
Reconstructing Consensus Bayesian Network
Structures with Application to Learning Molecular
Interaction Networks
Holger Fröhlich1 and Gunnar W. Klau2

1 University of Bonn, Bonn-Aachen International Center for IT, Algorithmic
Bioinformatics
Dahlmannstr. 2, 53113 Bonn, Germany
frohlich@bit.uni-bonn.de

2 Centrum Wiskunde & Informatica (CWI), Life Sciences
Science Park 123, 1098 XG Amsterdam, The Netherlands
gunnar.klau@cwi.nl

Abstract
Bayesian Networks are an established computational approach for data driven network inference.
However, experimental data is limited in its availability and corrupted by noise. This leads to
an unavoidable uncertainty about the correct network structure. Thus sampling or bootstrap
based strategies are applied to obtain edge frequencies. In a more general sense edge frequencies
can also result from integrating networks learned on different datasets or via different inference
algorithms. Subsequently one typically wants to derive a biological interpretation from the results
in terms of a consensus network. We here propose a log odds based edge score on the basis
of the expected false positive rate and thus avoid the selection of a subjective edge frequency
cutoff. Computing a score optimal consensus network in our new model amounts to solving
the maximum weight acyclic subdigraph problem. We use a branch-and-cut algorithm based
on integer linear programming for this task. Our empirical studies on simulated and real data
demonstrate a consistently improved network reconstruction accuracy compared to two threshold
based strategies.
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1 Introduction

Reverse engineering of biological networks is key to the understanding of biological systems.
The exact knowledge of interdependencies between genes and proteins not only provides deep
insight into the functionality of a cell, but is crucial for the identification of drug targets for
various diseases. Apart from literature driven approaches, a wide range of methods from
statistics and machine learning for estimating regulatory networks from experimental data
has been proposed. Examples thereof are static and dynamic Bayesian Networks (BNs)
[5, 16, 18, 25, 14, 7], correlation and mutual information based algorithms, such as ARACNE
[11, 27], and Gaussian Graphical Models (GGMs) [19, 13, 17, 22], see [12] for a review. In
this paper our focus lies on Bayesian Networks as an established probabilistic graphical
modeling approach for network reverse engineering.
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When learning BN structures from experimental data the uncertainty about individual
network structures has to be taken into account. Each edge can only be inferred up to a
certain probability. In a Bayesian sense this amounts to compute posterior probabilities,
which can be approximated via Markov Chain Monte Carlo (MCMC) sampling techniques.
From a frequentist point of view, bootstrapping [4] provides a possibility to assess edge
confidences. Both approaches result in a matrix of relative frequencies for each edge, which
then can be thresholded appropriately to decide which interactions are supported by the
data with high confidence and which not. Similarly, a matrix of relative edge frequencies can
result from integrating networks inferred on different datasets [8] or via different inference
algorithms [10].

In any of these cases the choice of the threshold above which edges are considered
to be relevant is typically highly subjective and can influence the subsequent biological
interpretation significantly. In addition, a complicating but most often ignored issue is that
applying a cutoff typically leads to network structures that are inconsistent with the original
model assumptions for BNs. That means that the obtained network graph is no longer acyclic
(more specifically: a completed partially directed acyclic graph). As a consequence this may
result in a graph that is principally impossible to model via BNs. This can in turn lead to a
reduced network reconstruction accuracy, because it only makes sense to choose BNs as a
modeling approach, if indeed the true biological network can be assumed to be acyclic.

Our contribution in this paper is two-fold: First, we propose a method to avoid the
selection of an arbitrary frequency cutoff by estimating the proportion of false positive edges.
This results in an edge-wise score, which is essentially an adjusted log odds ratio. Second, we
show that computing a score optimal consensus network structure in this new model amounts
to solving the maximum weight acyclic subdigraph problem. We propose a branch-and-cut
algorithm based on integer linear programming (ILP) for this task. Our simulation results
indicate that we enhance the network reconstruction accuracy significantly in comparison to a
threshold guided as well as the Consensus Bayesian Network algorithm by Steele and Tucker
[21], which is not guaranteed to yield a valid completed partially directed acyclic graph
(CPDAG) structure. The utility of our approach is further demonstrated by applications
on learning the yeast heat-shock response network [24] as well as the yeast Raf signaling
pathway structure [18]. Notably, our proposed approach is fast enough to run on a standard
desktop computer within a few seconds.

