model.'*

Axioms of Ordering This part is the same as that of Hilbert.!®

Axioms of Calculation Now, Group II, in which an outstanding difference can be found,
as Husserl needs to claim that an axiomatic system forms the proof structure of definite
multiplicity, which requires at least a ground convergent term rewrite proof structure (as we
see in the next Section more closely). for which he understand that under the setting of the
calculation axioms any closed term should have rewriting deductive steps i.e., to a unique

12 This explanation was put just before the main part of his completeness proof of arithmetic in the
Double Lecture manuscript.

13 We use the English words “junction” and “linking” interchangeably for the translation of “Verkniipfung.’
On the other hand, when Husserl describes the term-rewrite based-reduction structure of a multiplicity
he uses the word “term” (Glied).

14 The axioms of linking in Hilbert include not only the term formation definition but also the character-
ization of idempotent-functions and converse-functions, as he consider fields. Husserl employed this
Hilbert line to define constructors, 0,1 following Hilbert, for his notion of constructive multiplicity. see
below..

15 Group III, the ordering axioms of the ordered field, is exactly the same for both Husserl and Hilbert
although Husserl writes down precisely only a few examples of Hilbert’s full axioms.

’
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normal term, (a unique term representing a rational number as he uses the system of rational
numbers as an example at the Double Lecture). It is particularly interesting to see that four
pages earlier in the (Schuhmann-Schuhmann 2001) edition of the same manuscript, Husserl
tried to formulate the axiomatic systems and to start with an Hilbertian axiom of calculation
(Group II); there he put first the commutativity axiom for “+” (i.e., a + b = b+ a),'6 which
is one of the six axioms of Hilbert’s Group II (Hilbert’s six axioms are the commutativity,
associativity and distributivity for the two primitive function symbols + and x.), in the
later part of the Double Lecture manuscript, Husserl did not mention this commutativity
rule to discuss Group II axioms. It means, in the author’s opinion, that Husserl intended to
change the form of Calculation Axioms (Group II) to make the rewrite rules oriented, by
changing the algebraic rules to the rewrite rules. He presented a reductive rewrite evaluations
in the 6th Logical Investigation in 1900 (Section 60) , (in his phenomenological terminology,
“significative fulfillment”). (In the Double Lecture and other manuscripts in 1901 which
we mentioned rarely used the phenomenological vocabulary but still he used the words
“fulfillment” and “adequation”.)

He did not present concrete list of rewrite rules as the calculation axioms, but his way
was to present a general term rewrite theory in the sense that what kind of condition the
rewrite rules should satisfy in order to the axiomatic system convergent, hence complete.!”

Although it is not very clear what are the exact form of new calculation rules of Husserl,
in any case, it is very clear that Husserl stepped out of Hilbert’s setting of calculation rules
here and realized the need for completely different axiomatizations of equational calculation
rules to govern calculation of each operation (function) represented by a function symbol,
which shows that each one-step move from one joint to another on the joint-web (tissue)
structure of multiplicity, which can be performed by means of equational deduction (namely,
a particular application of an algebraic general axiom(s) of calculation needs to correspond
to the underlying one step ground-term rewriting).

We might need too point out here that the explicit primitive recursive calculation axioms
were presented only more than 20 years later by Skolem. In particular he also presented (in
an informal way) the mathematical induction scheme in his Primitive Recursive Arithmetic

(PRA).

3  Husserl’s definite multiplicity as the convergent term rewriting
proofs web

Now we have reached the stage to discuss Husserl’s notion of definite multiplicity in the
Double Lecture and other important and matured manuscripts in 1901 and to explain how
the notion is directly related to term rewrite theory.

We first explain the notion of multiplicity (manifold) of an axiomatic system in Husserl’s
sense. Husserl also uses the word “domain of an axiomatic system” to express a multiplicity.
Husserl’s multiplicity has been interpreted by many philosophers and logicians for over 40
years that this domain-multiplicity means a set theoretical domain, namely a model in the
sense of model theory.'® We show now that this is not the case by our reading and that by a
multiplicity he means the whole network (web or tissue ) of rewrite equational proofs and

term formations.!®

16 [Schuhmann and Schuhmann 2001, p.113]

17 In fact, Husserl allowed to introduce any number of function symbols in Group I (Linkage Axiom),
hence it is natural to presume that he consider calculation axioms to calculate those function symbols.

