
Inclusion Logic and Fixed Point Logic
Pietro Galliani1 and Lauri Hella2

1 University of Helsinki
pgallian@gmail.com

2 University of Tampere
lauri.hella@uta.fi

Abstract
We investigate the properties of Inclusion Logic, that is, First Order Logic with Team Semantics
extended with inclusion dependencies. We prove that Inclusion Logic is equivalent to Greatest
Fixed Point Logic, and we prove that all union-closed first-order definable properties of relations
are definable in it. We also provide an Ehrenfeucht-Fraïssé game for Inclusion Logic, and give an
example illustrating its use.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Dependence Logic, Team Semantics, Fixpoint Logic, Inclusion

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.281

1 Introduction

Inclusion Logic [10], FO(⊆), is a novel logical formalism designed for expressing inclusion
dependencies between variables. It is closely related to Dependence Logic [24], FO(D),
which is the extension of First Order Logic by functional dependencies between variables.
Dependence Logic initially arose as a variant of Branching Quantifier Logic [13] and of
Independence-Friendly Logic [14, 22], and its study has sparked the development of a whole
family of logics obtained by adding various dependency conditions to First Order Logic.

All these logics are based on Team Semantics [16, 24] which is a generalization of Tarski
Semantics. In Team Semantics, formulas are satisfied or not satisfied by sets of assignments,
called teams, rather than by single assignments. This semantics was introduced in [16] for
the purpose of defining a compositional equivalent for the Game Theoretic Semantics of
Independence-Friendly Logic [14, 22], but it was soon found out to be of independent interest.
See [9] for a, mostly up-to-date, account of the research on Team Semantics.

Like Branching Quantifier Logic and Independence-Friendly Logic, Dependence Logic has
the same expressive power as Existential Second Order Logic Σ1

1: every FO(D)-sentence is
equivalent to some Σ1

1-sentence, and vice versa [24]. The semantics of Dependence Logic is
downwards closed in the sense that if a team X satisfies a formula φ in a model M , then all
subteams Y ⊆ X also satisfy φ in M . The equivalence between FO(D) and Σ1

1 was extended
to formulas in [19], where it was proved that FO(D) captures exactly the downwards closed
Σ1

1-definable properties of teams.
Other variants of Dependence Logic that have been studied are Conditional Independence

Logic FO(⊥c) [12], Independence Logic FO(⊥) [12, 25], Exclusion Logic FO(|) [10] and
Inclusion/Exclusion Logic FO(⊆, |) [10]. All the logics in this family arise from dependency
notions that have been studied in Database Theory. In particular, FO(D) is based on func-
tional dependencies introduced by Armstrong [1], FO(⊆) is based on inclusion dependencies
[8, 3], FO(|) is based on exclusion dependencies [4], and FO(⊥) is based on independence
conditions [11].

© Pietro Galliani and Lauri Hella;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 281–295

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.281
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

282 Inclusion Logic and Fixed Point Logic

The expressive power of all these logics, with the exception of FO(⊆), is well understood.
It is known that, with respect to sentences, they are all equivalent with Σ1

1. With respect to
formulas, FO(|) is equivalent with FO(D) [10]; and FO(⊆, |), FO(⊥c) and FO(⊥) are all
equivalent to each other [10, 25]. Moreover, FO(⊥c) (and hence also FO(⊆, |) and FO(⊥))
captures all Σ1

1-definable properties of teams [10].
On the other hand, relatively little is known about the expressive power of Inclusion

Logic, and the main purpose of the present work is precisely to remedy this. What little
is known about this formalism can be found in [10], and amounts to the following: With
respect to formulas, FO(⊆) is strictly weaker than Σ1

1 ≡ FO(⊥c) and incomparable with
FO(D) ≡ FO(|). This is simply because the semantics of FO(⊆) is not downwards closed,
but is closed under unions: if both teams X and Y satisfy a formula φ in a model M , then
X ∪ Y also satisfies φ in M . Moreover, FO(⊆) is stronger than First Order Logic over
sentences, and it is contained in Σ1

1; but it was unknown whether it is equivalent to Σ1
1, or

whether FO(⊆)-formulas could define all union closed Σ1
1-definable properties of teams.

In this paper we show that the answer to both of these problems is negative. In fact,
we give a complete characterization for the expressive power of FO(⊆) in terms of Positive
Greatest Fixed Point Logic GFP+: We prove that every FO(⊆)-sentence is equivalent to
some GFP+-sentence, and vice versa (Corollary 17).

Fixed point logics have a central role in the area of Descriptive Complexity Theory. By
the famous result of Immerman [17] and Vardi [26], Least Fixed Point Logic LFP captures
PTIME on the class of ordered finite models. Furthermore, it is well known that on finite
models, LFP is equivalent to GFP+. Thus, we obtain a novel characterization for PTIME:
a class of ordered finite models is in PTIME if and only if it is definable by a sentence of
FO(⊆).

In addition to the equivalence with GFP+, we prove that all union-closed first-order
definable properties of teams are definable in Inclusion Logic (Corollary 26). Thus, it is not
possible to increase the expressive power of FO(⊆) by adding first-order definable union-closed
dependencies. On the other hand, it is an interesting open problem, whether FO(⊆) can
be extended by some natural set D of union-closed dependencies such that the extension
FO(⊆,D) captures all union-closed Σ1

1-definable properties of teams.
We also introduce a new Ehrenfeucht-Fraïssé game that characterizes the expressive power

of Inclusion Logic (Theorem 29). Our game is a modification of the EF game for Dependence
Logic defined in [24]. Although the EF game has a clear second order flavour, it is still
more manageable than the usual EF game for Σ1

1; we illustrate this by describing a concrete
winning strategy for Duplicator in the case of models with empty signature (Proposition 30).
Due to the equivalence between FO(⊆) and GFP+ we see that the EF game for Inclusion
Logic is also a novel EF game for GFP+; it is quite different in structure from the one
introduced in [2]. It may be hoped that this new game and its variants could be of some use
for studying the expressive power of fixed point logics.

2 Preliminaries

2.1 Team Semantics
In this section, we will recall the definition of the Team Semantics for First Order Logic. For
simplicity reasons, we will assume that all our expressions are in negation normal form.

I Definition 1. Let M be a first order model and let V be a set of variables. A team X

over M with domain Dom(X) = V is a set of assignments s : V → Dom(M). Given a tuple

P. Galliani and L. Hella 283

~t = (t1, . . . , tn) of terms with variables in V and an assignment s ∈ X, we write ~t〈s〉 for the
tuple (t1〈s〉, . . . , tn〈s〉), where t〈s〉 denotes the value of the term t with respect to s in the
model M . Furthermore, we write X(~t) for the relation {~t〈s〉 : s ∈ X}.

A (non-deterministic) choice function for a team X over a set A is a function H : X →
P(A) \ {∅}. The set of all choice functions for X over A is denoted by C(X,A).