2 Problem Definition

Given a set G = {G1, G2, . . . , G`} of ` Bayesian network structures on the same set of nodes
V . For example, each Gk ∈ G may be inferred on a different dataset, a different data sub-set
or via a different learning algorithm. We propose to find a consensus CPDAG G∗ = (V,E∗),
which explains a maximal fraction of the observed edges. A CPDAG is defined as the set
of all Markov equivalent directed acyclic graph (DAG) structures and can be represented
conveniently by a partially directed graph (see [15] for an excellent description). It can be
computed from a DAG by making all edges undirected that are neither part of a v-structure
(i.e., a motif of the form A→ C ← B) nor by reversal introduce any new v-structure.

Let F = (fij), i, j = 1, . . . , n with n = |V | be a matrix of observed relative edge frequencies.
Then we define G∗ as the CPDAG that characterizes the equivalence class of the maximum
weight DAG D∗ = (V,A∗), where A∗ ⊂ V × V and the weight of an edge (i, j) ∈ V × V is
given by a suitable weight function derived from the frequencies. In other words, the task is
to find the maximum weight acyclic subdigraph D∗ of a complete digraph with edge weights
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w(F ). A natural weight function is, for example, w(ij) = fij − θ, for 1 ≤ i, j ≤ n, where θ is
a suitable frequency threshold. In the next section, we propose a more sophisticated weight
function based on the expected false positive rate of edges.

Once D∗ is computed, the CPDAG that characterizes the corresponding equivalence class
can be calculated via the algorithm of Chickering [3]. It has to be emphasized that Bayesian
Network structures can principally only be resolved up to these equivalence classes.

3 Expected FPR Adjustment

In the absence of any gold standard network the selection of a frequency cutoff θ becomes a
practically difficult problem. We here suggest a rational approach based on the expected
false positive rate of edges. The underlying idea is that relative edge frequencies {fij} can
be assumed to be drawn from a mixture of two beta distributions, namely Beta(α, 1), if in
reality the edge exists, and Beta(1, β), if in reality there is no such biological interaction.
Correspondingly we have:

fij ∼ π0Beta(1, β) + (1− π0)Beta(α, 1) (1)

The parameters of this mixture model can be estimated conveniently via an expectation
maximization (EM) algorithm. We can now compute the posterior log odds ratio for each
edge (i, j):

rij = log Beta(fij , α, 1)(1− π0)
Beta(fij , 1, β)π0

(2)

If we predicted every edge with a positive log odds ratio, then the overall expected fraction
of false positive edges would be given by the area under the Beta(1, β) distribution, which is
below the Beta(α, 1) distribution, see Figure 1 left. However, instead of choosing a log odds
ratio cutoff of 0, we could also take any other one. In particular we can select a cutoff τ such
that

∫ 1
τ

Beta(x, 1, β)dx = q, where q is a prescribed false positive rate (here: 10%). This is
equivalent to setting w(ij) = rij − τ , for 1 ≤ i, j ≤ n, which is an adjusted log odds ratio
score.

4 Finding Score Optimal Network Structures

Finding the maximum weight acyclic subgraph is a well-known NP-hard problem. It is
equivalent to the minimum weight feedback arc set problem, which was one of the 21 problems
for which Karp showed hardness in his famous work [9]. We model the problem as an integer
linear programming (ILP) formulation and solve it using branch-and-cut.

Given matrix W containing the weights of the complete digraph on n nodes, our goal is
to find the maximum weight subgraph D = (V,A∗) such that A∗ contains no directed cycles.
We therefore introduce binary variables x ∈ {0, 1}|V×V | with the interpretation xa = 1 for
a ∈ A∗ and xa = 0 otherwise. The ILP is as follows:

max
∑

a∈V×V
waxa (3)

subject to
∑
a∈C

xa ≤ |C| − 1 for all directed cycles C

xa ∈ {0, 1} for all a ∈ V × V
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Figure 1 Left: Example of a fitted two component beta mixture model. Green = null distribution
(edge does not exist in reality); red = alternative distribution (edge exists in reality); black = mixture.
The shaded region indicates the expected false positive rate at a log odds ratio cutoff of 0. Right:
ROC curve. True positive (TPR) and false positive rates (FPR) averaged over repeated data
drawings for 20 networks. The plot shows the median TPR and FPR, respectively as well as the
median absolute deviation (MAD) (depicted as error bars) for these 20 networks. Orange: point
selected by the expected false discovery rate based method.

Since there is an exponential number of directed cycles in the complete digraph, we
resort to a cutting plane approach to solve the linear programming relaxation of (3), which
is the ILP without integrality constraints. This means, we initially leave out the directed
cycle constraints and iteratively solve the following separation problem: Given a fractional
solution x̄ of an intermediate linear program, find a violated directed cycle inequality, that is,
a directed cycle C with

∑
a∈C x̄a > |C| − 1 or state that no such violated inequality exists.

