Extending Abramsky’s Lazy Lambda Calculus: (Non)-Conservativity of Embeddings

Manfred Schmidt-Schauß¹, Elena Machkasova², and David Sabel¹

1 Goethe-Universität, Frankfurt, Germany
schauss,sabel@ki.informatik.uni-frankfurt.de
2 Division of Science and Mathematics, University of Minnesota, Morris, U.S.A.
elenam@morris.umn.edu

Abstract
Our motivation is the question whether the lazy lambda calculus, a pure lambda calculus with the leftmost outermost rewriting strategy, considered under observational semantics, or extensions thereof, are an adequate model for semantic equivalences in real-world purely functional programming languages, in particular for a pure core language of Haskell. We explore several extensions of the lazy lambda calculus: addition of a seq-operator, addition of data constructors and case-expressions, and their combination, focusing on conservativity of these extensions. In addition to untyped calculi, we study their monomorphically and polymorphically typed versions. For most of the extensions we obtain non-conservativity which we prove by providing counterexamples. However, we prove conservativity of the extension by data constructors and case in the monomorphically typed scenario.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.4.1 Mathematical Logic, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases lazy lambda calculus, contextual semantics, conservativity

Digital Object Identifier 10.4230/LIPIcs.RTA.2013.239

1 Introduction
We are interested in reasoning about the semantics of lazy functional programming languages such as Haskell [11], in particular in semantical equivalences of expressions and, as a more general issue, in correctness of program translations and transformations. As a notion of expression equivalence in a calculus, we employ contextual equivalence which identifies expressions iff they cannot be distinguished when observing convergence to WHNFs in any surrounding context. Contextual equivalence is coarser than the (syntactical) conversion equality, and provides a more useful language model due to its maximal set of equivalences.

However, complexity of a language makes analyses and reasoning hard, so it is advantageous to find conceptually simpler sublanguages which also permit reasoning about equivalences in the superlanguage. As a starting point we may use the pure core language, say L^α_{core}, of Haskell [12], which is a Hindley-Milner polymorphically typed call-by-need lambda calculus extended by data constructors, case-expressions, seq for strict evaluation and letrec to model recursive bindings and sharing. The semantics of such extended lambda calculi have been analyzed in several papers [20, 9, 10, 19, 18].

However, even this language has a rich syntax and thus one may ask whether there are simpler and/or smaller languages which can be used to reason about (parts of) Haskell. The issue of transferring the equivalence question is as follows: given two expressions s_1, s_2 in a calculus L, in which cases is it possible to decide the semantic equivalence $s_1 \sim s_2$?
by transferring the equivalence question for \(s_1, s_2 \) into a smaller or conceptually simpler language \(L_{\text{simple}} \), using the proof methods in \(L_{\text{simple}} \). There are three (standard) types of transfer steps: (i) from a typed language \(L^\tau \) into its untyped language \(L \) (which may be larger). Since we use contextual equivalence, in general \(s_1 \sim_L s_2 \) implies \(s_1 \sim_{L^\tau} s_2 \) for equally typeable expressions \(s_1, s_2 \), and thus this is a valid transfer, however, some equivalences may be lost. (ii) from a language \(L \) into a sublanguage \(L_{\text{sub}} \) by the removal of a syntactic construction possibility. Since now all expressions of \(L_{\text{sub}} \) are also \(L \)-expressions, the desired implication \(s_1 \sim_L s_2 \implies s_1 \sim_{L^\tau} s_2 \) exactly corresponds to conservativity of the inclusion w.r.t. equivalence. (iii) transferring the question to an isomorphic language \(L' \).

We consider four calculi in this paper: Abramsky’s lazy lambda calculus \(AL \) and its extensions \(AL_{\text{seq}}, AL_{L^\tau}, AL_{\text{seq},cc} \) with \(\text{seq} \), with \(\text{case} \) and constructors, and the combination of the two extensions, resp. We also consider variants of these calculi with monomorphic (\(\tau \)-superscript) and polymorphic (\(\alpha \)-superscript) types. We analyze whether natural embeddings between the calculi are conservative w.r.t. contextual equivalence in the calculi.

Our results can be depicted as follows, where \(\text{Yes}/\text{No} \) indicates a conservative (non-conservative, resp.) embedding, and \(\text{Open} \) indicates that the question is still unresolved.

\[
\text{AL}_{\text{cc}} \rightarrow \text{AL}_{\text{seq}} \rightarrow \text{AL}^\tau \rightarrow \text{AL}_{\text{seq},cc} \rightarrow \text{AL}_{\text{cc},cc} \rightarrow \text{AL}_{\text{seq},cc} \rightarrow \text{AL}_{\text{seq}} \rightarrow \text{AL}^\tau \rightarrow \text{AL}_{\text{seq}} \rightarrow \text{AL}_{L^\tau} \rightarrow \text{AL}_{L^\tau} \rightarrow \text{AL}_{\text{seq}} \rightarrow \text{AL}_{L_{\text{Hcore}}} \rightarrow \text{AL}_{L_{\text{Hcore}}} \rightarrow \text{AL}_{\text{seq}} \rightarrow \text{AL}_{L_{\text{Hcore}}} \rightarrow \text{AL}_{L_{\text{Hcore}}} \rightarrow \text{AL}_{\text{seq}}.
\]

A common pattern is that the removal of \(\text{seq} \) makes the embeddings non-conservative.

A powerful commonly used proof technique in all the calculi under consideration is based on Howe’s method [6, 7], which shows that contextual equivalence coincides with applicative bisimilarity which equates expressions if they cannot be distinguished by first evaluating them, then applying their results to arguments, and then using this experiment co-inductively. Our improvement, which is valid since the languages are deterministic, is a so-called \(AP_1 \)-context lemma, which means that expressions are equivalent if their termination behavior is identical when applying them in all possible ways to finitely many arbitrary arguments.

Our results are of help for equivalence reasoning in \(L_{\text{Hcore}}^\alpha \), considering implication chains for the justification of equivalences. The first one starts with transferring to the untyped core-language \(L_{\text{Hcore}} \), then removing the syntactic construct \(\text{letrec} \) (and changing call-by-need to call-by-name), justified in [17, 18], arriving at \(AL_{\text{cc},seq} \). Then our results and counterexamples for the four untyped calculi come into play, where the conclusion is that further transfer steps appear impossible, in particular that \(AL \) [1] cannot be justified as equivalence checking calculus via this implication chain. The second implication chain takes another potential route: the first step is monomorphising the core language, then removing the \(\text{letrec} \), adding \(\text{Fix} \), and again changing the reduction strategy to call-by-name, arriving at the calculus \(AL_{\text{cc},seq} \). We believe that both implications of equivalence are correct, but a formal proof is future work. Then, for the calculus \(AL_{\text{cc},seq}, AL_{\text{seq},cc}, AL_{\text{seq}} \), we got negative as well as positive results. A further step could then be omitting the monomorphic types as well, which gives a valid implication chain from \(AL_{\text{cc},seq} \) to \(AL_{\text{seq}} \) and to \(AL_{\text{seq}} \), but again there is no justification for \(AL \) and \(AL^\tau \) as equivalence checking calculi for \(L^\alpha_{\text{Hcore}} \). Thus our results show that calculus for the transfer is \(AL_{\text{cc},seq} \), and under the correctness assumptions above, also \(AL_{\text{cc},seq}, AL_{\text{seq}} \), and \(AL_{\text{seq}} \). Focusing on the direct relation between the minimal calculi compared with \(L^\alpha_{\text{Hcore}} \), and taking into account our counterexamples in the paper, \(AL^\tau_{\text{cc}} \) and \(AL_{\text{cc}} \) are ruled out by examples \(s_7, s_8 \). However, it is still possible that \(AL \) or \(AL^\tau \) can be used as equivalence checking calculi \(L^\alpha_{\text{Hcore}} \) (although there are very few nontrivial equivalences there), which is strongly related to the open problem of whether there exist Böhm-like trees for \(AL \) (see Problem 18 in [22]).
Related Work. Our approach follows the general setup laid out e.g. in [4, 16] which consider the questions of relative expressivity between programming languages. In difference to [4], we use applicative bisimilarity and the AP_2-context lemma as a proof technique, and explore different calculi extensions. The closest work to ours is [13] that shows, in particular, that the extension of a monomorphically typed PCF with sum and product types and with Girard/Reynolds polymorphic types is conservative. They also show that extending PCF with a “convergence tester” by second-order polymorphic types is conservative. However, they do not (dis-)prove conservativity of adding the convergence tester to PCF and also do not consider an untyped case, or the pure lambda calculus.

Adding seq to call-by-need/call-by-name functional languages is investigated in several papers (e.g. [4, 5, 8]). For the lazy lambda calculus and its extension by seq an example in [4] can be adapted to show non-conservativity (see Theorem 4.3). It is well-known that in full Haskell seq makes a difference: The usual free theorems [23] break under the addition of seq [8], and the monad laws do not hold for the IO-monad if the first argument of seq is allowed to be of an IO-type [14]. [18, 19] provide a counterexample showing non-conservativity of adding seq to the lazy lambda calculus with data-constructors and case expressions.

Research on calculi extensions with case and constructors also including studies of untyped calculi is [2, 3, 21]. In [2] the addition of case and constructors to a basic calculus is explored. However, that calculus significantly differs from our ones in several points, e.g. it permits full η-reduction. [3] and [21] study an extension of a lambda calculus with surjective pairs. However, these works are incomparable to our approach since they use an axiomatic approach to equality instead of a rewriting and observational one.