I Definition 2 (Team Semantics for First Order Logic1). Let M be a first order model and
let X be a team over it. Then, for all first-order literals α, variables v, and formulas φ and ψ
over the signature of M and with free variables in Dom(X),
TS-lit: M |=X α iff for all s ∈ X, M |=s α in the usual Tarski Semantics sense;
TS-∨: M |=X φ ∨ ψ iff X = Y ∪ Z for some Y and Z such that M |=Y φ and M |=Z ψ;
TS-∧: M |=X φ ∧ ψ iff M |=X φ and M |=X ψ;
TS-∃: M |=X ∃vφ iff there exists a function H ∈ C(X, Dom(M)) such that M |=X[H/v] ψ,

where X[H/v] = {s[m/v] : s ∈ X,m ∈ H(s)};
TS-∀: M |=X ∀vφ iff M |=X[M/v] φ, where X[M/v] = {s[m/v] : s ∈ X,m ∈ Dom(M)}.

The next theorem can be proved by structural induction on φ:

I Theorem 3 (Team Semantics and Tarski Semantics). For all first order formulas φ(~v), all
models M and all teams X, M |=X φ if and only if for all s ∈ X, M |=s φ with respect to
Tarski Semantics.

Thus, in the case of First Order Logic it is possible to reduce Team Semantics to Tarski
Semantics. What is then the point of working with the technically more complicated Team
Semantics? As we will see in the next subsection, the answer is that Team Semantics allows
us to extend First Order Logic in novel and interesting ways.

Note that on every model M , there are two teams with empty domain: the empty team
∅, and the team {∅} containing the empty assignment ∅. All the logics that we consider in
this paper have the empty team property: M |=∅ φ for every formula φ and model M . Thus,
we say that a sentence φ is true in a model M if M |={∅} φ. If this is the case, we drop the
subscript {∅}, and write just M |= φ.

2.2 Dependencies in Team Semantics
As we saw, in Team Semantics formulas are satisfied or not satisfied by sets of assignments,
called teams; and a team corresponds in a natural way to a relation over the domain of the
model. Therefore, any property of relations can be made to correspond to some property of
teams, which we can then add to our language as a new atomic formula. In particular, we
can do so for database-theoretic dependency notions, thus obtaining the following generalized
atoms:2

I Definition 4 (Dependence Atoms). Let ~t1, ~t2, ~t3 be tuples of terms over some vocabulary.
Then, for all models M and all teams X over M whose domain contains the variables of
~t1~t2~t3,
TS-fdep: M |=X =(~t1,~t2) if and only if, for all s, s′ ∈ X, ~t1〈s〉 = ~t1〈s′〉 ⇒ ~t2〈s〉 = ~t2〈s′〉;
TS-exc: For |~t1| = |~t2|, M |=X ~t1 | ~t2 if and only if X(~t1) ∩X(~t2) = ∅;

1 What we present here is the so-called lax version of Team Semantics. There also exists a strict version,
with somewhat different rules for disjunction and existential quantification. As discussed in [10], the lax
semantics has more convenient properties for the case of Inclusion Logic.

2 The notion of “generalized atom” is defined formally in [20].

CSL’13

284 Inclusion Logic and Fixed Point Logic

TS-inc: For |~t1| = |~t2|, M |=X ~t1 ⊆ ~t2 if and only if X(~t1) ⊆ X(~t2);
TS-ind: M |=X ~t1⊥~t2 if and only if for all s, s′ ∈ X there exists an s′′ ∈ X with ~t1〈s′′〉 = ~t1〈s〉

and ~t2〈s′′〉 = ~t2〈s′〉;
TS-cond-ind: M |=X ~t2⊥~t1~t3 if and only if for all s, s′ ∈ X with ~t1〈s〉 = ~t1〈s′〉 there exists

an s′′ ∈ X with (~t1~t2)〈s′′〉 = (~t1~t2)〈s〉 and (~t1~t3)〈s′′〉 = (~t1~t3)〈s′〉.

These atoms correspond respectively to functional dependencies [1], to exclusion depend-
encies [4], to inclusion dependencies [8, 3], to independence conditions [11], and to conditional
independence conditions3; and by adding them to the language of First Order Logic we can
obtain various logics, whose principal known properties we will now briefly recall.

Dependence Logic FO(D) is obtained by adding functional dependence atoms to the
language of First Order Logic. It is the oldest and the most studied among the logics that we
will discuss in this work, having been introduced in the seminal book [24] as an alternative
approach to the study of Branching [13] and Independence-Friendly [14, 22] Quantification.
It is downwards closed, in the sense that, for all models M , Dependence Logic formulas φ
and teams X, if M |=X φ then M |=Y φ for all subsets Y of X.

On the level of sentences, Dependence Logic has the same expressive power as Existential
Second Order Logic Σ1

1.

I Theorem 5 ([27, 6, 24]). Every FO(D)-sentence is equivalent to some Σ1
1-sentence, and

vice versa. In particular, FO(D) captures NP on finite models.

The equivalence between FO(D) and Σ1
1 was extended to formulas by Kontinen and

Väänänen, who proved the following characterization:

I Theorem 6 ([19]). Let φ be a FO(D)-formula with free variables in ~v. Then there exists a
Σ1

1-sentence Φ(R), where R is a |~v|-ary relation symbol which occurs only negatively in Φ,
such that

M |=X φ ⇐⇒ (M,X(~v)) |= Φ(R) for all models M and teams X 6= ∅.

Conversely, for any such Φ(R) there exists an FO(D)-formula φ such that the above holds.

Thus, FO(D) is the strongest logic that can be obtained by adding Σ1
1-definable downwards-

closed dependence conditions to First-Order Logic. Indeed, any such condition will be
expressible as ∃S(X(~v) ⊆ S ∧ Φ(S)) for some Φ in Σ1

1, and therefore it will be equivalent to
some FO(D)-formula.

Exclusion Logic FO(|), on the other hand, is the logic obtained by adding exclusion
atoms to First-Order Logic. It was introduced in [10], where it was shown to be equivalent
to Dependence Logic with respect to formulas.

Conditional Independence Logic FO(⊥c), which was introduced in [12], adds con-
ditional independence atoms ~t2⊥~t1~t3 to the language of First Order Logic. Like FO(D),
FO(⊥c) is equivalent to Σ1

1 with respect to sentences, and also with respect to formulas:

I Theorem 7 ([12]). Every FO(⊥c)-sentence is equivalent to some Σ1
1-sentence, and vice

versa.

I Theorem 8 ([10]). A class of relations is definable in Conditional Independence Logic if
and only if it contains the empty relation and it is Σ1

1-definable.

3 As observed in [7], conditional independence atoms also correspond to embedded multivalued dependencies.

P. Galliani and L. Hella 285

Therefore, Conditional Independence Logic is the strongest logic that can be obtained by
adding Σ1

1-definable dependencies which are true of the empty relation to First Order Logic.
In particular, this implies that every FO(D) formula (and, therefore, every FO(|) formula)
is equivalent to some FO(⊥c) formula.4 However, the converse is not true, since FO(⊥c)
formulas are not, in general, downwards closed.

