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Abstract
Introduction: With the so-called OMICS technology the scientific community has generated huge
amounts of data that allow us to reconstruct the interplay of all kinds of biological entities. The
emerging interaction networks are usually modeled as graphs with thousands of nodes and tens
of thousands of edges between them. In addition to sequence alignment, the comparison of
biological networks has proven great potential to infer the biological function of proteins and
genes. However, the corresponding network alignment problem is computationally hard and
theoretically intractable for real world instances.

Results: We therefore developed GEDEVO, a novel tool for efficient graph comparison dedic-
ated to real-world size biological networks. Underlying our approach is the so-called Graph Edit
Distance (GED) model, where one graph is to be transferred into another one, with a minimal
number of (or more general: minimal costs for) edge insertions and deletions. We present a
novel evolutionary algorithm aiming to minimize the GED, and we compare our implementa-
tion against state of the art tools: SPINAL, GHOST, C-GRAAL, and MI-GRAAL. On a set
of protein-protein interaction networks from different organisms we demonstrate that GEDEVO
outperforms the current methods. It thus refines the previously suggested alignments based on
topological information only.

Conclusion: With GEDEVO, we account for the constantly exploding number and size of
available biological networks. The software as well as all used data sets are publicly available at
http://gedevo.mpi-inf.mpg.de.
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1 Introduction

We have finally arrived in the post-genome era. At the web site of the National Center for
Biotechnology Information (NCBI) we find registered sequencing projects for >1,500 euka-
ryotes, >8,500 prokaryotes and >3,000 viruses with >8,000,000 gene sequences in total [26].
However, the genes’ function is often unclear and most-widely deduced from similarities to the
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Table 1 The highest edge correctnesses (EC) achieved by different tools for aligning two pairs
of networks, adopted from [14] and extended by the results of SPINAL and GHOST. Note that
GHOST did not terminate for yeast2 vs. human1. Note that GEDEVO obtained better results
(refer to Table 3). Table 2 summarizes all data sets.

IsoRank
[29]

GRAAL
[13]

H-GRAAL
[17]

MI-GRAAL
[14]

C-GRAAL
[16]

SPINAL
[1]

GHOST
[20]

yeast2 vs. human1 3.89 11.72 10.92 23.26 22.55 19.33 -
Meso vs. Syne 5.33 11.25 4.59 41.79 26.02 25.86 41.98

sequences of genes with known functions. Consequently, we still lack fundamental knowledge
about crucial genetic programs, the interplay of genes and their products (the proteins),
their biochemical regulations and their evolutionary appearance. We know very little about
how cells, organs and tissues regulate survival, reproduction, differentiation or movement in
response to changing internal and external conditions [24]. Many problems in understanding
these issues are concerned with biological networks that model the interplay of all kinds of
biological entities [4]. Most widely known are transcriptional gene regulatory networks and
protein-protein interaction (PPI) networks. More than 16 million protein-protein interactions
available through PSICQUIC [3] may serve as an example for the ongoing “data explosion”.

One of the major computational challenges in systems biology is biological Network
Alignment [11], which aims to find a node-to-node mapping between two or more biological
networks, optimizing a certain quality criterion. A quality criterion of a mapping usually
reflects topological aspects and biological aspects, such as the number of shared interactions
induced by a mapping of the nodes from two networks or a similarity of the biological
sequences underlying the nodes. Comparing biological networks, particularly protein-protein
interaction (PPI) networks, from different organisms has proven very useful for inferring
biological function, besides relying on DNA sequence similarity alone [27, 16].

Biological Network Alignment was recently addressed by several tools. IsoRank [29]
integrates the nodes’ neighborhoods with sequence information and models the alignment
as an eigenvalue problem. C-GRAAL [16], SPINAL [1], GHOST [20], and MI-GRAAL [14]
use a similar seed-and-extend approach. While C-GRAAL greedily builds a neighborhood-
dependent mapping, SPINAL and MI-GRAAL model (and solve) a weighted bipartite graph
problem. IsoRank was shown to be be outperformed by MI-GRAAL [14]. On real PPI
networks, SPINAL as well as the GRAAL collection, proved to perform best and to offer
biologically meaningful alignments. A brief comparison previously used in [14] is given in
Table 1. Instead of replicating the conclusion from the above cited papers that Network
Alignment offers biological insights, we concentrate on the methodological problem that the
existing tools possess.