Structure of the paper. In Sect. 2 we introduce a common notion for program calculi together with the notion of contextual equivalence. In Sect. 3 we briefly introduce the lazy lambda calculus AL and its three extensions $AL_{cc}, AL_{seq}, AL_{cc, seq}$. Conservativity of embeddings between the untyped calculi is refuted in Sect. 4. In Sect. 5 the monomorphically typed variants of the calculi are investigated. Sect. 6 presents the analysis of polymorphically typed calculi. We conclude in Sect. 7. Due to space reasons not all proofs are given, but they can be found in the technical report [15].

2 Preliminaries

We define our notion of a program calculus in an abstract way:

Definition 2.1. A typed deterministic program calculus (TDPC) is a tuple $(E, C, \rightarrow_D, A, T)$ where E is the (nonempty) set of expressions, such that every $s \in E$ has a type $T \in T$. We write E_T for the expressions of type T, and assume $E_T \neq \emptyset$. We also assume that E can be divided into closed and open expressions, where E^c denotes the set of closed expressions. We use s, t, r, a, b, d to denote expressions and x, y, z, u to denote variables. C is the set of contexts, such that every $C \in C$ is a function $C : E_T \rightarrow E_{T'}$, where $T, T' \in T$. With $C_{T, T'}$ we denote the contexts that are functions from E_T to $E_{T'}$. We assume that C contains the identity function for every type $T \in T$, and that C is closed under composition, i.e. iff $C_1 \in C_{T_1, T_2}$ and $C_2 \in C_{T_2, T_3}$ then also $(C_1 \circ C_2) \in C_{T_1, T_3}$. We denote the application of contexts C to an expression $s \in E$ by $C[s]$. The standard reduction relation $\rightarrow_D \subseteq (E \times E)$ must be: (i) deterministic: $s_1 \rightarrow_D s_2$ and $s_1 \rightarrow_D s_3$ implies $s_2 = s_3$, where $=$ is syntactical equivalence (which usually also identifies α-equivalent expressions); (ii) type preserving: $s_1 \rightarrow_D s_2$ implies that s_1 and s_2 are of the same type; (iii) closedness-preserving: if s_1 is closed and $s_1 \rightarrow_D s_2$, then s_2 is closed. The set $A \subseteq E$ are the answers of the calculus, which are usually irreducible values or specific kinds of normal forms. We use v to range over answers.
An untyped calculus can also be presented as a typed one, by adding a single type called “expression”. However, we simply write \((\mathcal{E}, \mathcal{C}, \to_D, \mathcal{A})\) for such a calculus.

We denote the transitive-reflexive closure of \(\to_D\) by \(\ast_D\), and \(n_D\) with \(n \in \mathbb{N}_0\) means \(n\) reductions. We define the notions of convergence, contextual approximation, and contextual equivalence in a general way. Expressions are contextually equal if they have the same termination behavior in any surrounding context. This makes contextual equivalence a strong equality, since the contexts of the language have a high discrimination power. For instance, it is not necessary to add additional tests, such as checking whether evaluation of both expressions terminates with the same values, since different values can be distinguished by contexts.

Definition 2.2. Let \(D = (\mathcal{E}, \mathcal{C}, \to_D, \mathcal{A}, \mathcal{T})\) be a TDPC. An expression \(s \in \mathcal{E}\) converges if there exists \(v \in \mathcal{A}\) such that \(s \to_D v\). We then write \(s_Dv\), or just \(s_D\) if the value \(v\) is not of interest. If \(s_D\) does not hold, then we say \(s\) diverges and write \(s_D\). Contextual preorder \(\leq_D\) and contextual equivalence \(\sim_D\) are defined by:

For \(s_1, s_2 \in \mathcal{E}_D\):
\[
\text{if } s_1 \leq s_2 \text{ iff } \forall T' \in \mathcal{T}, C \in \mathcal{C}_{T,T'} : C[s_1]D \Rightarrow C[s_2]D
\]

For \(s_1, s_2 \in \mathcal{E}_D\):
\[
\text{if } s_1 \sim s_2 \text{ iff } s_1 \leq s_2 \text{ and } s_2 \leq s_1
\]

A program transformation \(\xi\) is a binary relation on \(D\)-expressions, such that for all \(s_1, s_2\) the expressions \(s_1\) and \(s_2\) are of the same type. \(\xi\) is correct if for all expressions \(s_1, s_2\) the equivalence \(s_1 \sim_D s_2\) holds.

By straightforward arguments one can prove that contextual preorder is a precongruence, and contextual equivalence is a congruence.

Definition 2.3. Let \(D = (\mathcal{E}, \mathcal{C}, \to_D, \mathcal{A}, \mathcal{T})\) and \(D' = (\mathcal{E}', \mathcal{C}', \to_D', \mathcal{A}', \mathcal{T}')\) be TDPCs. A translation \(\xi : D \to D'\) consists of mappings \(\xi : \mathcal{E} \to \mathcal{E}', \xi : \mathcal{C} \to \mathcal{C}',\) such that \(\xi\) maps the identity function \(\mathcal{C}\) to the identity function in \(\mathcal{C}'\), and \(\xi(s)\) is closed iff \(s\) is closed.

- \(\xi\) is convergence equivalent (ce) if \(s_D \iff \xi(s)_{D'}\) for all \(s \in \mathcal{E}\).
- \(\xi\) is compositional up to observation (cuo), if for all \(C \in \mathcal{C}\) and all \(s \in \mathcal{E}\) such that \(C[s]D\) is typed: \(\xi(C[s]D)_{D'} \iff \xi(C)[\xi(s)]_{D'}\).
- \(\xi\) is observationally correct (oc) if it is (ce) and (cuo).
- \(\xi\) is adequate if for all expressions \(s, t\): \(\xi(s)_{D'} \leq_D' \xi(t)_{D'} \Rightarrow s \leq_D t\).
- \(\xi\) is fully abstract if for all expressions \(s, t\): \(\xi(s)_{D'} \leq_D' \xi(t)_{D'} \iff s \leq_D t\).
- \(\xi\) is an isomorphism if \(\xi\) is fully abstract and acts as a bijection on the equivalence classes from \(\mathcal{E}/\sim_D\) to \(\mathcal{E}'/\sim_{D'}\).

We say \(D'\) is an extension of \(D\) iff \(T \subseteq T', \mathcal{E}_T \subseteq \mathcal{E}'_T\) for any type \(T \in \mathcal{T}, \mathcal{C}_{T,T'} \subseteq \mathcal{C}'_{T,T'}\) for all types \(T, T' \in \mathcal{T}, \mathcal{A} = \mathcal{A}' \cap \mathcal{E}\) and \(D \subseteq D'\) s.t. for all \(e_1 \in \mathcal{E}\) with \(e_1 \to_D e_2\) always \(e_2 \in \mathcal{E}\) and thus \(e_1 \to_D e_2\). Given \(D\) and an extension \(D'\), the natural embedding of \(D\) into \(D'\) is the identity translation of \(D\) into \(D'\) and \(D_{T,T'} \subseteq D'_{T,T'}\) for all types \(T, T' \in \mathcal{T}\). A natural embedding is conservative if it is a fully abstract translation.

Note that a natural embedding is always convergence equivalent and compositional, which implies that it is always adequate (see [16]).

3 Untyped Lazy Lambda Calculi and Their Properties

In this section we briefly introduce four variants of the lazy lambda calculus [1] as instances of untyped TDPCs: the pure calculus \(AL\), its extension by \(\text{seq}\), called \(AL_{\text{seq}}\), its extension
We define the components of \(\text{wise disjoint finite nonempty sets of data constructors} \), \(\text{AL} \) violations for specific closed lambda expressions:

\[
\begin{align*}
(\beta) & \quad ((\lambda x. s) \; t) \to s[t/x] \\
(\text{seq}) & \quad (\text{seq} \; v \; t) \to t \text{ if } v \text{ is an answer} \\
(\text{case}) & \quad \text{case}_{K_i} \left((c_{K_i,j} \; \overrightarrow{s}) \; (p_1 \to \leftarrow t_1) \ldots (c_{K_i,j} \; \overrightarrow{y} \to \leftarrow t_j) \ldots (p_{m_i} \to \leftarrow t_{l_i}) \right) \to t_j[\overrightarrow{s}/\overrightarrow{y}] \\
(\text{fix}) & \quad (\text{Fix} \; s) \to s \; (\text{Fix} \; s)
\end{align*}
\]

Figure 1 Call-by-name reduction rules.

by data constructors and \(\text{case} \), called \(\text{AL}_{cc} \), and finally its extension by \(\text{seq} \) as well as data constructors and \(\text{case} \), called \(\text{AL}_{cc,\text{seq}} \).

\begin{definition}[Lazy Lambda Calculus AL] \(\text{AL} \) is the (untyped) lazy lambda calculus [1]. We define the components of \(\text{AL} \) according to Definition 2.1.
\end{definition}

Expressions \(E \) are the set of expressions of the usual (untyped) lambda calculus, defined by the grammar \(r, s, t \in L_{\text{AL}} ::= x \mid (s \; t) \mid \lambda x. s \). We identify \(\alpha \)-equivalent expressions as syntactically equal according to Definition 2.1. The only reduction rule is \(\beta \)-reduction (see Fig. 1). An \(\text{AL-context} \) is defined as an expression in which one subexpression is replaced by the context hole \(\cdot \). \(\text{AL-reduction contexts} \) \(R \) are defined by the grammar \(R ::= \cdot \mid (R \; s) \), and the standard reduction in the sense of Definition 2.1 is the normal order reduction \(\to_{\text{AL}} \) which applies beta-reduction in a reduction context, i.e. \(R[(\lambda x. s) \; t] \to_{\text{AL}} R[s[t/x]] \). The answers \(A \) are also (all open) abstractions, which are also called weak head normal forms (WHNF).