Furthermore, Inclusion/Exclusion Logic FO(⊆, |) – that is, the logic obtained by
adding inclusion and exclusion dependencies to First Order Logic – was proved in [10] to be
equivalent with FO(⊥c) with respect to formulas.

Finally, Independence Logic FO(⊥) is the logic obtained by adding only non-conditional
dependence atoms ~t1⊥~t2 to First Order Logic. As proved in [25], Independence Logic and
Conditional Independence Logic are also equivalent with respect to formulas.

Inclusion Logic FO(⊆) is obtained by adding inclusion atoms to First Order Logic.
It is not downwards closed, but it is closed under unions in the following sense: if φ is an
FO(⊆)-formula, M is a model, and Xi, i ∈ I, are teams on M such that M |=Xi φ for all
i ∈ I, then M |=X φ, where X =

⋃
i∈I Xi. (For a proof, see [10]).

Relatively little is known about the expressive power of FO(⊆), and the main purpose of
the present work is precisely to remedy this. Here we recall the following results from [10]:
1. On the level of formulas, FO(⊆) is strictly weaker than FO(⊥c) ≡ FO(⊥) ≡ Σ1

1, and
incomparable with FO(D) ≡ FO(|).

2. The complement of the transitive closure of any first-order formula φ(~x, ~y) is definable in
FO(⊆); hence, FO(⊆) is strictly stronger than First Order Logic on sentences.

3. On the level of sentences, FO(⊆) is contained in Σ1
1.

We give next a couple of further examples of the expressive power of FO(⊆).

I Example 9. (a) Consider the sentence φ := ∃x∃y(y ⊆ x∧Exy). LetM = (Dom(M), EM) be
a finite model. Then M |= φ if and only if EM contains a cycle, i.e., there are a0, . . . , an−1 ∈
Dom(M) such that (ai, ai+1) ∈ EM for all i < n− 1, and (an−1, a0) ∈ EM .

The idea here is the following: the first existential quantifier gives a set C of values for x,
and the formula ∃y(y ⊆ x ∧ Exy) then says that for every a ∈ C there is a b ∈ C such that
(a, b) ∈ EM .

(b) Let ψ be the FO(⊆)-sentence ∃w(∃u(Pu ∧ u ⊆ w) ∧ ∀u(Ewu→ ∃v(Euv ∧ v ⊆ w))).
Then M |= ψ if and only if player I has a winning strategy in the following game G(M):
Player I starts by choosing some element a0 ∈ PM . In each odd round i+ 1, player II chooses
an element ai+1 such that (ai, ai+1) ∈ EM . In each even round i + 1, player I chooses an
element ai+1 such that (ai, ai+1) ∈ EM . The first player unable to move according to the
rules, loses the game. Player I wins all infinite plays of the game.

The class K of all finite models M such that player II has a winning strategy in G(M) is
an equivalent to Immerman’s alternating graph accessibility problem, AGAP. It is well known
that AGAP is a complete problem for PTIME with respect to quantifier free reductions ([18]).

2.3 Greatest Fixed Point Logic
Let ψ(R, ~x) be a first-order formula such that the arity of R, ar(R), is equal to the length
k = |~x| of the tuple ~x. If M is a model, then ψ defines an operation Γ = ΓM,ψ on the set

4 This was already shown in [12], in which it was shown that any dependence atom =(~t1,~t2) is equivalent
to the conditional independence atom ~t2⊥~t1

~t2.

CSL’13

286 Inclusion Logic and Fixed Point Logic

P(Dom(M)k) of k-ary relations on Dom(M) as follows:

Γ(P) := {~a : (M,P) |=s[~a/~x] ψ(R, ~x)} for each P ∈ P(Dom(M)k).

A relation P is a fixed point of the operation ΓM,ψ on M if Γ(P) = P . Furthermore, P is the
greatest fixed point (least fixed point) of ΓM,ψ if Q ⊆ P (P ⊆ Q, respectively) for all fixed
points Q of ΓM,ψ.

It is well known that if R occurs only positively in ψ, then for every model M , ΓM,ψ has
a greatest fixed point (and a least fixed point). Moreover, the greatest fixed point P of ΓM,ψ

has the following characterization: P =
⋃
{Q ⊆ Dom(M)k : Q ⊆ ΓM,ψ(Q)} (see, e.g. [21]).

IDefinition 10. Greatest Fixpoint Logic, GFP, is obtained by adding to First Order Logic the
greatest fixed point operator [gfpR,~xψ(R, ~x)]~t, where R is a relation variable with ar(R) = |~x|,
ψ(R, ~x) is a formula in which R occurs only positively, and ~t is a tuple of terms with |~t| = |~x|.
The semantics of the operator gfp is defined by the clause:

M |=s [gfpR,~xψ(R, ~x)]~t if and only if ~t〈s〉 is in the greatest fixed point of ΓM,ψ.

Positive Greatest Fixed Point Logic, GFP+, is the fragment of Greatest Fixed Point Logic
in which fixed point operators occur only positively.

Least Fixpoint Logic, LFP, similarly, introduces an operator [lfpR,~xψ(R, ~x)]~t, again for R
occurring only positively in ψ, such that M |= [lfpR,~xψ(R, ~x)]~t if and only if ~t〈s〉 is in the
least fixed point of ΓM,ψ.

Fixed point logics have been the object of a vast amount of research, especially because of
their applications in Finite Model Theory and Descriptive Complexity Theory. In particular,
Least Fixed Point Logic captures the complexity class PTIME that consists of all problems
that are solvable in polynomial time:

I Theorem 11 ([17, 26]). A class of linearly ordered finite models is definable in LFP if and
only if it can be recognized in PTIME.

Another important result is that on finite models, Greatest Fixed Point Logic has the
same expressive power as Least Fixed Point Logic.

I Theorem 12 ([17]). Over finite models, GFP+ (as well as GFP) is equivalent to LFP.

We will also make use of the following normal form result for Positive Greatest Fixed
Point Logic:

I Theorem 13 ([23, 17]). Every GFP+-sentence φ is equivalent to a GFP+-sentence of the
form ∃~z [gfpR,~x ψ(R, ~x)]~z, where ψ is a first-order formula.

3 Inclusion Logic captures GFP+

We will now prove that Inclusion Logic has exactly the same expressive power as Positive
Greatest Fixed Point Logic. Since the semantics of GFP+ is defined in terms of single
assignments instead of teams, the equivalence of FO(⊆) and GFP+ on formulas has to be
formulated in a bit indirect way; see Theorems 15 and 16 below.

We start with a lemma that connects teams and the greatest fixed point operator:

I Lemma 14. Let ψ(S, ~x) be a GFP+-formula with free variables in ~x = (x1, . . . , xn) such
that S is n-ary and occurs only positively in ψ, let M be a model, and let Y a team on M .
(a) If (M,Y (~x)) |=s ψ(S, ~x) for all s ∈ Y , then M |=s [gfpS,~x ψ(S, ~x)]~x for all s ∈ Y .