All approaches struggle to provide high-quality results on the huge, yet constantly
increasing, biological networks that we are confronted with nowadays (Table 2). As we will
demonstrate, the existing software cannot cope well with such big networks. This becomes
most evident when we see them fail on aligning a network to itself, which should result in
100% node mapping accuracy.

In this paper we present GEDEVO, a novel method for PPI Network Alignment. GEDEVO
is an evolutionary algorithm that uses the Graph Edit Distance as optimization model for
finding the best alignments. For evaluation, we use a set of high quality PPI networks,
including the same networks previously used for C-GRAAL [16] and MI-GRAAL [14] for
comparison with existing tools (see Table 1). We will demonstrate that GEDEVO performs
comparable or better than recent tools, being at the same time fast and flexible. An
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implementation of GEDEVO as well as all used data sets are publicly available under
http://gedevo.mpi-inf.mpg.de.

2 Methods

2.1 Problem definition
Consider a pair of PPI networks modeled as two unlabeled unweighted graphs G1 = (V1, E1)
and G2 = (V2, E2) and a one-to-one mapping f between nodes V1 and V2. We define
the Graph Edit Distance (GED) between G1 and G2 induced by mapping f as follows:
GEDf (G1, G2) = |{(u, v) ∈ E1 : (f(u), f(v)) 6∈ E2} ∪ {(u′, v′) ∈ E2 : (f−1(u′), f−1(v′)) 6∈
E1}|. By definition, GEDf (G1, G2) counts inserted or deleted edges induced by the mapping
f , and it can easily be extended to reflect node/edge dissimilarities or any other related
information (e.g. protein sequence similarity). Here, for Network Alignment, we aim to find
a mapping f that minimizes the GEDf (G1, G2). Graph Edit Distance is a general model for
the Graph Matching problem and defined as the minimal amount of modifications required
in graph G1 to make it isomorphic to graph G2 (see for example [6] for more details).

In previous work, the quality of the mapping f of most biological network aligners is
assessed by using the number of shared interactions, defined as |{(u, v) ∈ E1 : (f(u), f(v)) ∈
E2}| or the number of conserved interactions, defined as |{(u, v) ∈ E1 : dist(v, f(v)) <

∆,dist(u, f(u)) < ∆, (f(u), f(v)) ∈ E2}|, where dist(x, y) is a dissimilarity between x ∈ V1
and y ∈ V2 (such as BLAST E-value), and ∆ is the node dissimilarity threshold. This
corresponds to the intuition that the closer two species in the evolutionary tree are, the
higher the number of conserved interaction partners they share. Incorporating external
biological information, such as sequence similarity, can relax the Network Alignment problem
to some extent by significantly reducing the search space by pre-defining preferable sets of
nodes to be mapped. Although GEDEVO can include such external information, a “good”
method should be able to determine an optimal mapping, by maximizing the number of
shared interactions and thus utilizing the graph structure alone. For this reason and to
assure comparability between the existing biological Network Alignment tools we focus on
topological criteria only in this paper.

2.2 Evolutionary algorithm for Graph Edit Distance
Evolutionary Algorithms (EAs) are nature inspired heuristics, which are widely used to
tackle many NP-hard problems (see for example [8]). The key idea behind EAs is mimicking
the rule “survival-of-the-fittest” on a population of different individuals. Note that in [15]
an EA was suggested for the Graph Matching problem. However, the major hindrance for
efficient EA-based combinatorial optimization remained unsolved: the generation of new
individuals. In the following we briefly introduce a general scheme of an EA and describe
how we modified it with partial adoptions from [15] to Network Alignment.