\begin{definition}[\(\text{AL}_{seq} \)] \(\text{AL}_{seq} \) is the lazy lambda calculus extended by \(\text{seq} \), i.e. expressions are defined by \(r, s, t \in L_{L_{\text{AL}}} ::= x \mid (s \; t) \mid \lambda x. s \mid \text{seq} \; s \; t \). Answers are all abstractions (WHNFs). \(\text{AL}_{seq} \)-reduction contexts \(R \) are defined by the grammar \(R ::= \cdot \mid (R \; s) \mid \text{seq} \; R \; t \), and a normal order reduction is \(R[s] \to_{L_{\text{AL}}} R[t] \), whenever \(s \to_{\beta} t \) or \(s \to_{\text{seq}} t \) (see Fig. 1).
\end{definition}

\begin{definition}[\(\text{AL}_{cc} \)] \(\text{AL}_{cc} \) extends \(\text{AL} \) by \(\text{case} \) and data constructors. There is a finite nonempty set of type constructors \(K_1, \ldots, K_n \), where for every \(K_i \) there are pairwise disjoint finite nonempty sets of data constructors \(\{c_{K_i,1}, \ldots, c_{K_i,m_i}\} \). Every constructor has a fixed \(\text{arity} \) (a non-negative integer) denoted by \(\text{ar}(K_i) \) or \(\text{ar}(c_{K_i,j}) \), resp. Examples are a type constructor \(\text{Bool} \) (of arity 0) with data constructors \(\text{True} \) and \(\text{False} \) (both of arity 0), as well as lists with a type constructor \(\text{List} \) (of arity 1) and data constructors \(\text{Nil} \) (of arity 0) and \(\text{Cons} \) (of arity 2). For the \(\text{constructor application} \) \((c_{K_i,j} \; s_1 \ldots s_{\text{ar}(c_{K_i,j})}) \), we use \((c_{K_i,j} \; s) \) as an abbreviation, and write \(t[\overrightarrow{s}/\overrightarrow{x}] \) for the parallel substitution \(t[s_1/x_1, \ldots, s_{\text{ar}(c_{K_i,j})}/x_{\text{ar}(c_{K_i,j})}] \). The grammar \(r, s, t \in L_{L_{\text{AL}}} ::= x \mid (s \; t) \mid \lambda x. s \mid (c_{K_i,j} \; \overrightarrow{s}) \mid (\text{case}_{K_i} \; s \; (c_{K_i,j} \; \overrightarrow{x} \to s_{i,1}) \ldots (c_{K_i,j} \; \overrightarrow{x} \to s_{i,m_i})) \) defines expressions of \(\text{AL}_{cc} \). We use an abbreviation \(\text{case}_{K_i} \; s \) \(\text{alts} \) if the alternatives of the \(\text{case} \) do not matter. The \(\text{AL}_{cc} \)-reduction contexts \(R \) are defined as \(R ::= \cdot \mid (R \; s) \mid \text{case}_{K_i} \; R \; \text{alts} \). A normal order reduction is \(R[s] \to_{L_{\text{AL}}} R[t] \), where \(s \to_{\beta} t \) or \(s \to_{\text{cc}} t \) (see Fig. 1, where \(p_i \) mean patterns \((c_{K_i,j} \; \overrightarrow{x}) \) in \(\text{case} \)-expressions). Answers in \(\text{AL}_{cc} \) are \(\lambda x. s \) and \((c_{K_i,j} \; s) \), also called WHNFs.
\end{definition}

\begin{definition}[\(\text{AL}_{cc,seq} \)] The calculus \(\text{AL}_{cc,seq} \) combines the syntax and reduction rules of \(\text{AL}_{seq} \) and \(\text{AL}_{cc} \) with the obvious notion of normal order reduction \(\to_{\text{AL}_{cc,seq}} \) applying \(\beta \), (seq), and (case) (see Fig. 1) in reduction contexts.
\end{definition}

We will write \(\lambda x_1, x_2, \ldots, x_n. t \) instead of \(\lambda x_1. \lambda x_2. \ldots. \lambda x_n. t \). We use the following abbreviations for specific closed lambda expressions:

\[
\begin{align*}
\text{id} & = \lambda x. x \\
\omega & = \lambda x. (x \; x) \\
\Omega & = (\omega \; \omega) \\
Y & = \lambda f. ((\lambda x. f \; (x \; x)) \; (\lambda x. f \; (x \; x))) \\
\top & = (Y \; (\lambda x, y. x))
\end{align*}
\]
Extending the Lazy Lambda Calculus: (Non)-Conservativity of Embeddings

244 Extending the Lazy Lambda Calculus: (Non)-Conservativity of Embeddings

Thus we will use the symbol \(\bot \) to denote a representative of the equivalence class of closed diverging expressions, e.g. one such expression is \(\Omega \).

Remark. Note that contextual equivalence in all our calculi always distinguishes different values. For instance, different constructors can always be distinguished by choosing case-expressions as contexts such that one constructor is mapped to a value while the other one is mapped to \(\Omega \). Different abstractions are distinguished by applying them to arguments. Different variables \(x,y \) are always contextually different: The context \(C := (\lambda x,y.[\;]) \) distinguishes them, since \(C[x] \) converges, while \(C[y] \) diverges.

We now show correctness of program transformations. The simplifications for the calculi \(AL_{seq}, AL_{cc}, AL_{cc,seq} \) are defined in Fig. 2, s.t. each simplification is defined in all calculi where the constructs exist. In [15] we prove:

Theorem 3.5. For \(D \in \{ AL, AL_{seq}, AL_{cc}, AL_{cc,seq} \} \) the reductions of the corresponding calculus (Fig. 1) and the simplifications (Fig. 2) are correct program transformations, regardless of the context they are applied in.

Contextual equivalence of open expressions can be proven by closing them using additional lambda binders. One direction of the following lemma is obvious, since \(\sim_D \) is a congruence. The other direction can be proven by using applicative bisimilarity (see [15]).

Lemma 3.6. For \(D \in \{ AL, AL_{seq}, AL_{cc}, AL_{cc,seq} \} \) and \(D \)-expressions \(s,t \) with \(FV(s) \cup FV(t) \subseteq \{ x_1, \ldots, x_n \} \): \(s \sim_D t \iff \lambda x_1, \ldots, x_n. s \sim_D \lambda x_1, \ldots, x_n. t \).

Correctness of \(\beta \)-reduction implies that a restricted use of \(\eta \)-expansion is correct:

Proposition 3.7. For every \(D \in \{ AL, AL_{seq}, AL_{cc}, AL_{cc,seq} \} \) the transformation \(\eta \) is correct for all abstractions, i.e. \(s \sim_D \lambda z. s \ z \), if \(s \) is an abstraction.

Definition 3.8. We use \(B_k^m \) as an abbreviation for a “\(\bot \)-alternative” of the \(k \)th data constructor of type constructor \(K_m \) i.e. \(B_k^m := (c_{K_m,k} \ x \rightarrow \bot) \). Let \(v \) be any closed abstraction (for \(AL, AL_{seq} \)) or be any closed abstraction or constructor application (\(c_{K_m,j} \ s \)) (for in \(AL_{cc}, AL_{cc,seq} \)), respectively.

Approximation contexts \(AP_i \ (i \in \mathbb{N}_0) \) are defined for \(AL, AL_{seq}, AL_{cc}, AL_{cc,seq} \) as follows:

For \(AL, AL_{seq} \):

\[
AP_0 \ ::= \ [\] \\
AP_{i+1} \ ::= \ (AP_i \ v) \ | \ (AP_i \ \bot)
\]

For \(AL_{cc}, AL_{cc,seq} \):

\[
AP_0 \ ::= \ [\] \\
AP_{i+1} \ ::= \ (AP_i \ v) \ | \ (AP_i \ \bot) \\
| case_{K_m} \ AP_{i} \ B_{i}^{m} \ldots B_{i-1}^{m} (c_{K_m,j} \ x \rightarrow x_k) \ B_{i+1}^{m} \ldots B_{n}^{m}
\]

Figure 2 Case- and seq-simplifications.
These negative results show that the syntactically less expressive calculi are not sufficiently expressive and are thus unstable under extensions. Expressions used in our counterexamples are defined in Fig. 3. We also prove equations necessary for the examples:

\[
\begin{align*}
 s_1 & := \lambda x. (\lambda y. x \top \bot y) \top \\
 s_2 & := \lambda x. (x \top \bot) \top \\
 t_1(s) & := \lambda x. (x s) \\
 t_2(s) & := \lambda x. \lambda y. x \top \bot \top \\
 \text{where } s \text{ is an expression with } FV(s) \subseteq \{x\} \\

 s_3 & := \lambda x. y. (y (y (x id))) \\
 s_4 & := \lambda x. y. x (y \lambda z. (y (x id) z)) \\
 s_5 & := \lambda x. y. (x (x y)) (x (x y)) \\
 s_6 & := \lambda x. y. ((x (x y)) (x \lambda z. x y z)) \\
 s_7 & := \lambda x. \text{case}_\text{bool}(x) (\text{True} \rightarrow \text{True})(\text{False} \rightarrow \bot) \\
 s_8 & := \lambda x. \text{case}_\text{bool}(x \lambda y. \bot) (\text{True} \rightarrow \text{True})(\text{False} \rightarrow \bot)
\end{align*}
\]

\textbf{Figure 3} The untyped counterexample expressions.