P. Galliani and L. Hella 287

(b) If Y is a maximal team such that M |=s [gfpS,~x ψ(S, ~x)]~x for all s ∈ Y , then
(M,Y (~x)) |=s ψ(S, ~x) for all s ∈ Y .

Proof. Note that (M,Y (~x)) |=s ψ(S, ~x) for all s ∈ Y if and only if Y (~x) ⊆ ΓM,ψ(Y (~x)).
Thus, claim (a) follows from the fact that the greatest fixed point of ΓM,ψ is the union of
all relations Q such that Q ⊆ ΓM,ψ(Q). Claim (b) follows from the observation that if Y is
a maximal team such that M |=s [gfpS,~x ψ(S, ~x)]~x for all s ∈ Y , then Y (~x) is the greatest
fixed point of ΓM,ψ. J

We will next prove that every FO(⊆)-formula can be expressed in GFP+.

I Theorem 15. For every FO(⊆)-formula φ(~x) with free variables in ~x = (x1, . . . , xn) there
is a GFP+-formula φ∗ = φ∗(R, ~x) such that ar(R) = |~x|, R occurs only positively in φ∗, and

M |=X φ(~x) ⇐⇒ (M,X(~x)) |=s φ
∗(R, ~x) for all s ∈ X

holds for all models M and teams X with Dom(X) = {x1, . . . , xn}.

Proof. The proof is by structural induction on φ.
1. If φ(~x) is a first-order literal, let φ∗(R, ~x) be just φ(~x). Then we have

M |=X φ(~x) ⇐⇒ M |=s φ(~x) for all s ∈ X
⇐⇒ (M,X(~x)) |=s φ(~x) for all s ∈ X.

2. If φ(~x) is an inclusion atom ~t1 ⊆ ~t2, let φ∗(R, ~x) be ∃~z(R~z ∧ ~t1(~x) = ~t2(~z)), where ~z
is a tuple of new variables. Note that (M,X(~x)) |=h ~t1(~x) = ~t2(~z) for an assignment
h defined on ~x~z if and only if there are two assignments s, s′ defined on ~x such that
~t1〈s〉 = ~t2〈s′〉 and h = s ∪ (s′ ◦ f), where f is the function f(zi) = xi. Thus, we see that
(M,X(~x)) |=s φ

∗(R, ~x) for all s ∈ X if and only if for every s ∈ X there is an s′ ∈ X
such that ~t1〈s〉 = ~t2〈s′〉, as desired.

3. Assume next that φ(~x) is of the form ψ(~x) ∨ θ(~x). Then we define

φ∗(R, ~x) := [gfpS,~x (R~x ∧ ψ∗(S, ~x))]~x ∨ [gfpT,~x (R~x ∧ θ∗(T, ~x))]~x.

If M |=X φ(~x), then there exist teams Y and Z such that X = Y ∪ Z, M |=Y

ψ(~x) and M |=Z θ(~x). By induction hypothesis, (M,Y (~x)) |=s ψ∗(S, ~x), and con-
sequently (M,X(~x), Y (~x)) |=s R~x ∧ ψ∗(S, ~x), holds for all s ∈ Y . Hence, by Lemma 14,
(M,X(~x)) |=s [gfpS,~x (R~x ∧ ψ∗(S, ~x))]~x holds for all s ∈ Y .
In the same way we see that (M,X(~x)) |=s [gfpT,~x (R~x ∧ θ∗(T, ~x))]~x holds for all s ∈ Z.
Thus, we conclude that (M,X(~x)) |=s φ

∗(R, ~x) for all s ∈ X.
To prove the converse, assume that (M,X(~x)) |=s φ

∗(R, ~x) for all s ∈ X. Let Y be the
set of all assignments s ∈ X that satisfy the first disjunct of φ∗(R, ~x), and let Z be the set
of assignments s ∈ X that satisfy the second disjunct. Then Y is the maximal team such
that, for all s ∈ Y , (M,X(~x)) |=s [gfpS,~x (R~x ∧ ψ∗(S, ~x))]~x. It follows from Lemma 14
that (M,X(~x), Y (~x)) |=s R~x ∧ ψ∗(S, ~x) for all s ∈ Y . Thus, (M,Y (~x)) |=s ψ

∗(S, ~x) for
all s ∈ Y , and by induction hypothesis, M |=Y ψ(~x). In the same way we see that
M |=Z θ(~x). Finally, since X = Y ∪ Z, we conclude that M |=X φ(~x).

4. If φ(~x) = ψ(~x)∧θ(~x), we define simply φ∗(R, ~x) := ψ∗(R, ~x)∧θ∗(R, ~x). The claim follows
then directly from the induction hypothesis.

5. If φ(~x) is of the form ∃v ψ(~xv), let φ∗(R, ~x) be ∃v[gfpS,~xv (R~x ∧ ψ∗(S, ~xv))]~xv. Then
M |=X φ(~x) if and only if there is a function H ∈ C(X, Dom(M)) such that M |=Y ψ(~xv),

CSL’13

288 Inclusion Logic and Fixed Point Logic

where Y = X[H/v]. By the induction hypothesis, this is equivalent to (M,Y (~xv)) |=h

ψ∗(S, ~xv) being true for all h ∈ Y . This, in turn, is equivalent with the condition

(M,X(~x), Y (~xv)) |=h R~x ∧ ψ∗(S, ~xv) for all h ∈ Y . (1)

If condition (1) holds, then by Lemma 14, (M,X(~x)) |=h [gfpS,~xv (R~x ∧ ψ∗(S, ~xv))]~xv
holds for all h ∈ Y . Since every s ∈ X has an extension h ∈ Y , it follows that
(M,X(~x)) |=s φ

∗(R, ~x) for all s ∈ X.
On the other hand, if (M,X(~x)) |=s φ

∗(R, ~x) for all s ∈ X, we define H ∈ C(X, Dom(M))
to be the function such that

H(s) := {a ∈ Dom(M) : (M,X(~x)) |=s[a/v] [gfpS,~xv (R~x ∧ ψ∗(S, ~xv))]~xv},

and let Y = X[H/v]. Then Y is the maximal team such that

(M,X(~x)) |=h [gfpS,~xv (R~x ∧ ψ∗(S, ~xv))]~xv

for all h ∈ Y , whence condition (1) follows from Lemma 14.
6. If φ(~x) is of the form ∀v ψ(~xv), let φ∗(R, ~x) be ∀v[gfpS,~xv (R~x ∧ ψ∗(S, ~xv))](~xv). The

proof of the claim is similar to the case of existential quantification.
J

In proving that GFP+-sentences can be expressed in FO(⊆) we will use the normal form
given in Theorem 13. Thus, it suffices to find translations for first-order formulas, and
formulas obtained by a single application of the gfp-operator to first-order formulas.