18 Some other views may be found in [Hartimo 2010]

19 In fact, enlarging an original axiomatic system by adding imaginary propositions as new axioms on the
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(A) Multiplicity Husser!’s multiplicity of an axiomatic system is understood as the following
whole web (or tissue) or graph structure (relation-web or relation-linkings):

(a) the nodes represented by terms of the system, and the edges represented by following
relations between terms;

(b) term formation steps following the linking axioms,

(c) rewrite (i.e., oriented equational) proof steps following the calculation axioms.

(d) provably decidable atomic relations of normal (irreducible) terms in the rewrite proof
sense.

A multiplicity is said to be definite if the web or graph is tightly determined. In particular
he requires convergence of the rewrite edges.

(B) Definite Multiplicity A multiplicity is called definite (in the strong sense) when the
underlying term rewrite system is convergent. (confluent and terminating).

There is no word “convergence” nor other words which are used in term rewrite theory,
but by definiteness he meant the direction-oriented equational deductions confluent and
terminating.

He often confirms that an arithmetical multiplicity is ground convergent (namely, conver-
gent on the ground (closed) terms level, and left open the convergence on the variables level,
and he believes that the calculation axioms could set so that the convergence on the ground
level holds. In this paper we distinguish the definite only on the ground convergence case
from the general case.

(B’) Definite Multiplicity in the weak sense A multiplicity is called definite in the weak
sense when the underlying term rewrite system is ground convergent. (confluent and
terminating on the closed terms level).

Husserl also defines constructiveness of the definite multiplicity, where the constructor
terms are pre-given, namely formed by linking axioms based on given constructors.

(C) Constructive Multiplicity When the term formation steps are based with constructors,
and the calculation axioms preserve the constructor terms as (at least a part of) the normal
(irreducible terms), the whole web (or tissue) is “constructive” multiplicity?°.

He focuses the notion of constructive multiplicity especially in the Double Lecture. He
presumes that the constructor terms are irreducible in the sense that they are normal terms.
The termination property comes with this setting. He calls the pre-given distinguished set of
intended normal terms as the number-series. He follows Frege and Hilbert regarding this
naming. He, however, also calls the number-series as the “standard” or “measure” . He
gives his dynamic term-rewriting view that the measure plays the role of measuring any
term in the multiplicity-web (as its value) under the definiteness condition. He imposes a
completion procedure on a non-confluent constructive multiplicity by adding new direction-
oriented calculation axioms upon necessity so that the resulting multiplicity becomes “definite”

one hand and by enlarging a domain of the original axiomatic system by adding imaginary elements
are not equivalent when one assumes the “domain” (or “multiplicity”) in the sense of a set theoretical
domain and this difficulty is discussed by Husserl himself. Our reading of the domain (multiplicity) as
the whole proofs and terms web makes sense and works well by understanding with term rewrite theory
in our opinion.

20 He also uses the word “mathematical multiplicity”.

11
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constructive multiplicity; we shall discuss this (Knuth-Bendix type) completion procedure of
Husserl later. Husserl claims that

(Claim 7) Rewrite-provability in the sense of direct rewrite proof [without the use of
symmetric axiom] is logically equivalent to logical equational provability of equational proof
system [with the use of symmetric axiom] in the case that the multiplicity is definite.

This lemma is of course an essential lemma well known in nowadays term rewrite theory.
But, to be honest, we should point out that Husserl does not (or could not) treat the
termination property directly and explicitly. He rather claims that for a constructive
multiplicity case the pre-given set of constructor terms plays as the irreducible terms, and
any calculation axioms needs to preserve the irreducibility of the constructor terms (although
he allows possibility of reduction paths not falling into the pre-given constructor terms.
Therefore, he needs to consider a completion procedure.

Husserl’s solution to the problem of justification of the use of imaginaries is expressed as
follows.

(Claim ¢ [Husserl’s Solution with the definiteness-completeness condition] If the multi-
plicity of the original system is definite and the multiplicity of the enlarged system preserves
the normal forms of the original, the problem (conservation problem) is positively solved.