The following result known as a context lemma is proven in the technical report [15]. However, we outline the ideas of the proof: Howe’s method [6, 7] implies that contextual approximation coincides with applicative similarity in all four calculi. Applicative similarity (in AL, AL\text{seq}) means that \(s_2\) can simulate \(s_1\) if and only if in case \(s_1\) reduces to an abstraction \(v_1\), then \(s_2\) reduces to an abstraction \(v_2\) and for every argument \(r\): \(v_2\ r\) can simulate \(v_1\ r\). This recursive definition is meant to be co-inductive. For deriving the context lemma below, two more steps are necessary: First show that, instead of applying \(v_1\) to argument \(r\), the definition is unchanged, if \(s_1\) is applied to argument \(r\) and reduction is then performed for \(s_1\ r\). The second step is to show that the co-inductive definition is equivalent to an inductive definition, using Kleene’s fixpoint theorem.

\begin{itemize}
 \item \textbf{Theorem 3.9 (AP_Context-Lemma).} For \(D \in \{\text{AL, AL\text{seq}, AL\text{cc, AL\text{cc.seq}}\}}\) and closed \(D\)-expressions \(s, t\) holds:
 \[
 s \leq_D t \text{ iff for all } i \text{ and all approximation contexts } AP_i: AP_i[s]\downarrow_D \Rightarrow AP_i[t]\downarrow_D
 \]
 \end{itemize}

We provide a criterion to prove contextual equivalence of expressions, which is used in later sections. Its proof can be found in [15].

\begin{itemize}
 \item \textbf{Proposition 3.11.} For \(D \in \{\text{AL, AL\text{seq, AL\text{cc, AL\text{cc.seq}}\}}\}\) closed \(D\)-expressions \(s\) and \(t\) are contextually equivalent if there exists \(i \in \mathbb{N}_0\) such that
 \[
 1. AP_j[s]\downarrow_D \iff AP_j[t]\downarrow_D \text{ for all } 0 \leq j < i \text{ and all } AP_j\text{-contexts.} \\
 2. AP_j[s] \sim_D AP_j[t] \text{ for all } AP_j\text{-contexts.}
 \]
 \end{itemize}

For all four calculi \textit{applicative contexts} are defined by \(A := \{\} \mid (A \ s)\). The following proposition allows systematic case-distinctions for expressions (proved in [15]).

\begin{itemize}
 \item \textbf{Theorem 3.10.} For \(D \in \{\text{AL, AL\text{seq, AL\text{cc, AL\text{cc.seq}}\}}\}\) closed \(D\)-expressions \(s\) and \(t\) are contextually equivalent if there exists \(i \in \mathbb{N}_0\) such that
 \[
 1. AP_j[s]\downarrow_D \iff AP_j[t]\downarrow_D \text{ for all } 0 \leq j < i \text{ and all } AP_j\text{-contexts.} \\
 2. AP_j[s] \sim_D AP_j[t] \text{ for all } AP_j\text{-contexts.}
 \]
 \end{itemize}

\textbf{4 Relations between the Untyped Calculi}

This section shows the non-conservativity of embeddings of the four untyped lazy calculi. These negative results show that the syntactically less expressive calculi are not sufficiently expressive and are thus unstable under extensions. Expressions used in our counterexamples are defined in Fig. 3. We also prove equations necessary for the examples:

\begin{itemize}
 \item \textbf{Lemma 4.1.} For all expressions \(s\): \(\top \sim_{\text{AL}} \lambda x. \top\) and \(\top \sim_{\text{AL}} \top\).
\end{itemize}
Proof. $\top s \leadsto_{AL} \top$ follows from correctness of β (Theorem 3.5), since $\top s \overset{\beta,\tau}{\rightarrow} \lambda x.\lambda z.(\lambda x.\lambda z.(x \ x)) (\lambda x.\lambda z.(x \ x)) \overset{\beta,\tau}{\rightarrow} \top$. For $\top \leadsto_{AL} \lambda x.\top$ we use Theorem 3.10 (for $i = 1$): $\top \downarrow_{D}, \lambda x.\top \downarrow_{D}$, and $(\lambda x.\top) \overset{\beta}{\rightarrow} \top \downarrow_{D} (\top \tau)$ for any τ.

\blacktriangleleft

Theorem 4.2. The following equalities hold for the expressions in Fig. 3: 1. If $s[id/x] \not\leadsto_{AL} \perp$ then $t_1(s) \leadsto_{AL} t_2(s)$. 2. $s_1 \leadsto_{AL} s_2$. 3. $s_3 \leadsto_{AL} s_4$. 4. $s_5 \leadsto_{eq} s_6$. 5. $s_7 \leadsto_{eq} s_8$.

Proof. 1. We use Theorem 3.10 (for $i = 1$). For the empty context we have $t_1(s) \downarrow_{AL}$ and $t_2(s) \downarrow_{AL}$. Now we consider the case ($t_1 b$) and ($t_2 b$) where b is a closed abstraction or \perp. We make a case distinction on the argument b according to Proposition 3.11. By easy computations ($t_1 b$) $\leadsto_{AL} (t_2 b)$ if $b = \perp$, $b = \lambda x.\perp$, or $b = \lambda x.\perp t$. For $b := \lambda x.\perp$, two β-reductions show that $t_1 \lambda x.\perp \leadsto_{AL} s[id/x]$, and that $t_2 \lambda x.\perp \leadsto_{AL} \lambda z.s[id/x] \perp$. Since $s[id/x] \not\leadsto_{AL} \perp$, it is equivalent to an abstraction, and Proposition 3.7 shows contextual equivalence of the two expressions. Now let $b := \lambda u.u \ t_1 \ldots t_n$ with $n \geq 1$. If $(s[b/x]) \not\leadsto_{AL} \perp$, then there exists a closed abstraction $\lambda w.s'$ such that $(\lambda w.s') \leadsto_{AL} (s[b/x])$. By Proposition 3.7 we can transform: $(t_1 b) \leadsto_{AL} b \overset{\beta}{\rightarrow} \lambda z.\lambda w.s' \leadsto_{AL} \lambda z.(\lambda w.s') \perp \perp \leadsto_{AL} \lambda z.(\lambda w.s') \perp \perp \leadsto_{AL} t_2 b$. In the case ($b[s/b/x]$) $\leadsto_{AL} \perp$, evaluation of $(\lambda u.u \ t_1 \ldots t_n)$ and $(\lambda u.u \ t_1 \ldots t_n)$ results in \perp.

2. We use Theorem 3.10 (for $i = 1$). Since $s_1 \downarrow_{AL}$ and $s_2 \downarrow_{AL}$, we only consider the cases ($s_1 b$) and ($s_2 b$) where b is a closed abstraction or \perp. We use Proposition 3.11 for a case distinction on b. Since $s_1 \leadsto_{AL} s_2 b$ for $b = \perp$, $b = \lambda x.\perp$, and $b = \lambda z.\perp$. For $b := \lambda z.(z \ u_1 \ldots u_n)$ where $n \geq 1$, we have $(s_1 b) \leadsto_{AL} \lambda z.\perp \top$ and $(\lambda u.u \ t_1 \ldots t_n) \downarrow_{AL}$, and by Lemma 4.1 also $(s_1 b) \leadsto_{AL} (s_2 b)$.

3. We use Theorem 3.10 (for $i = 2$). Since $s_3 \downarrow_{AL}$ and $(s_4 b) \downarrow_{AL}$ for $j = 3, 4$ we need to consider the cases ($s_3 b$) and ($s_4 b$) where b, d are closed abstractions or \perp. We use Proposition 3.11 for case distinction on d. If $d = \perp$, or $d = \lambda x.\perp$, then $s_3 b d \leadsto_{AL} s_4 b d$. If $d := \lambda x.\perp$, then item 1 shows that $\lambda x.\perp (x \ id) \leadsto_{AL} \lambda x.\perp x \lambda z.(x \ id) \perp$. Correctness of β implies that $b \leadsto_{AL} \lambda z.(b \ id) \perp$, and thus $s_3 b d \leadsto_{AL} \lambda z.(b \ id) \perp \leadsto_{AL} \lambda z.(b \ id) \perp \leadsto_{AL} s_4 b d$. If $d := \lambda x.\perp t$, then $s_3 b d \leadsto_{AL} \lambda z.(\lambda x.\perp t) \leadsto_{AL} \lambda z.(\lambda x.\perp t) \leadsto_{AL} s_4 b d$, where η is correct by Proposition 3.7. If $d := \lambda u.u \ t_1 \ldots t_n$, then we η-equivalence holds in this case. Otherwise, if $(d(b \ id)) \leadsto_{AL} \perp$, then $(b(d \ id)) \leadsto_{AL} \lambda b.(d(\lambda x.\perp b \ id)) \leadsto_{AL} \perp \perp \leadsto_{AL} (d \ perp).$

4. We use Theorem 3.10 (for $i = 2$). We have $s_5 \downarrow_{eq}$ and $(s_6 b) \downarrow_{eq}$ for $j = 5, 6$. Now we consider the cases ($s_5 b$) and ($s_6 b$) where b is a closed abstraction or \perp. We make a case distinction on b using Proposition 3.11. The cases $b = \perp$, $b = \lambda x.\perp$, and $b = \lambda u.u$ are easy to verify. If $b = \lambda u.v.b'$ then the subexpression ($b \ d$) is contextually equivalent to $\lambda v.b'[d/u]$. Thus, η-expansion for $b \ d$ is correct which shows $s_5 b d \leadsto_{eq} s_6 b d$. For the other case we distinguish whether ($b \ d$) $\leadsto_{eq} \perp$. If ($b \ d$) $\not\leadsto_{eq} \perp \perp$ then η is correct, which shows that $s_5 b d \leadsto_{eq} s_6 b d$. If ($b \ d$) $\leadsto_{eq} \perp$, then we have to check more cases: If $b = \lambda u.\seq(u \ t_1 \ldots) \ r$ or $b = \lambda u.\seq u \ r$, then ($b \ d$) $\leadsto_{eq} \perp$, and $s_5 b d$ is equivalent to $s_6 b d$. If $b = \lambda u.\ t_1 \ldots$, then ($b \ d$) becomes \perp in both expressions, which shows ($s_5 b d$) $\leadsto_{eq} \perp \leadsto_{eq} (s_6 b d)$.