I Theorem 16. Let η(R, ~x, ~y) be a first-order formula such that R occurs only positively in
η, ar(R) = |~x| = n, and the free variables of η are in ~x~y.
(a) There exists an FO(⊆)-formula η+(~x, ~y) such that for all models M and teams X on M

M |=X η+(~x, ~y) ⇐⇒ (M,X(~x)) |=s η(R, ~x, ~y) for every s ∈ X

(b) If ~y is empty, and ~z is an n-tuple of variables not occurring in η, then there exists an
FO(⊆)-formula η̃(~z) such that for all models M and teams X on M

M |=X η̃(~z) ⇐⇒ M |=s [gfpR,~x η(R, ~x)]~z for every s ∈ X

Proof. (a) We prove the claim by structural induction on η.
1. If η(R, ~x, ~y) is a first-order literal not containing the relation symbol R, we define η+ := η.

Then M |=X η+ if and only if M |=s η for every s ∈ X. Since R does not occur in η, this
is equivalent with (M,X(~x)) |=s η for all s ∈ X, as required.

2. If η is of the form R~t, we define η+(~x, ~y) := ~t ⊆ ~x. Then we have

M |=X η+(~x, ~y) ⇐⇒ ∀s ∈ X ∃s′ ∈ X : ~t〈s〉 = ~x〈s′〉
⇐⇒ ∀s ∈ X : ~t〈s〉 ∈ X(~x)
⇐⇒ ∀s ∈ X : (M,X(~x)) |=s R~t.

3. If η is of the form α(R, ~x, ~y) ∨ β(R, ~x, ~y), let ~u = (u1, . . . , un) be a tuple of new variables
and let η+(~x, ~y) be the formula ∃~u

(
(~u ⊆ ~x) ∧ (α+(~u, ~x~y) ∨ β+(~u, ~x~y))

)
. Here we assume

as induction hypothesis that M |=Y α+(~u, ~x~y) if and only if (M,Y (~u)) |=h α(R, ~x, ~y) for
all h ∈ Y , and similarly for β+(~u, ~x~y) and β(R, ~x, ~y).
Suppose first that M |=X η+(~x, ~y). Then there is a function H ∈ C(X, Dom(M)n) such
that X[H/~u](~u) ⊆ X(~x), and furthermore, X[H/~u] can be split into two subteams Y

P. Galliani and L. Hella 289

and Z such that M |=Y α+(~u, ~x~y) and M |=Z β+(~u, ~x~y). Now take any s ∈ X and
let h ∈ X[H/~u] be an extension of s. If h ∈ Y then (M,Y (~u)) |=h α(R, ~x, ~y). Since
Y (~u) ⊆ X[H/~u](~u) ⊆ X(~x), ~x~y〈h〉 = ~x~y〈s〉 and R occurs only positively in α, we have
(M,X(~x)) |=s α(R, ~x, ~y). Similarly, if h ∈ Z then (M,X(~x)) |=s β(R, ~x, ~y). Thus,
(M,X(~x)) |=s α(R, ~x, ~y) ∨ β(R, ~x, ~y) for all s ∈ X, as required.
Conversely, suppose that for any s ∈ X, (M,X(~x)) |=s α(R, ~x, ~y) ∨ β(R, ~x, ~y). Now let
H ∈ C(X, Dom(M)n) be the function such that H(s) = X(~x) for all s ∈ X. Note first
that clearly M |=X[H/~u] ~u ⊆ ~x. Let Y = {h ∈ X[H/~u] : (M,X(~x)) |=h α(R, ~x, ~y)} and
Z = {h ∈ X[H/~u] : (M,X(~x)) |=h β(R, ~x, ~y)}. By hypothesis, X[H/~u] = Y ∪ Z.
If Y 6= ∅, then Y (~u) = X[H/~u](~u) = X(~x): indeed, if (M,X(~x)) |=h α(R, ~x, ~y) then
the same holds for all h′ which differ from h only with respect to ~u, since ~u is not free
in α. Therefore (M,Y (~u)) |=h α(R, ~x, ~y) for all h ∈ Y , and thus M |=Y α+(~u, ~x~y). If
instead Y = ∅, then M |=Y α+(~u, ~x~y) trivially. Similarly, M |=Z β

+(~u, ~x~y), and therefore
M |=X[H/~u] α

+(~u, ~x~y) ∨ β+(~u, ~x~y), whence the function H witnesses that M |=X η+.
4. If η is α(R, ~x, ~y) ∧ β(R, ~x, ~y), let η+(~x, ~y) be α+(~x, ~y) ∧ β+(~x, ~y). Then the claim follows

directly from the induction hypothesis.
5. If η(R, ~x, ~y) is ∃v α(R, ~x, ~yv), let η+(~x, ~y) be ∃v α+(~x, ~yv); here we assume w.l.o.g. that

v is not among the variables in ~x~y. Then M |=X η+(~x, ~y) if and only if there is a
function H ∈ C(X, Dom(M)) such that M |=X[H/v] α

+(~x, ~yv). Since X[H/v](~x) = X(~x),
by induction hypothesis this is equivalent with the condition

(M,X(~x)) |=h α(R, ~x, ~yv) holds for all h ∈ X[H/v]. (2)

If condition (2) is true, then clearly (M,X(~x)) |=s η(R, ~x, ~y) for all s ∈ X. Conversely, if
(M,X(~x)) |=s η(R, ~x, ~y) holds for all s ∈ X, then (2) is true for the function H such that
H(s) = {a ∈ Dom(M) : (M,X(~x)) |=s[a/v] α(R, ~x, ~yv)}.

6. If η(~R, ~x, ~y) is ∀v α(~R, ~x, ~yv), let η+(~x, ~y) be ∀v α+(~x, ~yv). The proof of the claim is
similar as in the previous case.

(b) Let ~z be an n-tuple of variables not occurring in η. We define η̃(~z) to be the formula
∃~x(~z ⊆ ~x ∧ η+(~x)), where η+ is the FO(⊆)-formula corresponding to η(R, ~x), as given in
claim (a). Suppose first that M |=X η̃(~z). Then there is a function H ∈ C(X, Dom(M)n)
such that M |=Y η+(~x), and ~z〈h〉 ∈ Y (~x) for all h ∈ Y , where Y = X[H/~x]. Thus, by
claim (a), (M,Y (~x)) |=h η(R, ~x) holds for all h ∈ Y . It follows now from Lemma 14 that
M |=h [gfpR,~x η(R, ~x)]~x for all h ∈ Y . Since every s ∈ X has an extension h ∈ Y , and
~z〈s〉 = ~z〈h〉 ∈ Y (~x), we conclude that M |=s [gfpR,~x η(R, ~x)]~z for all s ∈ X.

To prove the converse, assume that M |=s [gfpR,~x η(R, ~x)]~z for all s ∈ X. Let P be the
greatest fixed point of the formula η(R, ~x) (with respect to R and ~x) on the model M , and let
H ∈ C(X, Dom(M)n) be the function such that H(s) = P for every s ∈ X. Let Y = X[H/~x].
Then (M,Y (~x)) |=h η(R, ~x) for all h ∈ Y , whence by claim (a), we have M |=Y η+(~x).
Moreover, ~z〈h〉 ∈ Y (~x) = P for all h ∈ H, whence M |=Y ~z ⊆ ~x. Thus, the function H

witnesses that M |=X ∃~x(~z ⊆ ~x ∧ η+(~x)). J

Note that in the case of disjunction above, it was necessary to “store” the possible values
of ~x into the values of a new tuple ~u of variables: otherwise, by splitting the team X into
two subteams we could have lost information about X(~x).