Here, we resume to classify the types of multiplicity for an axiomatic formal (deductive)
system,according to Husserl:

(i) a (not necessarily definite) multiplicity

(ii) a definite multiplicity
(iii) a constructive (or mathematical) (not necessarily definite) multiplicity
(iv) a constructive definite multiplicity

About Completion from non-definite into definite multiplicity As mentioned above, he
also introduces a completion procedure to make the calculation axiom convergent (hence
the multiplicity definite) by adding calculation rules for a disjoint (critical) pair. He seems
that he was too optimistic about the termination property with respect to this completion
procedure as he mainly considers the case of constructive multiplicities where the intended
normal terms are pre-given and that the new rules between critical pair can be directed into
a constructor normal term side. He call a “disjunctive” moves for the pair of terms which
cause non-confluence (hence goes to different irreducible terms.?! Hence, he claims as follows.

(Claim 1) By adding rules for disjoint moves from a position non-convergent constructive
multiplicity becomes definite (in a finite steps).

Hierarchical theory of multiplicities, or a part of Mathesis Universalis Husserl often
requires definiteness to the multiplicity of enlarged system too, in addition to the preservation
of the original normal terms. This is because he considers hierarchical extensions freely by
enlarging systems step by step. The accumulated whole is called theory of multiplicities or
theory of theories.??2

2! See [Dershowitz and Jouannaud 1990] for the basic definition of critical pair.

22 His concrete example of hierarchical theory of multiplicities includes positive number system up to the
complex number system as well as logic and geometrical systems), as he presented them concretely in
the Double Lecture and related manuscripts.
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This was the first (and last) concrete presentation of Husser!’s idea of Mathesis Universalis,
which he emphasized to aim at establishment in his logical investigations , at the end of his
Vol. 1 of the Logical Investigations (Prolegomena), where he also mentioned the problem of
justification of the use of imaginaries as an important but had not yet solved the problem.

Husserl describes a multiplicity as the whole relations-web (or relations-tissue) of an
axiomatic system.?® “Should a system of axioms define its objects by a web of relations (or the
form of such a web)” further only by means of materialization, [which means substitutions],
“every object must be unambiguously [uniquely] determined by its interrelations [i.e.,by the
relation-web]”. Then, he continues:

Any object is formally the simple position in the relation-web, i.e., in the relation-
form where the objects can be situated, and the form of relation must be so well
established that it must be so well formally differentiated in an ultimate manner. If it
leaves here indeterminations, it would then again possible to go further in the formal
characterization of the relation-web (tissue).?*

This is a remarkable comment of Husserl on the term rewrite proofs; he says that any
(mathematical object of) term in the equational proof system is considered a “simple position”
in the whole rewrite-relation-web structure, namely multiplicity, where the objects are
situated.?®

Our “Figure” illustrates an image of a constructive multiplicity web for a simple primitive
recursive (hence non-overlapping) calculation axioms just for “4” and “x” where there is the
“standard’ (or sometimes called “Kernel”) ’, which is the series of normal terms of numbers?®.

It is definite on the ground level as well as the variable rewrite level, the logical level
requires non-equational rules for the ground level though (see below). the multiplicity web
of the natural number system is open to expand to various enlarged systems(of integers, of
rationals, of computable reals, etc.) with preserving conservation on the ground level.?”

% F.g., [Hua XII, p.474, 475] (Husserl uses the word “joints (or terms) [Glieder]” instead of “web” in the
double-lecture to express it.

2 [Hua XII, p.475]. The author had no chance to carefully look at the English edition of this volume
translated by Prof. Dallas Willard during the preparation of this paper. The author plans to consult
and quote Prof. Willard’s English edition for the preparation of his forthcoming paper on this subject.
The author just points out here that the English edition uses the word “network of relations” in stead
of “web of relations”, which is also very suitable and coherent with our reading.