5. We use Theorem 3.10. Since $s_7 \downarrow_{AL}$, and $s_8 \downarrow_{eq}$, and case $s_7 \ldots \leadsto_{eq} \perp \leadsto_{eq} \perp$ case $s_8 \ldots$, it is sufficient to show ($s_7 b$) $\leadsto_{AL} (s_8 b)$ where b is a closed abstraction, a constructor application, or \perp. If $b = \perp$ then the equivalence holds. Otherwise, we inspect the cases of a normal-order reduction for $b y$ for some free variable y. If $b y_{\top} \leadsto_{AL} \top$ (or $b y_{\bot} \leadsto_{AL} \bot$, resp.) then ($b \bot$) and ($b \bot \perp$) also converge with \top (or \bot, resp.), which shows that ($s_7 b$) $\leadsto_{eq} (s_8 b)$. If evaluation of $b y$ stops with $R[y]$ for some
We now analyze embeddings among the four calculi under monomorphic typing, and therefore we add a monomorphic type system to the calculi. The counterexamples in Sect. 4 cannot be transferred to the typed calculi except for the counterexample showing non-conservativity of embedding $\text{AL}_{\text{cc},\text{seq}}$ into $\text{AL}_{\text{cc},\text{seq}}$.

Now we obtain non-conservativity for all embeddings between the four calculi as follows:

Theorem 4.3. The natural embeddings of AL in AL_{seq}, AL in $\text{AL}_{\text{cc},\text{seq}}$, AL in AL_{cc}, AL_{seq} in $\text{AL}_{\text{cc},\text{seq}}$, and AL_{cc} in $\text{AL}_{\text{cc},\text{seq}}$ are not conservative.

Proof. AL in AL_{seq} and AL in $\text{AL}_{\text{cc},\text{seq}}$: The proof uses the expressions s_1, s_2 which are adapted from the example of [4, Proposition 3.15]. Theorem 4.2, item 2 shows that $s_1 \sim_{\text{AL}} s_2$. The context $C := ([\lambda z. \text{seq } z \text{id})$ distinguishes s_1, s_2 in AL_{seq}, $\text{AL}_{\text{cc},\text{seq}}$, since $C[s_1] \downarrow_D$ while $C[s_2] \uparrow_D$ for $D \in \{\text{AL}_{\text{seq}}, \text{AL}_{\text{cc},\text{seq}}\}$.

Another counterexample uses the expressions $t_1(s), t_2(s)$ with $s = (x ((x \text{id}) (x \text{id})))$: Since $s[\text{id}/x] \sim_{\text{AL}} s$, Theorem 4.2, item 1 shows $t_1(s) \sim_{\text{AL}} t_2(s)$. However, the context $C := ([\lambda y. \text{seq } y \text{u})$ distinguishes $t_1(s)$ and $t_2(s)$ in AL_{seq} and $\text{AL}_{\text{cc},\text{seq}}$.

AL in AL_{cc}: From Theorem 4.2 we have $s_3 \sim_{\text{AL}} s_4$. In AL_{cc} the context $C := [\lambda u. \text{True}) (\lambda u. \text{case } \text{Bool } u (\text{True} \rightarrow \text{False}) (\text{False} \rightarrow \text{id}))$ distinguishes s_3 and s_4, since $C[s_3] \sim_{\text{AL}_{\text{cc}}} \text{True}$ and $C[s_4] \downarrow_{\text{AL}_{\text{cc}}}$.

AL_{seq} in $\text{AL}_{\text{cc},\text{seq}}$: Theorem 4.2 shows $s_5 \sim_{\text{AL}} s_6$. In $\text{AL}_{\text{cc},\text{seq}}$ the context $C := ([\lambda b. \text{case } \text{Bool } b (\text{True} \rightarrow \text{False}) (\text{False} \rightarrow \text{id})]$ distinguishes s_5 and s_6, since $C[s_5] \sim_{\text{AL}_{\text{cc},\text{seq}}} \text{id}$, but $C[s_6] \downarrow_{\text{AL}_{\text{cc},\text{seq}}}$.

AL_{cc} in $\text{AL}_{\text{cc},\text{seq}}$: A counterexample for conservativity of embedding AL_{cc} into $\text{AL}_{\text{cc},\text{seq}}$ was given in [18] which can be translated into the notations of this paper as follows: The equation $s_7 \sim_{\text{AL}} s_8$ holds (Theorem 4.2), but for the context $C := [\lambda u. \text{seq } u \text{True}$ we have $C[s_7] \downarrow_{\text{AL}_{\text{cc},\text{seq}}} \text{True}$ while $C[s_8] \downarrow_{\text{AL}_{\text{cc},\text{seq}}}$.

5 Monomorphically Typed Calculi and Embeddings

We now analyze the four calculi under monomorphic typing, and therefore we add a monomorphic type system to the calculi. The counterexamples in Sect. 4 cannot be transferred to the typed calculi except for the counterexample showing non-conservativity of embedding AL_{cc} into $\text{AL}_{\text{cc},\text{seq}}$.

Since AL with a monomorphic type system is the simply typed lambda calculus (which is too inexpressive since every expression converges) we extend all the calculi by a fixpoint combinator Fix as a constant to implement recursion, and by a constant Bot to denote a diverging expression. The resulting calculi are called AL^{τ}, $\text{AL}_{\text{seq}}^{\tau}$, $\text{AL}_{\text{cc}}^{\tau}$, $\text{AL}_{\text{cc},\text{seq}}^{\tau}$.

The syntax for types is $T := o | T \rightarrow T | K(T_1, \ldots, T_{\text{ar}K})$, where o is the base type, and K is a type constructor. The syntax for expressions is as in the base calculi, but extended by Fix as a family of constants of all types of the form $(T \rightarrow T) \rightarrow T$, and the constant Bot as a family of constants of all types. Variables have a built-in type, i.e. in every expression every variable is annotated with a monomorphic type, e.g. $\lambda x^{o \rightarrow o}. x^{o \rightarrow o}$ is an identity on functions of type $o \rightarrow o$. However, we rarely write these annotations explicitly. The type of constructors

1 Bot can also be encoded using Fix, but for convenient representation we include the constant.
is structured as in a polymorphic calculus: The family of constructors for one constructor
\(c_K\) has a (polymorphic) type schema of the form
\(T_1 \rightarrow \ldots \rightarrow T_n \rightarrow (K_1 \ T_1' \ldots \ T_{ar(K)}')\),
where every type-variable of
\(T_1 \rightarrow \ldots \rightarrow T_n\) is contained in
\((K_1 \ T_1' \ldots \ T_{ar(K)}')\), and every monomorphic type of constructor \(c_K\) is an instance of this type. The types of \textit{case} and \textit{seq} are the monomorphic instances of the usual polymorphic types as in Haskell. We omit the standard typing rules. However, we write \(s :: T\) which means that \(s\) can be typed by a (monomorphic) type \(T\). The reduction rules are in Fig. 1, and normal order reduction
\(\rightarrow_D\) for \(D \in \{ \text{AL}^\tau, \text{AL}^\tau_{\text{seq}}, \text{AL}^\tau_{\text{cc}}, \text{AL}^\tau_{\text{cc, seq}} \}\) applies the reduction rules in reduction contexts (defined as before). It is easy to verify that normal order reduction is deterministic, type-, and closedness-preserving. The following progress lemma holds: for every closed expression \(t\), either \(t \rightarrow_D t_0\), where \(t_0\) is a value, or \(t\) has an infinite reduction sequence, or \(t \rightarrow_D R[\text{Bot}]\), where \(R\) is a reduction context. In particular, the typing implies that case-expressions (\textit{case}_\(K\) (\(e\) . . . \(als\))) are always reducible by a case-reduction.