The equivalence of FO(⊆) and GFP+ follows now from the two theorems above:

I Corollary 17. For any FO(⊆)-sentence φ there exists an equivalent GFP+-sentence θ, and
vice versa.

CSL’13

290 Inclusion Logic and Fixed Point Logic

Proof. If φ is an FO(⊆)-sentence, then by Theorem 15, there is a formula φ∗(R, x) such that
for all models M and teams X, M |=X φ if and only if (M,X(x)) |=s φ

∗(R, x) for all s ∈ X.
Thus, M |= φ if and only if M |= ∀x [gfpR,x φ∗(R, x)]x.

On the other hand, if ψ is a GFP+-sentence, then by Theorem 13, we can assume that
it is of the form ∃~z [gfpR,~x η(R, ~x)]~z, where η is a first-order formula. It follows now from
Theorem 16(b) that ψ is equivalent to the FO(⊆)-sentence ∃~z η̃(~z). J

I Corollary 18. A class of linearly ordered finite models is definable in FO(⊆) if and only if
it can be recognized in PTIME.

This connection between Inclusion Logic, Fixed Point Logic and descriptive complexity
may be of great value for the further development of the area. In particular, it implies that
fragments and extensions of FO(⊆) can be made to correspond to various fragments and
extensions of PTIME. Hence, results concerning their relationships may lead to insights
which may be valuable in complexity theory, and vice versa.

4 First-Order Union Closed Properties

From Corollary 17 it follows immediately that Inclusion Logic is strictly weaker than Σ1
1. As

an immediate consequence, not all Σ1
1-definable union-closed properties of relations can be

expressed in Inclusion Logic. For example, consider the atom
TS-R: M |= R(xyzw) if and only if there exist two functions f, g : Dom(M)→ Dom(M) such

that, for all a, b ∈ Dom(M), (a, f(a), b, g(b)) ∈ X(xyzw).

It is easy to see that the atom R is union-closed. On the other hand, it can be seen
that that the sentence ∀x∃y∀z∃w(R(xyzw) ∧ (x = z ↔ y = w) ∧ (y = z → x = w) ∧ x 6= y)
holds in a finite model if and only if it contains an even number of elements.5 Since even
cardinality is not definable in GFP, it follows that R is not definable in FO(⊆).

But what about first order definable union-closed properties? As we will now see, all such
properties are indeed definable in Inclusion Logic; and, therefore, it is not possible to increase
the expressive power of Inclusion Logic by adding any first order definable union-closed
dependency.

I Definition 19. A sentence φ(R) is myopic if it is of the form ∀~x(R~x→ θ(R, ~x)) for some
first-order formula θ in which R occurs only positively.

It follows at once from Theorem 16 that myopic sentences correspond to Inclusion
Logic-definable properties:

I Proposition 20. Let φ(R) = ∀~x(R~x→ θ(R, ~x)) be a myopic sentence. Then there exists
an FO(⊆)-formula φ+(~x) such that, for all models M and teams X,

M |=X φ+(~x) if and only if (M,X(~x)) |= φ(R).

Proof. Consider θ(R, ~x): by Theorem 16(a), there exists an FO(⊆)-formula θ+(~x) such that
for all models M and teams X,

M |=X θ+(~x) ⇐⇒ ∀s ∈ X : (M,X(~x)) |=s θ(R, ~x)
⇐⇒ (M,X(~x)) |= ∀~x(R~x→ θ(R, ~x)),

as required. J

5 The proof of this fact mirrors that of the example in [24], §4.1. In brief, the sentence asserts that
the function f mapping x to y is the same as the function g mapping z to w, that this function is an
involution, and that this function has no fixed points.

P. Galliani and L. Hella 291

It is also easy to see that all myopic properties are union-closed. We will now prove the
converse implication: if φ(R) is a first order sentence that defines a union-closed property of
relations, then it is equivalent to some myopic sentence. From this preservation theorem it
will follow at once that all union-closed first-order properties of relations are definable in
Inclusion Logic.

First, let us recall some model-theoretic machinery:

I Definition 21 (ω-big models). A model A of signature Σ is ω-big if for all finite tuples ~a
of elements of it and for all models (B,~b, S) such that (A,~a) ≡ (B,~b) there exists a relation
P over A such that (A,~a, P) ≡ (B,~b, S).

I Definition 22 (ω-saturated models). A model A is ω-saturated if for every finite set C of
elements of A, all complete 1-types over C with respect to A are realized in A.

The proofs of the following model-theoretic results can be found in [15].

I Theorem 23 ([15], Theorem 8.2.1). Let A be a model. Then A has an ω-big elementary
extension.

I Theorem 24 ([15], Lemma 8.3.4). Let A and B be ω-saturated structures over a finite
signature and such that, for all sentences χ(R) in which R occurs only positively,

A |= χ(R) =⇒ B |= χ(R).

Then there are elementary substructures C and D of A and B and a bijective homomorphism
f : C → D which fixes all relation symbols except R.

I Theorem 25 (Essentially [15], Theorem 8.1.2). Suppose that A is ω-big and ~a is a finite
tuple of elements. Then (A,~a) is ω-saturated.

Using these results, we can prove our representation theorem:

I Theorem 26. Let φ(R) be a first order sentence that defines a union-closed property of
R. Then φ is equivalent to some myopic sentence. Consequently, every first-order definable
union-closed property of relations is definable in FO(⊆).

Proof. Let T = {φ′(R) : φ′(R) is myopic, φ(R) |= φ′(R)}. If we can show that T |= φ(R),
we are done: indeed, by compactness this implies that φ is equivalent to a finite conjunction
∀~x(R~x → θ1(R, ~x)) ∧ . . . ∧ ∀~x(R~x → θn(R, ~x)) of myopic sentences, which of course is
equivalent to ∀~x(R~x→ (θ1(R, ~x) ∧ . . . ∧ θn(R, ~x))).

So, let B′ be a model satisfying T , and let B be an ω-big elementary extension of B′. We
need to show that B |= φ(R) (and, therefore, B′ |= φ(R)).

Now choose an arbitrary tuple ~b of elements such that B |= R~b, and let Γ be the theory

Γ = {R~a, φ(R)} ∪ {ψ(R,~a) : R only negative in ψ,B |= ψ(R,~b)}.

Γ is satisfiable: indeed, if it were not then by compactness there would be formulas
ψ1(R, ~x), . . . , ψn(R, ~x) in which R occurs only negatively such that

φ(R) |= ∀~x
(
R~x→

∨
1≤i≤n

¬ψi(R, ~x)
)
.

But this is a myopic formula, and therefore it would have to hold in B, which is a contradiction
since B |= ψi(R,~b) for all 1 ≤ i ≤ n.