25 This is partly a result of the influence from Hilbert’s formalistic holism standpoint on the Foundations
of Geometry (1999), from which Husserl learned that the geometrical primitives, such and point or line,
are not defined separately but should be meaningful in the relation to the whole axiomatic system as
the whole. See [Okada 2004]

26 Husserl describes the term rewrite structure with standard as follows, for example.

The numbers are the standards of operation [Operetionsetalons| in an defined operation-domain;
these are the joints of a complete whole totality neither augmentable, nor diminishable, of unique
and pairwisely different [untereinander nicht dquivalenten| operation-character, which are the
lowest specific differences in this sphere of operation and which have the property that any real
operation of its domain must have its provably [nachweislich] equivalent in an characterization of
this whole. [Hua XII, p.475].

27 On the Figure there are inequality edges between normal constructor terms. This corresponds to a proof
of =s = ¢ in HusseOnrl’s sense, which is in the convergent term rewrite sense; he emphasizes that “—s = ¢
is provable” is not in the logical provability sense, but in the sense of convergent rewriting. Namely, for
two terms s and ¢ s = ¢ is provable in a (constructive) definite multiplicity when the normal terms of
them are different (otherwise equal). Since the completeness in the sense of Husserl is based on the
minimal term model, this means —s = t. We recall that he mainly the considers constructive multiplicity
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Figure 1 The above gives the reader a rough picture of Husserlian constructive definite multiplicity

of the axiomatic system including axioms:

x4+ 0=x,
x+(y+1)=Kx+y)+1,
x X 1=x,

xX (y+1)=(xxy)+x

Husserl believed that his completeness/definiteness works not only for the theories of

natural numbers, of integers, of rationals, but also for the theories of real numbers and of
complex numbers in the uniform way (although as we now know that it does not work with
real number theory as the the decision of the primitive numerical equality-relation is not
decidable anymore. Hence, it needs to be limited to the rewrite-computable or recursive

reals (or in the case of an abstract real closed field system) if one wishes to defend his
computational view of universal arithmetic.)

More About Completion Procedure

Husserl explains on the non-definite, namely non-convergent case that some suitable equational
axioms should be added so that the multiplicity becomes convergent, in his sense that the

case as the ideal definite multiplicities. The different views about the linking axioms between Hilbert
and Husser]l becomes more clear when we understand. In the Hilbert sense, any term (composed by the
linking axioms) exists, and the linking axioms are understood as existential axioms. This is because,
t =t implies 3z(t = z). On the other hand, for Husserl, term ¢ composed by linking axiom only has an
intentional meaning, or representation of concept of . The existence of ¢ is shown only when it reduced

to a constructer term (namely, there is at least a rewriting path from ¢ to a constructer term in the web
structure of the constructive multiplicity web. See Section 2 above.



M. Okada

axiomatic system complete. He says that he addition should be done so that the “result” is
the same, in other words, the equational provability is equivalent to the rewrite proof system,
which means completion in the sense of Knuth-Bendix.

He explains the completion in a most detailed and reasonable way with respect to a
constructive multiplicity, where the constructor-based normal forms are “pre-given” with the
axiomatic setting (of Linking Axioms).

[I]f any relation between them [two terms in a multiplicity] were ambiguous or
undetermined [which means that the two terms go to different irreducible terms], I
could then add the axioms which would introduce the determination; any undetermined
relation should be, on the basis of the axioms, transformable into a determined relation.
[Hua XII, p.497)

He tries to clarify this further and says:

If there are two ways of determination which gives the same result [we read this that
if there are two ways to reach different irreducible terms s and ¢ from a term w], which
shows both s and ¢ are provably the same as u], we could then fix them arbitrarily
[namely, one could add a rewrite rule from one irreducible term to the other.], then it
should have an [additional] axiom which unites them. [Hua XII, p.498]

This is understood as a so called “Knuth-Bendix completion procedure” . The procedure
was introduced in the 1960s from the computer scientific context by Knuth and Bendix
[Knuth and Bendix 1970] and which was presented as a general procedure by Huet-Oppen
in the 1980s Cf. [Dershowitz and Jouannaud 1990] for the general historical information and
basic notions on the term rewrite theory in theoretical computational science, although
Husserl’s setting was the case of terminating (constructive ) rewrite systems, 28

Husserl’s completion procedure is to add new equational axioms with a direction to make
the underlying non-confluent term-rewriting system confluent, while the provability power of
the axiomatic system unchanged; namely the additions of new axioms are redundant in the

sense of logical provability, but necessary in the sense of computation.??