Answers are defined as abstractions, constructor applications, and the constant \textit{Fix}. Contextual equivalence \(\sim_D\) is defined according to Definition 2.2. We also reuse the approximation contexts, but restrict them to well-typed contexts. The \(AP_i\)-context lemma (Theorem 3.9) also holds for the typed calculi, where only equally typed expressions and closed, equally typed \textit{approximation} contexts are taken into account.

\begin{theorem}
For \(D \in \{ \text{AL}^\tau, \text{AL}^\tau_{\text{seq}}, \text{AL}^\tau_{\text{cc}}, \text{AL}^\tau_{\text{cc, seq}} \}\) and closed, equally typed \(D\)-expressions \(s, t\) holds: \(s \leq_D t\) iff for all \(i\) and all \textit{approximation} contexts \(AP_i\), such that \(AP_i[s]\) and \(AP_i[t]\) are well-typed: \(AP_i[s] \downarrow_D \implies AP_i[t] \downarrow_D\).
\end{theorem}

To lift the correctness results for program transformations into the typed calculi, we define a translation \(\delta\).

\begin{definition}
Let \(\delta: \text{AL}^\tau_{\text{cc, seq}} \rightarrow \text{AL}^\tau_{\text{cc, seq}}\) be the translation of an \text{AL}^\tau_{\text{cc, seq}}-expression that first removes all types and then leaves all syntactical constructs as they are except for the cases \(\delta(\text{Bot}) := \Omega\) and \(\delta(\text{Fix}) := \lambda f. (\lambda x.f (x x)) (\lambda x.f (x x))\).
\end{definition}

In [15] we prove adequacy of \(\delta\), which implies that reduction rules and simplifications are correct program transformations in the typed calculi.

\begin{proposition}
For equally typed \text{AL}^\tau_{\text{cc, seq}}-expressions \(s, t\) it holds: \(\delta(s) \sim_{\text{AL}^\tau_{\text{cc, seq}}} \delta(t)\) implies \(s \sim_{\text{AL}^\tau_{\text{cc, seq}}} t\). The same holds for \text{AL}^\tau, \text{AL}^\tau_{\text{seq}}, and \text{AL}^\tau_{\text{cc}}\ w.r.t. their untyped variants.
\end{proposition}

\begin{theorem}
All reduction rules and simplifications in Figs. 1, 2, and 4 are correct program transformations in \text{AL}^\tau, \text{AL}^\tau_{\text{seq}}, \text{AL}^\tau_{\text{cc}, seq}, and \text{AL}^\tau_{\text{cc, seq}}.
\end{theorem}

We now show non-conservativity of embedding \text{AL}^\tau in \text{AL}^\tau_{\text{seq}} as well as of \text{AL}^\tau_{\text{cc}} in \text{AL}^\tau_{\text{cc, seq}}, i.e. the addition of \text{seq} is not conservative. For the other embeddings, \text{AL}^\tau in \text{AL}^\tau_{\text{cc}} and \text{AL}^\tau_{\text{seq}} in \text{AL}^\tau_{\text{cc, seq}}, we show conservativity. This is consistent with typability: the counterexample for \text{AL} in \text{AL}^\tau_{\text{cc}} requires an untyped context, and the counterexample for \text{AL}^\tau_{\text{seq}} in \text{AL}^\tau_{\text{cc, seq}} has a self-application of an expression, which is nontypable.
5.1 Adding Seq is Not Conservative

We consider calculi AL\(^T\) and AL\(^{r,seq}\).

There is only one equivalence class w.r.t. contextual equivalence for closed expressions of type \(\tau\): it is Bot\(^T\) :: \(\tau\). For type \(\tau \rightarrow \tau\), there are only two equivalence classes with representatives Bot\(^{\tau \rightarrow \tau}\) and \(\lambda x.\text{Bot}\). The expression \(\lambda x.\text{Bot}\) is equivalent to \(\lambda x.\text{Bot}\), since there are no values of type \(\tau\).

Our counterexample to conservativity are the following expressions \(s_9, s_{10}\) of type ((\(o \rightarrow o\)) \(\rightarrow (o \rightarrow o)\)) \(\rightarrow (o \rightarrow o)\) \(\rightarrow (o \rightarrow o)\) \(\rightarrow (o \rightarrow o)\):

\[
\begin{align*}
 s_9 &:= \lambda f, x, y, z. f (f x y) (f y z) \\
 s_{10} &:= \lambda f, x, y, z. f (f x y) (f z z)
\end{align*}
\]

Theorem 5.5. The embedding of AL\(^T\) into AL\(^{r,seq}\) and into AL\(^{r,cc,seq}\) is not conservative.

Proof. We use Theorem 3.10 (with \(i = 1\)) which also holds in the typed calculi (see [15]) and show \(s_9 \sim_{AL^{T}} s_{10}\). Since \(s_9 \sim_{AL^{T}} s_{10}\), we need to show \(s'_9 := (s_9 \, b) \sim_{AL^{r}} s'_{10} := (s_{10} \, b)\), where \(b\) is a closed expression of type \(o \rightarrow o\). We check the different cases for \(b\). Due to its type \(b\) must be equivalent to one of Bot, \(\lambda w.\text{Bot}\), \(\lambda x, w.\text{Bot}\), \(\lambda x, y.\text{Bot}\), \(\lambda x, y, x.\text{Bot}\), and \(\lambda x, y, y.\text{Bot}\). For the first three cases it holds: \(s'_9 \sim_{AL^{r}} (\lambda x, y, z. \text{Bot}) \sim_{AL^{r}} s'_{10}\). If \(b = \lambda x, y. \text{Bot}\) then \(s'_9 \sim_{AL^{r}} (\lambda x, y. \text{Bot}) \sim_{AL^{r}} s'_{10}\). If \(b = \lambda x. \text{Bot}\) then \(s'_9 \sim_{AL^{r}} (\lambda x. \text{Bot}) \sim_{AL^{r}} s'_{10}\). Non-conservativity now follows from the context \(C = ([\lambda x, y. \text{seq} \, x \, y] (\lambda x. \text{Bot}) \, \text{Bot} (\lambda x. \text{Bot})))\). The expressions \(C[s_9]\), \(C[s_{10}]\), are typable in AL\(^{r,seq}\), AL\(^{r,cc,seq}\), and C[s_9] \(\sim_{D} \text{Bot}\), but C[s_{10}] \(\sim_{D} (\lambda x. \text{Bot})\) for \(D \in \{\text{AL^{T}, AL^{cc,seq}}\}\).

We reuse the counterexample in the untyped case represented by expressions \(s_{7}\) and \(s_{8}\), where \(\bot\) is replaced by Bot. The example becomes

\[
\begin{align*}
 s_{11} &:= \lambda x.\text{case} _{\text{Bot}} (x \, \text{Bot}) (\text{True} \rightarrow \text{True}) (\text{False} \rightarrow \text{Bot}) \\
 s_{12} &:= \lambda x.\text{case} _{\text{Bot}} (x (\lambda y.\text{Bot})) (\text{True} \rightarrow \text{True}) (\text{False} \rightarrow \text{Bot})
\end{align*}
\]

where \(s_{11}, s_{12}\) are typed as ((\(T \rightarrow \text{Bool}\)) \(\rightarrow \text{Bot}\)) for any type \(T\). The two expressions are equivalent in AL\(^{T}\): They are typed, and \(\delta(s_{11}) = \delta(s_{12})\) (see Theorem 4.2, item 5). Thus Proposition 5.3 is applicable. However, \(s_{11} \not\sim_{AL^{r,cc,seq}} s_{12}\), since \(s_{12}\) evaluates to \(\text{True}\), while \(s_{11}\) diverges, where \(b = \lambda u.\text{seq} \, u\).

Theorem 5.6. The embedding of AL\(^{r,cc}\) into AL\(^{r,cc,seq}\) is not conservative.

5.2 Adding Case and Constructors is Conservative

We show that adding case and constructors to the monomorphically typed calculi is conservative. We give a detailed proof for embedding AL\(^{r,seq}\) into AL\(^{r,cc,seq}\). The proof for embedding AL\(^{T}\) into AL\(^{cc}\) is analogous by omitting unnecessary cases. We show that for AL\(^{r,seq}\)-expressions \(s, t\) the embedding is fully abstract, i.e. \(s \leq_{AL^{r,seq}} t \iff s \leq_{AL^{r,cc,seq}} t\). The hard part is \(s \leq_{AL^{cc,seq}} t \implies s \leq_{AL^{r,cc,seq}} t\). Lemma 3.6 holds in the typed calculi as well, and thus it suffices to consider closed \(s, t\). The AP\(_{\tau}\)-context lemma (Theorem 5.1) can be used, where the arguments are closed.

The main argument concerns the following situation: There are closed equally typed AL\(^{r,seq}\)-expressions \(s, t\), such that \(s \leq_{AL^{cc,seq}} t\), but we assume that \(s \leq_{AL^{r,seq}} t\) does not hold. Since \(s, t\) must have a type without constructed types and since the AP\(_{\tau}\)-context lemma holds, there is an \(n \geq 0\), and \(v_i, i = 1, \ldots, n\), that are Bot or AL\(^{cc,seq}\)-values, and where all \(v_i\) are of an AL\(^{r,seq}\)-type, such that \(s \, v_1 \ldots v_n \downarrow_{AL^{cc,seq}}\), but \(t \, v_1 \ldots v_n \downarrow_{AL^{r,seq}}\). The goal is to show that there are AL\(^{r,seq}\)-expressions \(v'_i\) that are Bot or AL\(^{r,seq}\)-values, such that \(s \, v'_1 \ldots v'_n \downarrow_{AL^{r,seq}}\), and
Extending the Lazy Lambda Calculus: (Non)-Conservativity of Embeddings

250

...λα t v′_1 ... v′_n\right)}_{AL_{cc}} \) which refutes \(s \leq_{AL_{cc}} t \) and thus leads to a contradiction. It is sufficient to show that for every \(AL_{cc, seq} \) value \(v \) and context \(C \) with \(C[v]_{\downarrow_{AL_{cc}}} \), there is an \(AL_{seq} \) value \(v′ \), with \(v′ \leq_{AL_{cc}} v \), such that \(C[v′]_{\downarrow_{AL_{cc}}} \).

In order to construct the proof we define simplification transformations in our monomorphically typed calculi, whenever the appropriate constructs exist in the calculus.

Definition 5.7. The simplification rules (caseapp), (casecase), (seqseq), (seqapp), (seqcase), (caseseq), (botapp), (botcase), and (botseq) are defined in Figs. 2 and 4, where we use the typed variants. For \(D \in \{AL_{cc, seq}, AL_{cc}\} \) let \(Dx \) denote the reduction using normal order reductions and simplification rules in a reduction context, where in case of a conflict the topmost redex is reduced. If \(s \xrightarrow{Dx} v \) for some \(D \)-answer \(v \), then we denote this as \(s\downarrow_{Dx} \).