CSL’13

292 Inclusion Logic and Fixed Point Logic

Now let (A,~a) be an ω-saturated model of Γ. If R occurs only positively in χ(R, ~x) and
A |= χ(R,~a), then B |= χ(R,~b); otherwise ¬χ(R,~a) would be in Γ. Furthermore, since B is
ω-big, (B,~b) is ω-saturated. Thus, there are elementary substructures (C,~a) and (D,~b) of
(A,~a) and (B,~b) and a bijective homomorphism f : C → D that fixes all relations except R.

Let S = f(RC). Then S ⊆ RD, since f is an homomorphism; and f is actually an
isomorphism between (C,~a) and (D[S/R],~b), since f fixes even R between these two models.
Now, C |= R~a ∧ φ(R), whence D |= S~b ∧ φ(S). Furthermore, since S ⊆ R we have that
D |= ∀~x(S~x→ R~x).

Now, (D,~b) is an elementary substructure of (B,~b) and B is a ω-big model: therefore,
there exists a relation P over B such that (D,~b, S) ≡ (B,~b, P). In particular, this implies
that B |= P~b ∧ φ(P) ∧ P ⊆ R: there is a subset of RB which contains ~b and satisfies φ.

But we chose ~b as an arbitrary tuple in RB . So we have that RB is the union of a family
of relations P~b, where ~b ranges over R

B ; and B |= φ(P~b) for all such ~b. Since φ(R) is closed
under unions, this implies that B |= φ(R), as required. J

5 An EF Game for Inclusion Logic

We will now define an Ehrenfeucht-Fraïssé game for Inclusion Logic. This game is an obvious
variant of the one defined in [24] for Dependence Logic:

I Definition 27. Let A and B be two models over the same signature, let n ∈ N, and let X
and Y be two teams with the same domain over A and B, respectively. Then the two-player
game Gn(A,X,B, Y) is defined as follows:
1. The initial position p0 is (X,Y);
2. For each i ∈ {1, . . . , n}, let pi−1 be (Xi−1, Yi−1). Then Spoiler makes a move of one of

the following types:
Splitting: Spoiler chooses two teams X ′, X ′′ such that Xi−1 = X ′∪X ′′. Then Duplicator

chooses two teams Y ′, Y ′′ such that Yi−1 = Y ′ ∪ Y ′′. Then Spoiler chooses whether
the next position pi is (X ′, Y ′) or (X ′′, Y ′′).

Supplementing: Spoiler chooses a variable v and a function H : Xi−1 → P(Dom(A))\{∅}.
Then Duplicator chooses a function K : Yi−1 → P(Dom(B))\{∅}, and the new position
pi is (Xi−1[H/v], Yi−1[K/v]).

Duplication: Spoiler chooses a variable v. The next position pi is (Xi−1[A/v], Yi−1[B/v]).
3. The final position pn = (Xn, Yn) is winning for Spoiler if and only if there exists a formula

α which is either a first-order literal, or an inclusion atom, such that A |=Xn
α, but

B 6|=Yn
α. Otherwise, the final position is winning for Duplicator.

The rank of an Inclusion Logic formula is also defined much in the same way as the rank of
a Dependence Logic formula:

I Definition 28. Let φ be an FO(⊆)-formula. Then we define its rank rk(φ) ∈ N by
structural induction on φ, as follows:
1. If φ is a first-order literal or an inclusion atom, rk(φ) = 0;
2. rk(ψ ∧ θ) = max(rk(ψ), rk(θ));
3. rk(ψ ∨ θ) = max(rk(ψ), rk(θ)) + 1;
4. rk(∃vψ) = rk(∀vψ) = rk(ψ) + 1.

The next theorem shows that our games behave as required with respect to our notion of
rank. Its proof is practically the same as for the EF game for FO(D) in [24].

P. Galliani and L. Hella 293

I Theorem 29. Let A and B be models and X and Y teams on A and B. Then Duplicator
has a winning strategy in Gn(A,X,B, Y) if and only if

A |=X φ =⇒ B |=Y φ

holds for all FO(⊆)-formulas φ with rk(φ) ≤ n.

Due to the equivalence between FO(⊆) and GFP+ we can conclude at once that the EF
game for Inclusion Logic is also a novel EF game for GFP+, rather different in structure
from the one introduced in [2]. It may be hoped that this new game and its variants could
be of some use for studying the expressive power of fixed point logics.

Although the EF game for Inclusion Logic has a clear second order flavour, it is still
manageable: we will next show that Duplicator has a concrete winning strategy, when the
models are simple enough.

I Proposition 30. Let A = {1, . . . , n} and B = {1, . . . , n+ 1} be two finite models over the
empty signature. Then for all FO(⊆)-sentences φ of rank ≤ n,

A |= φ =⇒ B |= φ.

Proof. It suffices to specify a winning strategy for Duplicator in the game Gn(A, {∅}, B, {∅}).
Our aim for such a strategy is to preserve the following property for n turns:

If the current position is (X,Y) then

Y =
⋃
{π[X] : π ∈ I(A,B)}, (3)

where I(A,B) is the set of all 1-1 functions A→ B, π[X] = {π(s) : s ∈ X} and π(s) denotes
the assignment π ◦ s.

The property (3) is trivially true for ({∅}, {∅}). Furthermore, as long as (3) holds, Spoiler
does not win. Indeed, if α is a first-order literal such that A |=s α for all s ∈ X, then, since
all s′ ∈ Y are of the form π(s) for some s ∈ X and the signature is empty, we have B |=s′ α

for all s′ ∈ Y . Similarly, suppose that A |=X ~u ⊆ ~w, and let s′ ∈ Y . Then s′ = π(s) for some
s ∈ X and some π ∈ I(A,B), and there exists a h ∈ X such that ~u〈s〉 = ~w〈h〉. But then
π(h) ∈ Y , and ~w〈π(h)〉 = ~u〈π(s)〉 = ~u〈s′〉, as required.

Thus, we only need to verify that Duplicator can maintain property (3) for n rounds.
Suppose that at round i < n the current position (X,Y) has property (3), and let us consider
the possible moves of Spoiler:
Splitting: Suppose that Spoiler splits X into X1 and X2. Then let Duplicator reply by

splitting Y into Yj = {s′ ∈ Y : ∃π ∈ I(A,B)∃s ∈ Xj such that π(s) = s′} for j ∈ {1, 2}.
Then Y = Y1∪Y2, and it is straightforward to check that both possible successors (X1, Y1)
and (X2, Y2) have property (3).

Supplementing: Suppose that Spoiler chooses a function H ∈ C(X,A). Then let Duplicator
reply with the function K ∈ C(Y,B) defined as

K(s′) = {π(a) : ∃π ∈ I(A,B)∃s ∈ X such that π(s) = s′ and
a ∈ H(s)}

for each s′ ∈ Y . We leave it to the reader to verify that the next position (X[H/v], Y [K/v])
has property (3).

Duplication: If Spoiler chooses a duplication move, the next position is (X[M/v], Y [M/v]).
We check that this new position satisfies property (3).