This problem can be solved in polynomial time by defining ȳ = 1 − x̄ and by computing
shortest paths with respect to ȳ between all pairs of nodes j and i. It is easy to see that a
violated inequality is found if and only if the ȳ-weight of such a path plus ȳij is less than one.
In this case, we add the inequality

∑
a∈C xa ≤ |C| − 1 and iterate. If no such cycle exists,

we have solved the LP relaxation.
As we can solve the separation problem in polynomial time, we can also solve the full LP

relaxation of (3) in polynomial time [6]. We use the LP bound within a branch-and-bound
algorithm to obtain an optimal solution for the integer linear program and thus a maximum
weight DAG in our input data. Subsequently, we compute the corresponding CPDAG with
the algorithm of Chickering [3].

5 Results

5.1 Simulating KEGG Signaling Sub-Pathways

In order to test our approach we conducted simulation studies with sub-networks of KEGG
signaling pathways with 10, 20, 40 and 60 nodes. We generated 20 directed, acyclic networks
for each number of nodes. To obtain our ground truth networks we parsed XML files of all
KEGG signaling pathways and converted them into graphs via the R-package KEGGgraph
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[26]. Then we randomly picked one of these graphs and performed a random walk starting
from a randomly selected core node. The random walk was stopped once the predefined
number of distinct nodes had been visited. In case that the resulting sub-network between
visited nodes contained cycles we repeated the whole procedure until a DAG structure had
been found.

5.1.1 Network and Edge Frequency Sampling
We now simulated edge frequency matrices for the simulated KEGG DAGs by drawing
for each existing edge from a Beta(α, 1) and for each non-existing edge from a Beta(1, β)
distribution for varying parameters α and β, see below. We made sure that fij + fji ≤ 1
for each existing edge (i, j). This is necessary, because an undirected edge {i, j} can never
appear with a frequency of more than 100%. We repeated the simulation procedure five
times for each network. For each frequency matrix we reconstructed a consensus Bayesian
Network and calculated the corresponding CPDAG. We measured the performance in terms
of balanced accuracy (BAC), i.e., average of sensitivity and specificity, by comparing the
inferred CPDAG to the CPDAG of the original network. We conducted the comparison on
the level of CPDAGs, because Bayesian Network structures can only be resolved up to these
equivalence classes.

5.1.2 Effect of Edge Scoring Scheme
We exemplify the effect of our adjusted log odds scoring scheme compared to a varying
cutoff applied to raw edge frequencies. This is done for a five times repeated simulation
with n = 20 network nodes and α = 2, β = 10. By varying the edge frequency threshold
we obtain a ROC curve, which depicts true positive against false positive rates for network
reconstruction (Figure 1 right). Our proposed edge scoring method corresponds to picking
a point at the prescribed FPR of ∼ 10% in the ROC curve. This demonstrates that our
adjusted log odds scoring scheme can be used as an objective criterion to select a suitable
edge frequency threshold.

5.1.3 Dependency on Number of Network Nodes
We went on to investigate the dependency of our proposed exact consensus Bayesian Network
method (exact) on the number of network nodes for fixed α = 2, β = 10. This was done in
comparison to two other methods: (i) simple thresholding of the adjusted log odds ratio
(threshold) at 0 and (ii) the consensus Bayesian Network algorithm proposed by Steele and
Tucker (CBN ) [21], which was also applied to adjusted log odds ratios here in order to
have a fair comparison. Despite its name the CBN method does not guarantee to obtain a
valid CPDAG structure, since it simply assigns each edge a direction based on a majority
vote. The threshold method is equivalent to applying an edge frequency cutoff such that the
expected FPR is 10%.

We observed a better network reconstruction performance of our exact method compared
to both competing methods for all number of nodes. To assess the statistical significance of
the observed differences we conducted one-sided paired Wilcoxon signed rank tests (with
FDR multiple testing correction [1]). This indicated a highly significant result in all cases
(Figure 2). Interestingly, significance levels increased with more network nodes. This may be
explained by the larger space of CPDAG structures being consistent with the observed edge
frequencies. The larger this space the more likely it is that a simple threshold based strategy
(or variation thereof) fails. Hence, there is an increasing advantage of our exact approach.
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Figure 2 Left: Balanced accuracies (BACs) for network reconstruction with different consensus
methods in dependency on number of network nodes. Right: Significance level (− log10 FDR) of
exact versus threshold and CBN.
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Figure 3 Empirical run time behavior for our exact method (log10 s). Times were measured on
an Intel Xeon 8 core machine with 96GB RAM.

Notably, even for networks with n = 60 nodes with our proposed method a consensus
Bayesian Network that is provably optimal with respect to our scoring function could be
found below 30 CPU s (Figure 3) on a standard desktop computer.