Let \(\xrightarrow{bcfC} \) denote the reduction in any context by \((β)\), (case), (seq), and (fix).

The simplifications are correct in the calculi under consideration and they do not change the normal order reduction length (proven in [15]):

Lemma 5.8. In the calculi \(AL_{cc}^\tau \) and \(AL_{cc, seq}^\tau \): The simplification rules preserve the length of (converging) normal order reductions, i.e. let \(d \) be a simplification rule and \(D \in \{AL_{cc}^\tau, AL_{cc, seq}^\tau\} \): if \(s \xrightarrow{D} s' \) then \(s \xrightarrow{Dx} v \), where \(v \) is a \(D \)-WHNF, if and only if \(s' \xrightarrow{D} v' \), where \(v' \) is a \(D \)-WHNF.

Lemma 5.9. For \(D \in \{AL_{cc, seq}^\tau, AL_{cc}^\tau\} \) we have \(\downarrow_D = \downarrow_{Dx} \).

Proof. Since the simplification rules are correct in \(AL_{cc, seq}^\tau \), \(AL_{cc}^\tau \), \(s\downarrow_{Dx} \) implies that \(s\downarrow_D \). Now assume that \(s\downarrow_D \). We use induction on the number of \((β)\), (case), (seq), (fix)-reductions of \(s \) to a WHNF. If \(s \) is a WHNF, then it is irreducible w.r.t. \(Dx \). If \(s \) has a normal order reduction of length \(n > 0 \) to a WHNF, then consider a \(Dx \)-reduction sequence \(s \xrightarrow{Dx} s_0 \), where \(s_0 \) is a \(D \)-WHNF. Lemma 5.8 and termination of the simplifications (proved in [15]) show that there are \(s', s'' \), such that \(s \xrightarrow{Dx} s' \xrightarrow{D} s'' \), where \(s \xrightarrow{Dx} s' \) consists only of simplification rules. Lemma 5.8 shows that the normal order reduction length of \(s'' \) to a WHNF is smaller than \(n \). Now we can apply the induction hypothesis.

Definition 5.10. The following approximation procedure computes for every \(D \)-expression \(t \) (for \(D \in \{AL_{cc, seq}^\tau, AL_{cc}^\tau\} \)) and every depth \(i \) an approximating expression \(\text{approx}(t, i) \leq_D t \). First a pre-approximation is computed where \(\text{preapprox}(t, 0) := \text{Bot} \). If there is an infinite \(\xrightarrow{Dx} \)-reduction sequence starting with \(t \), then \(\text{preapprox}(t, i) := \text{Bot} \) for all \(i > 0 \). Otherwise, let \(t \xrightarrow{Dx} t' \) where \(t' \) is irreducible for \(\xrightarrow{Dx} \). Let \(M \) be the multicontext derived from \(t' \) where every subexpression at depth one is a hole, such that \(t' = M(t_1, ..., t_k) \), and \(t_j \), for \(1 \leq j \leq k \), are subexpressions at depth 1. Let \(t'_j = \text{preapprox}(t_j, i + 1) \) for \(j = 1, ..., k \), and define the result as \(\text{preapprox}(t, i) := M(t'_1, ..., t'_k) \). Finally, \(\text{approx}(t, i) \) is computed from \(\text{preapprox}(t, i) \) by computing its normal form under the bot-simplifications in Fig. 4.

E.g. for \(t = \text{seq} (\text{seq} \ x \ \text{id}) \ \text{id} \) first \(t \xrightarrow{Dx} (\text{seq} \ x \ (\text{seq} \ \text{id} \ \text{id})) \). Replacing the subexpressions at depth 1 by \(\text{Bot} \) results in \(\text{preapprox}(t, 1) = (\text{seq} \ \text{Bot} \ \text{Bot}) \) which reduces to \(\text{approx}(t, 1) = \text{Bot} \). Similarly, \(\text{preapprox}(t, 2) = \text{approx}(t, 2) = (\text{seq} \ x \ λz.\text{Bot}) \).

Lemma 5.11. For \(D \in \{AL_{cc, seq}^\tau, AL_{cc}^\tau\} : \text{approx}(t, i) \leq_D t \).

We show a variant of the so-called subterm property for approximations:
Lemma 5.12. The approximations $\text{approx}(t, i)$ are of the same type as t and irreducible w.r.t. the simplification rules and $\text{botseq}-$ irreducible. If t is an $\text{AL}_\tau^{cc,seq}$-expression of AL_τ^τ-type, then $\text{approx}(t, i)$ is an AL_τ^τ-expression. If t is an AL_τ^{cc}-expression of AL_τ^τ-type, then $\text{approx}(t, i)$ is an AL_τ^τ-expression.

Proof. The expressions $\text{approx}(t, i)$ have the same type as t. Only bot-simplifications may be possible, and these can only enable other bot-simplifications and thus, every $\text{approx}(t, i)$ is irreducible w.r.t. the simplification rules. It remains to show that $a := \text{approx}(t, i)$ must be an AL_τ^τ-expression (AL_τ-expression, resp.). W.l.o.g. we consider the case with seq-expressions.

Suppose that there is a subexpression in $a = \text{approx}(t, i)$ of non-AL_τ^τ-type. We select the subexpressions of non-AL_τ^τ-type that are not contained in another subexpression of non-AL_τ^τ-type; let s denote the one of a maximal non-AL_τ^τ-type among these subexpressions. Since a is closed, we obtain that s cannot be a variable, since then either there is a superterm of s that is an abstraction of non-AL_τ^τ-type, or a case-expression of non-AL_τ^τ-type. Since a is of AL_τ^τ-type, and s is maximal, there must be an immediate superterm s' of s which is of AL_τ^τ-type. We look for the structure of s'. Due to the maximality conditions, s' cannot be an application, an abstraction, a constructor-application, a seq-expression of the form $(\text{seq} s_0 s)$, or a case-alternative, since then it would also have a non-AL_τ^τ-type.

It may be an application $(s s_2)$, a seq-expression $(\text{seq} s s_2)$, or a case expression $\text{case} s$ als.

First assume that s' is an application, then let s_0 be the leftmost and topmost non-application in s, i.e. $s' = (s_0 r_1 \ldots r_n)$, and $s = (s_0 r_1 \ldots r_{n-1})$, $n \geq 1$, where s_0 is not an application. The expression s_0 must be of non-AL_τ^τ-type. Then s_0 cannot be Bot, an abstraction, Fix, a case-expression, or a seq-expression, since otherwise the subterm $s_0 r_1$ would be reducible by (botapp), (β), (fix), (caseapp), or (seqapp). s_0 cannot be a constructor application either, due to types. Hence s' is not an application.

If s' is a case expression $\text{case}_K s$ als, then s cannot be Bot, a case-expression, a seq-expression, or a constructor-application, since otherwise s would be reducible by (botcase), (casecase), (case), or (caseseq). Due to typing s cannot be an abstraction or Fix, and finally s' cannot be an application using the arguments above. Hence s' is not a case-expression.

If s' is a seq-expression $\text{seq} s s_2$, then s cannot be Bot, an abstraction, Fix, a constructor application, a case-expression, or a seq-expression, since then s' would be reducible by (botseq), (seq), (seqcase), or (seqseq). s cannot be an application either, as argued above. Hence s' cannot be seq-expression.

In summary, such a subexpression does not exist, i.e. $\text{approx}(t, i)$ is an AL_τ^τ-expression.

Definition 5.13. For an $\text{AL}_\tau^{cc,seq}$-expression (AL_τ^τ-expression, resp.) s, a position p, and a subexpression s' such that $s|_p = s'$ the non-R-depth of s' at p is the number of prefixes p' of p s.t. $s|_{p'}$ is not a reduction context.

Lemma 5.14. For $D \in \{\text{AL}_\tau^{cc,seq}, \text{AL}_\tau^\tau\}$, a D-expression t, a D-context C with $C[t] \downarrow_D$ there is some i and an approximation $\text{approx}(t, i)$ with $C[\text{approx}(t, i)] \downarrow_D$.

Proof. Let $C[t] \xrightarrow{\text{bsf}C \cup A, \ast} C[t']$, where t' is a D-WHNF. Then compute $t' := \text{approx}(t, n + 1)$. The construction of $\text{approx}(t, n + 1)$ includes (β)-, (case)-, (seq)- and (fix)-reductions and simplification rules. Let A be the set of all the simplification rules. We have $C[t'] \xrightarrow{\text{bsf}C \cup A, \ast} C[t'']$, where t'' with subexpressions replaced by Bot. Since reductions and simplifications are correct, we have $C[t''] \downarrow_D$, and in particular, the number of normal order reductions of $C[t'']$ to a D-WHNF is $n'' \leq n$ (proven in [15]).
The normal order reduction for $C[t']$ makes the same reduction steps as the normal order reduction of $C[t'']$ since the Bot-expressions placed by the approximation are in the beginning at the non-R-depth $n + 1$, and remain at non-R-depth $\geq n + 1 - j$ after j normal order reductions. Finally, they will be at non-R-depth of at least 1, hence the final D-WHNF may have Bots only at non-R-depth of at least 1, and so it is a WHNF. Thus $C[\text{approx}(t, n)] \downarrow_D$.

Theorem 5.15. The embeddings of AL^τ in AL_{cc}^τ and of AL_{seq}^τ in $AL_{cc,seq}^\tau$ are conservative.