CSL’13

294 Inclusion Logic and Fixed Point Logic

Let s[a/v] ∈ X[A/v] and let π ∈ I(A,B). Since s ∈ X, we have that π(s) ∈ Y , and
therefore π(s)[π(a)/v] = π(s[a/v]) ∈ Y [B/v].
Conversely, let s′ ∈ Y and let b be any element of B. We need to show that s′[b/v] =
π(s[a/v]) for some π ∈ I(A,B), s ∈ X and a ∈ Dom(A).
By induction hypothesis, there exists π ∈ I(A,B) and s ∈ X such that π(s) = s′. If b
is in the range of π, then s′[b/v] = π(s[a/v]), where a = π−1(b). On the other hand, if
b is not in the range of π, then since i < n, there is an element a ∈ A which is not in
the range of s. Now s[a/v] ∈ X[A/v], and s′[b/v] = π′(s[a/v]), where π′ ∈ I(A,B) is a
function such that π′(a) = b and π′(c) = π(c) for all c in the range of s. J

From Proposition 30 it immediately follows that even cardinality (and other similar cardinality
properties) of finite models is not definable in Inclusion Logic. This, of course, follows already
from the equivalence of FO(⊆) and GFP+, as it is well-known that non-trivial cardinality
properties are not definable in fixed point logics.

6 Conclusions and Further Work

In this work, we proved a number of results concerning the expressive power of inclusion
Logic. We showed that this logic is strictly weaker than Σ1

1, and corresponds in fact to
Positive Greatest Fixed Point Logic. Furthermore, we showed that all union-closed first-order
properties of relations correspond to the satisfaction conditions of Inclusion Logic formulas,
and we also defined a new Ehrenfeucht-Fraïssé game for it.

Due to the connection between Inclusion Logic and fixed point logics, the study of this
formalism may have interesting applications in descriptive complexity theory. In [5], Durand
and Kontinen established some correspondences between fragments of Dependence Logic and
fragments of NP; in the same way, one may hope to find correspondences between fragments
of Inclusion Logic and fragments of PTIME.

Furthermore, we may inquire about extensions of Inclusion Logic. For example, is there
any natural union-closed dependency notion D such that FO(⊆,D) defines all Σ1

1 union-
closed properties of relations? By the results in Section 4, we know that if this is the case,
then D is not first-order.

Acknowledgements. Pietro Galliani gratefully acknowledges the support of grant 264917
of the Academy of Finland. We thank Erich Grädel, Miika Hannula, Juha Kontinen and
Jouko Väänänen for a number of highly useful suggestions and comments. We especially
thank Miika Hannula for pointing out an error in a previous version of the paper. Finally,
we thank the referees for a number of useful suggestions and comments.

References

1 William W. Armstrong. Dependency Structures of Data Base Relationships. In Proc. of
IFIP World Computer Congress, pages 580–583, 1974.

2 Uwe Bosse. An “Ehrenfeucht-Fraïssé game” for fixpoint logic and stratified fixpoint logic.
In Computer science logic, pages 100–114. Springer, 1993.

3 Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion dependencies
and their interaction with functional dependencies. In Proceedings of the 1st ACM SIGACT-
SIGMOD symposium on Principles of database systems, PODS ’82, pages 171–176, New
York, NY, USA, 1982. ACM.

P. Galliani and L. Hella 295

4 Marco A. Casanova and Vânia M. P. Vidal. Towards a sound view integration methodology.
In Proceedings of the 2nd ACM SIGACT-SIGMOD symposium on Principles of database
systems, PODS ’83, pages 36–47, New York, NY, USA, 1983. ACM.

5 Arnaud Durand and Juha Kontinen. Hierarchies in dependence logic. ACM Trans. Comput.
Log., 13(4), 2012, 31 pages.

6 Herbert B. Enderton. Finite partially-ordered quantifiers. Mathematical Logic Quarterly,
16(8):393–397, 1970.

7 Fredrik Engström. Generalized quantifiers in dependence logic. Journal of Logic, Language
and Information, 21(3):299–324, 2012.

8 Ronald Fagin. A normal form for relational databases that is based on domains and keys.
ACM Transactions on Database Systems, 6:387–415, September 1981.

9 Pietro Galliani. The Dynamics of Imperfect Information. PhD thesis, University of Ams-
terdam, September 2012.

10 Pietro Galliani. Inclusion and exclusion dependencies in team semantics: On some logics
of imperfect information. Annals of Pure and Applied Logic, 163(1):68 – 84, 2012.

11 Dan Geiger, Azaria Paz, and Judea Pearl. Axioms and algorithms for inferences involving
probabilistic independence. Information and Computation, 91(1):128–141, 1991.

12 Erich Grädel and Jouko Väänänen. Dependence and Independence. Studia Logica,
101(2):399–410, 2013.

13 Leon Henkin. Some Remarks on Infinitely Long Formulas. In Infinitistic Methods. Proc.
Symposium on Foundations of Mathematics, pages 167–183. Pergamon Press, 1961.

14 Jaakko Hintikka and Gabriel Sandu. Informational independence as a semantic phe-
nomenon. In J.E Fenstad, I.T Frolov, and R. Hilpinen, editors, Logic, methodology and
philosophy of science, pages 571–589. Elsevier, 1989.

15 Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.
16 Wilfrid Hodges. Compositional Semantics for a Language of Imperfect Information. Journal

of the Interest Group in Pure and Applied Logics, 5 (4):539–563, 1997.
17 Neil Immerman. Relational queries computable in polynomial time. Information and

control, 68(1):86–104, 1986.
18 Neil Immerman. Languages That Capture Complexity Classes. SIAM Journal of Comput-

ing, 16:760–778, 1987.
19 Juha Kontinen and Jouko Väänänen. On definability in dependence logic. Journal of Logic,

Language and Information, 3(18):317–332, 2009.
20 Antti Kuusisto. Defining a double team semantics for generalized quantifiers.

URN:ISBN:978-951-44-8882-5, 2012.
21 Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
22 Allen L. Mann, Gabriel Sandu, and Merlijn Sevenster. Independence-Friendly Logic: A

Game-Theoretic Approach. Cambridge University Press, 2011.
23 Yannis Moschovakis. Elementary Induction on Abstract Structures. North Holland, 1974.
24 Jouko Väänänen. Dependence Logic. Cambridge University Press, 2007.
25 Jouko Väänänen and Pietro Galliani. On dependence logic. ArXiv:1305.5948, 2013.
26 Moshe Y. Vardi. The complexity of relational query languages. In Proceedings of the

fourteenth annual ACM symposium on Theory of computing, pages 137–146. ACM, 1982.
27 Wilbur John Walkoe. Finite partially-ordered quantification. The Journal of Symbolic

Logic, 35(4):pp. 535–555, 1970.

CSL’13

	Introduction
	Preliminaries
	Team Semantics
	Dependencies in Team Semantics
	Greatest Fixed Point Logic

	Inclusion Logic captures GFP+
	First-Order Union Closed Properties
	An EF Game for Inclusion Logic
	Conclusions and Further Work