5.1.4 Dependency on Distribution Parameters

We repeated our above described simulation with different combinations of α and β for
n = 20 nodes. This showed that in all but the extreme case (α = 2, β = 2) a highly significant
improvement of our method compared to threshold and CBN could be achieved (Figure 4).
Please note that in the case (α = 2, β = 2) the two beta distributions are very flat and
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Figure 4 Left: Balanced accuracies (BACs) for network reconstruction with different consensus
methods in dependency on different distribution parameter settings. Right: Significance level
(− log10 FDR) of exact versus threshold and CBN.

extremely overlapping, making a reliable distinction of likely existing and non-existing edges
highly difficult.

5.2 Yeast Heat-Shock Network

We applied all tested methods to a network of nine transcription factors (TFs) related to
heat-shock response in yeast (Figure 5 left). The network was taken from [21]. We collected
four microarray datasets (GSE3406, GSE3316, GSE40073, GSE40817) consisting of gene
expression measurements after heat shock for varying conditions (GSE40817), time points
(GSE3406, GSE3316, GSE40073) and strains or strain mutations (GSE3406, GSE40073).
After k-NN imputation of missing values [23] quantile normalization was applied to each
dataset [2]. We then used a quantile based discretization of each dataset. As variables in the
Bayesian Network structure, which we wanted to learn from these datasets, we considered—
besides the nine TFs—three additional variables, namely condition, time and strain. This was
done, because these factors could potentially influence TF expression. The additional three
variables were only allowed to have ingoing, but no outgoing edges. We then applied Bayesian
Network learning using a greedy hill climber, as implemented in the R-package bnlearn
[20]. This was done using a non-parametric bootstrap with 10,000 replicates. Accordingly
we arrived at an edge frequency matrix, which we used to calculate a consensus network
structure.

We compared the CPDAG of the consensus network on each of the four datasets against
the CPDAG of the gold standard network from [21] and computed the balanced accuracies,
see Figure 5 right. This demonstrates that our exact approach achieved the best performances
on all four datasets. Interestingly, the performance of all methods showed a high variability
across datasets. Whereas on dataset GSE3316 a balanced accuracy of 82% with our method
could be achieved, on GSE3406 this was only 55%. The reason is probably the high number
of different conditions, time and strain combinations coupled with a comparably low number
of replicates in GSE3406.
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Figure 5 Left: Gold standard heat-shock network [21]. Right: Balanced accuracies for network
reconstruction using a 10,000 times bootstrapped greedy hill climber and different consensus network
approaches.
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Figure 6 Left: Gold standard Raf signaling pathway [18] Right: Balanced accuracies for network
reconstruction using a 10,000 times bootstrapped greedy hill climber and different consensus network
approaches.

5.3 Yeast Raf Signaling Pathway

In addition we applied all tested methods to inferring parts of the yeast Raf signaling
pathway based on the dataset by Sachs et al. [18], see Figure 6 left. The dataset contains
measurements of 11 proteins under 14 different treatment conditions. The same technique
for Bayesian Network inference as for the yeast heat-shock network with the same number of
bootstraps was applied. Comparison of our exact consensus method against the CBN and
threshold approaches yielded an improvement of 3% in terms of balanced accuracy (Figure 6
right).
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6 Conclusions

In reverse engineering of biological networks edge frequency matrices can result from aggreg-
ating bootstrap or MCMC results, combining outputs of different inference algorithms [10]
or integrating experimental datasets [8]. In order to interpret these meta results one usually
has to come up with a way to compute a consensus network. So far most authors do this
by applying a defined threshold to the edge frequencies, which is (i) highly subjective and
(ii) leads to consensus models inconsistent with the model assumptions. Here we propose
an automated threshold selection based on the expected false positive rate. This yields
an adjusted log odds ratio as an edge-wise score. Based on this score we showed that
computing provably score optimal consensus Bayesian Network structures amounts to solving
the maximum weighted directed subgraph problem. We proposed a branch-and-cut algorithm
based on an integer linear programming formulation for this task.

Our simulation studies as well as our results on two yeast networks showed that our new
approach consistently improves network reconstruction accuracy. Our simulations showed
that the expected gain increases with the number of network nodes. At this point we should
emphasize that both of our tested yeast networks were comparably small. Higher significant
results can thus be expected for larger datasets. Although the computation time of our
proposed method scales exponentially with the number of network nodes we did not observe
any practical limitation by this fact. Even with 60 nodes networks our algorithm took only a
few seconds on a standard desktop computer. This should specifically be seen in relation to
the high computation time needed for bootstrapping or sampling based network inference.
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