Proof. We prove this for the embedding of AL_{seq}^τ in $AL_{cc,seq}^\tau$. The other case is similar. Let s, t be AL_{seq}^τ-expressions with $s \leq_{AL_{seq}^\tau} t$. We have to show that $s \leq_{AL_{cc,seq}^\tau} t$. Assume this is false. Since the AP_1-context lemma holds (Theorem 5.1) the assumption implies that there is an $n \geq 0$ and closed $AL_{cc,seq}^\tau$-expressions b_1, \ldots, b_n of AL_{seq}^τ-type which are answers or Bot, such that $(s b_1 \ldots b_n)_{AL_{cc,seq}^\tau}$ but $(t b_1 \ldots b_n)_{AL_{cc,seq}^\tau}$. According to Lemma 5.14, we have successively constructed the approximations b'_i of b_i of a depth depending on the length of the normal order reduction of $(s b_1 \ldots b_n)$ and $(t b_1 \ldots b_n)$, also using Lemma 5.11. Lemma 5.12 shows that the approximations are in the smaller calculus AL_{seq}^τ, and thus also $(s b'_1 \ldots b'_n)_{AL_{seq}^\tau}$ but $(t b'_1 \ldots b'_n)_{AL_{seq}^\tau}$, which contradicts $s \leq_{AL_{seq}^\tau} t$.

The same reasoning can be used to show the following result (of practical interest) for $D \in \{AL_{cc}^\tau, AL_{cc,seq}^\tau\}$: Assume that the set of type and data constructors is a fixed set in D, and that D' is an extension of D such that only new type and data constructors are added. Then D' is a conservative extension of D, since we can use the approximation technique from this section to approximate D'-values by D-values and then apply the AP_1-context lemma.

6 Polymorphically Typed Calculi

We consider polymorphically typed variants AL_{cc}^α, AL_{seq}^α, $AL_{cc,seq}^\alpha$, $AL_{cc,seq}^\alpha$ of the four calculi. We will show non-conservativity of embedding AL_α in AL_{seq}^α and AL_{cc}^α in AL_{seq}^α, but leave open the question of (non-)conservativity of embedding AL^α in AL_{cc}^α and AL_{seq}^α in $AL_{cc,seq}^\alpha$.

The expression syntax is the untyped one. The syntax for polymorphic types T is $T ::= V \mid T_1 \to T_2 \mid (K \ T_1 \ldots T_{ar(K)})$ where V is a type variable. The constructors have predefined Hindley-Milner polymorphic types according to the usual standards. Only expressions that are Hindley-Milner polymorphically typed are permitted. Normal order reduction is defined only on monomorphic type-instances of expressions, which is a deviation from Definition 2.1.

Definition 6.1. For $D \in \{AL_\alpha, AL_{seq}^\alpha, AL_{cc}^\alpha, AL_{cc,seq}^\alpha\}$ and for $s, t \in D$ of equal polymorphic type: $s \leq_D t$ iff $\rho(s) \leq_{D'} \rho(t)$ for all monomorphic type instantiations ρ, where D' is the corresponding monomorphically typed calculus. Contextual equivalence is defined by $s \sim_D t$ iff $s \leq_D t \land t \leq_D s$.

Since s_{11}, s_{12} (Sect. 5.1) are of polymorphic type $(a \to \text{Bool}) \to \text{Bool}$, the same arguments as for the proof of Theorem 5.6 can be applied, hence:

Theorem 6.2. The natural embedding of AL_{cc}^α into $AL_{cc,seq}^\alpha$ is not conservative.

Let s_{13}, s_{14} of the polymorphic type $((a \to \alpha) \to (a \to \alpha) \to (\alpha \to \alpha)) \to (\alpha \to \alpha)$ be defined as:

$s_{13} := \lambda x. x \ id (x \ \text{Bot} \ id)$ and $s_{14} := \lambda x. x \ id (x \ (\lambda y. \text{Bot}) \ id)$.

Lemma 6.3. For AL^τ-expressions $t = M[\text{Bot}, \ldots, \text{Bot}]$, $t' = M[\lambda x. \text{Bot}, \ldots, \lambda x. \text{Bot}]$, and $t_{\downarrow_{AL^\tau}}, t'_{\downarrow_{AL^\tau}}$ it holds that $M[x_1, \ldots, x_n] \mapsto_{AL^\tau} x_i$ for some i.

We have shown that the semantics of the pure lazy lambda calculus changes when \(\text{seq}\) or \(\lambda x.\text{Bot}\) are added. There must be a use of this argument, since otherwise the statements are identical. If it is ever used in a function position in a beta-reduction, then both expressions diverge. Hence, the only possibility is that they are returned. ▶

Theorem 6.4. The embedding of \(\text{AL}^\alpha\) into \(\text{AL}^\alpha_{\text{seq}}\) is not conservative. The embedding of \(\text{AL}^\alpha\) into \(\text{AL}^\alpha_{cc,\text{seq}}\) is also not conservative.

Proof. Since \((\rho(s_{13}) \ (\lambda u, v. \text{seq} \ u \ v))\) \(\not\in_{\text{AL}}\), but \((\rho(s_{14}) \ (\lambda u, v. \text{seq} \ u \ v))\) \(\in_{\text{AL}}\) for \(\rho = \{ \alpha \mapsto o \}\), we have \(s_{13} \not\in_{\text{AL}_{\text{seq}}^\alpha} s_{14}\) as well as \(s_{13} \not\in_{\text{AL}_{cc,\text{seq}}^\alpha} s_{14}\). It remains to show that \(s_{13} \sim_{\text{AL}} s_{14}\) holds, i.e. that \(\rho(s_{13}) \sim_{\text{AL}^\tau} \rho(s_{14})\) for any monomorphic type instantiation \(\rho\) of the type \((a \to a) \to (a \to a) \to (a \to a) \to (a \to a)\). We use the \(AP_1\)-context lemma (Theorem 5.1) and assume that there is an \(n\), a closed \(\text{AL}^\tau\)-expression \(s\), and closed arguments \(b_1, \ldots, b_n\), such that \(\rho(s_{13}) \ s \ b_1 \ldots b_n\) is typed in \(\text{AL}^\tau\), and \(\rho(s_{14}) \ s \ b_1 \ldots b_n\) \(\not\in_{\text{AL}}\). By Lemma 6.3, the only possibility is that the \(\text{Bot}\), and \(\lambda x.\text{Bot}\)-positions are extracted. By the type preservation, and since the type of \(\rho(s_{13}) \ s\) is the type of the \(\text{Bot}\)-position, it is impossible that \(n > 0\), since then the type of the result is smaller than the type of the \(\text{Bot}\)-position. Hence \(s \ id \ (s \ y \ id)\) \(\not\in_{\text{AL}}\) \(y\). But since the \(y\) occurs in the expression \((s \ y \ id)\), we also have \(s \ y \ id\) \(\not\in_{\text{AL}}\) \(y\). This implies that \(s \ id \ y\) is not distinguishable in all approximation contexts, and the reasoning does not depend on \(\rho\). Hence \(s_{13} \sim_{\text{AL}} s_{14}\). ▶

The expressions \(s_{13}, s_{14}\) could also be used to show non-conservativity of embedding \(\text{AL}^\tau\) into \(\text{AL}^\alpha_{\text{seq}}\). Hence there are also examples at higher types as witnesses for Theorem 5.6.

Whether adding case and constructors is conservative or not in the polymorphic case, for \(\text{AL}^\alpha\) as well as for \(\text{AL}^\alpha_{\text{seq}}\), remains an open problem.

Forgetting Types. Now we look for the translations defined as “forgetting” the types, and ask for adequacy and full abstraction, which plays now the role of conservativity. For the monomorphically typed calculi the answer is obvious: these translations are not fully abstract. For example \(\lambda x^\tau. x^\tau\) is equivalent to \(\lambda x^\tau. \bot^\tau\), which refutes full abstractness in all cases. For the polymorphically typed calculi, this question is non-trivial:

Proposition 6.5. The translations of \(\text{AL}^\alpha\) into \(\text{AL}^\alpha\), \(\text{AL}^\alpha_{cc}\) into \(\text{AL}^\alpha_{cc}\), and \(\text{AL}^\alpha_{cc,\text{seq}}\) into \(\text{AL}^\alpha_{cc,\text{seq}}\) by simply forgetting the types are adequate but not fully-abstract.

Proof. For the first case, \(\text{AL}^\alpha\) and \(\text{AL}\), we have \(s_{13} \sim_{\text{AL}} s_{14}\), but \(s_{13} \ (\lambda u, v. (v \ (\lambda x. u)))\) \(\not\in_{\text{AL}}\) and \(s_{14} \ (\lambda u, v. (v \ (\lambda x. u)))\). For the other calculi, \(\lambda x. \text{case}_\text{bool} \ x \ (\text{True} \to \text{True}) \ (\text{False} \to \text{False})\) is equivalent to \(\lambda x^\text{bool}. \ x\), but in the untyped case, \((\cdot \ (\lambda x. z))\) distinguishes these expressions. ▶

7 Conclusion

We have shown that the semantics of the pure lazy lambda calculus changes when \(\text{seq}\) or \(\text{case}\) and constructors, are added. Under the insight that any semantic investigation for Haskell should include the \(\text{seq}\)-operator, we exhibited calculus extensions that are useful for the analysis of expression equivalences that also hold in a realistic core calculus of lazy functional and typed languages. We left the rigorous analysis of the implication chain for equivalence from \(\text{AL}^\tau_{cc,\text{seq}}\) to the polymorphic calculus with letrec for future research.
References