About the variables level

As mentioned in the previous Section, the equivalence between the rewrite-provability and
the equational provability becomes delicate with the non-ground term rewrite case because
one usually needs to add some additional non-rewrite deductive principle or inference rule
in addition to the purely equational calculation axioms in order to deduce an algebraic
equational proposition with variables . For example, x +y = y + z is “true” in the sense
of a (standard) model of arithmetic, but one usually needs the mathematical induction

28 There were similar procedure defined in mathematics, especially in algebra-related fields independ-
ently, but the procedure appeared in mathematics had been very much dependent on a rather
specific field, and even Knuth-Bendix’ presentation was the word problem oriented. So, Huet-
Oppen[Huet and Oppen 1980] seems a very first to propose it as a procedure on a term rewrite-oriented
equational system in general. But, we would lime to point out the idea of the procedure appeared in
Husserl (1901) for his theory of term rewriting even yet conceptually, in the context of philosophy of
logic and mathematics.1

29 When he explains the (completion) procedure in a most detail way Husserl presumes that the underlying
axiomatic system has the constructors, hence a multiplicity has the constructor terms as irreducible
normal forms. But a term in the multiplicity might property guarantees the uniqueness property of the
irreducible terms, which is of a specific importance for Husserl as (the concept of) each irreducible term
serves as a definite “specific difference” by the constructor based normal-irreducible terms
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rule to prove it. Note that both z = y and y = = are irreducible terms in a simple (non-
overlap) convergent rewrite system such as the primitive recursive rule system in the example
above. the convergence does not correspond to the truth of the standard model on the
standard/measure. Husserl were very much aware of the delicate issue of the variable level of
definite multiplicity. Husserl confirms ground convergence of arithmetical systems mentioned
in the previous Section. And he also tells convergence on the variable rewrite level of the
system (without commutativity). But he also asked himself the precise reason why it is. In
fact he asks himself in footnote 39 (at the very last footnote in the Double Lecture manuscript,
of the Sschumann-Schumann edition) saying “Why?” which was added as the footnote for
a passage where he explains the ground convergence of arithmetical system (of rationals).
[Schuhmann and Schuhmann 2001].

We add a small remark about the further development of equational proof system of
arithmetic. This line of systematic study of proof system for arithmetic began only more than
20 years later than Husserl by Skolem’s Primitive Recursive Arithmetic?®. But, Skolem’s
(rather informal) principle of mathematical induction required non-equational logical inference
(implication or conditional) in addition to the purely equational language. (One could express
it in terms of the natural-deduction style inference rule, Induction Rule, as below, with the
non-local but global inference rule. See the Induction Rule in the footnote below.) It was
a philosopher, Wittgenstein, who first reformulated the mathematical induction rule in an
equational way, which is now called the Uniqueness Rule, without using logic (implication).3!
Wittgenstein read and studied Skolem carefully and proposed his equational Uniqueness
Rule without logic, as an alternative representation of mathematical Induction in the 1920’s.
The hypothetical appearance of a proposition at the induction step is reduced to equational
Uniqueness (Inference) Rule. It is by this Rule form of Induction that the algebraic rules,
for example,  + y = y + = with variables z and vy, is equationally provable without logic,
Wittgenstein’s philosophy student, Goodstein, who was a constructivist mathematician, took
the Wittgenstein’s Uniqueness Rule as the basis of his Recursive Number Theory. He gave the
equivalence proof between the Induction Rule and the Uniqueness Rule under the presence
of logic (with implication-conditional) although Wittgenstein took it for granted in his
philosophical discussions.?? Goodstein also had a version of purely equational representation
(Goodstein Induction) of the Induction Rule (see the footnote below). However, it requires
additional axioms of positive minus z+z = 0 (for natural numbers) and the absolute value
function, which are , however,not direction oriented rewrite axioms (although of course
equational). The spirit of this Goodstein’s equational axiomatization of arithmetic was
oriented by the line of Wittgenstein’s formulation (i.e., reduction of logical implication into
equational calculus). It was Lambek and some others much later who developed equational
type systems with rewrite rules of Mal’cev operator (which plays the role of logical implication
by rewrite rules). With See [Okada 1999] for the rewrite theoretic discussions of Goodstein
and Lambek Uniqueness Rule, where it is exposed that one way of direction-oriented Lambek

30" Also, in 1931, Godel’s incompleteness appeared and told that there are true universal proposition on
the variables level which is not provable in any axiomatic consistent arithmetic. This means that even if
it has a definite multiplicity in the strong sense, hence convergent on the variable level, there is always
a “true” equality which cannot be reached by going down through in the definite multiplicity web.

31 Note that Husserl and Wittgenstein are known as two of the most philosophers in the Western world in
the 20th Century. It is interesting to see that both studied and researched deeply equational theories.

32 Skolem’s Primitive recursive Arithmetic was taken as the basis of their Finitist System by Hilbert-
Bernays after the appearance of Gédel’s Incompleteness Theorem. Then, Gédel extended it to higher
types in his interpretation (Dialectica Interpretation) of Gentzen’s consistency proof.
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Uniqueness Rule makes the whole rewrite system confluent and the opposite way of orientation
makes it terminating, on the variables levels of type theories. This fact tells that the type
theories with uniqueness still have a semi-definite multiplicity (i.e., the computational
content) in the sense of Husserl even on the variable-higher type levels, although they are
never convergent, namely never truly definite, as the definiteness with the uniqueness rule
conflicts with the incompleteness theorem of Godel. [Okada 2004] [Marion and Okada 2012]
for the philosophical discussion on the equational proofs on the variables level of Wittgenstein
and Goodstein.??

Conclusion

We presented that the Husserl proposed, in 1901, his own view on the notion of completeness
by modifying Hilbert’s axiomatic system of arithmetic (1900). He gave a sufficient condition
for solving the problem of justifying the use of imaginaries in mathematics, which can be
understood as the conservation condition in the modern logical sense, The condition was
given with two stages. On the first stage he gave the condition by the use of the notions of
syntactic completeness and consistency. Then, on the second (higher) stage of his research
and presentation, he explained the notion of completeness more precisely. He claimed that
an axiomatic system is complete (in his sense) if and only if the multiplicity (manifold) of
the system is “definite”. The notion of multiplicity and that of definiteness of multiplicity
are the key notions to understand the whole picture of Husserl’s theory and his solution to
the problem. In this paper, we clarified what is these key notions. We claimed that these
notions are coherently understood by means of general term rewrite theory. In particular,
a multiplicity is understood as relational-web (or tissue) where term rewrite proof-steps
(moves) both of the closed terms level and general terms level are the basic part of the
multiplicity-web. The definiteness corresponds to convergence of this part. He considered a
constructors-based definite multiplicity an ideal definite multiplecity. This tells that Husserl’s
view of axiomatic (arithmeticcal) systems was very much oriented by the computational view
and his view was very much advanced in terms of computation theory, which were developed
much later in modern logic and theoretical computer science. Husserl also introduced
completion procedure of the underlying rewrite system. He gave general conditions to enlarge
a rewrite system with preserving conservation. We think that Husserl’s notion of multiplicity
and completeness successfully extract the rewrite based-computational content from a given

33

1. The induction rule :

[f(z,y) = 9(z,y)]

f(2,0) = g(z,0) f(x,Sy) = g(x,Sy)
(Induction) [z y) =g(z,y)

2. Uniqueness rule:

f(z,0) =g(2,0) f(z,Sy) =h(z,y, f(z,y)) g(z,Sy) = h(z,y,9(z,y))
(Uniquness) f(z,y) = g(z,y)

3. Goodstein Induction:
f(2,00=0 (1=fay) fz(Sy) =0
(Goodstein Ind.) flz,y)=0
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arithmetic axiom system. We characterized Hilbert’s notion of completeness (of 1900) as
the maximally expanded categorical model, while Husserl’s notion of completeness as the
minimal term model although Husserl’s notion of multiplicity is not just a model but more
like a type theoretic-proof theoretic structure (even limited to the first order terms), where
proof formation steps and term formation steps are the basic parts of the multiplicity web.
We also discussed potentials and limitation of Husserl’s line of the research paradigm from
the equational arithmetical point of view, in the domains of philosophy of mathematics and
of theory of term rewriting.
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