In an EA an individual represents a solution for the problem, i.e. a mapping of nodes
between two networks (see Figure 1). The state of an individual determines how well
the individual fits to the requirements of the environment it populates. New individuals
result from inheriting parts of solutions from its parents; the better an individual fits
the requirements, the higher are its chances to survive and to pass its solution to future
generations. Mutations of the solutions exposed to a new individual are another way of
mimicking nature in EAs. The requirements of the environment are related to the fitness
function, for which we utilize the above defined GED. Starting with generating a (quasi)

http://gedevo.mpi-inf.mpg.de
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Figure 1 A mapping between networks H1 (nodes A, B, C, D, E, and F) and H2 (nodes T, V, W,
X, Y, and Z) with arbitrary pair scores (for illustration only). In this mapping, node A fits perfectly
to node Z, node C corresponds quite poorly to node X, node E is deleted and node V is inserted and
both have worst pair scores. One major principle behind GEDOVO’s generation of new individuals
is to swap pairs of nodes with bad pair scores.

nodes of H1 A B C D E Ø F

0.0 0.4 0.7 0.5 1.0 1.0 0.2

nodes of H2 Z Y X W Ø V T

random initial population, an EA repeats the following three steps (individual evaluation,
offspring generation, survival function application) until a termination criterion is met.

2.2.1 Initial Population Generation and Evaluation of an Individual
An individual represents a mapping f . Individuals in the initial population are created with
random permutations. However, initialization in a more sophisticated manner, which, as
a consequence, will require more time, may reduce the convergence time of the algorithm.
Here, we may use protein sequence similarities, acquired by BLAST [2], for instance.

Evaluating individuals, for every pair u ∈ V1 and v ∈ V2 with v = f(u), we define a pair
score that reflects how well node u corresponds to node v given a mapping f :

pairScoref (u, v) = (pairGEDf (u, v) + grlets(u, v))/2

where pairGEDf (u, v) is the relative number of deleted and inserted edges induced by
mapping node u to node v given mapping f , and grlets(u, v) is the graphlet degree signature
distance introduced in [18]. The graphlet signature distance (GSD) can be interpreted as
the difference in neighboring topologies (within distance 4) of two nodes. GSD is computed
from two graphlet degree vectors (GDVs); a GDV of a node counts graphlet orbits, which
are topologically distinct induced subgraphs (with up to five nodes) the node touches. Note
that although computing GDVs for a network with |V | nodes requires O(|V |5) time it is
still practically feasible for graphs as sparse as PPI networks. In addition, GDVs can be
precomputed for each network and stored with the graph itself on the hard disk.

The pairScore is mainly used as local optimization guideline. The Graph Edit Distance
(GED) is the final, global fitness score of an individual that is to be optimized. GEDEVO
exploits the graphlet degree signature distance (GSD) only to accelerate convergence of the
algorithm. It is not bound to it; and other external data, such as sequence similarities,
may be introduced as additional (weighted or unweighted) terms to the pairScore formula.
Computing pairGEDf (u, v) requires not more than O(d1 + d2) = O(d) time, where d1, d2 are
the maximal node degrees in G1 and G2 and d := max(d1, d2). Given precomputed GSDs,
a look-up for grlets(u, v) needs constant time. Thus, computing pair scores for a mapping
takes O(n · (d + s)) = O(n · d), where n = |V1|+ |V2|, and s is the number of precomputed
terms on the right side of the pairScoref (u, v) formula.

The score of an individual together with its health, a non-increasing function of the
number of iterations and GED of the individual, defines its fitness. The introduction of
health allows keeping individuals with a “bad” GED for a number of iterations instead of
simply discarding them immediately. This introduces some divergence and contributes to
avoiding local optima.
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2.2.2 Offspring generation
To generate new individuals we combine a set of different operations to balance between a
reasonably high population diversity to avoid local optima and a high and fast convergence
towards optimal solutions. The operations are as follows:

Random generation creates an individual by relating it to a mapping based on a random
permutation; it requires O(n) time.
In PMX-like mutation we adopt the idea of partially-mapped crossover (PMX), initially
introduced in [10]. We partition a mapping into two sets of pairs, low scores and high
scores, by using the average over all pair scores in the mapping as a threshold. Afterwards,
the high scoring pairs are swapped randomly. To avoid local minima, however, we also
swap low scoring pairs with a low probability (of 1% for GEDEVO and PPI networks).
PMX-like mutation evaluates each pair by using the pairScore, which requires at most
O(n · d) time.
A so-called crossover results in an individual that in the first place preserves pairs with
low pair scores from two or more parents. Ties are resolved randomly. Crossover is similar
to the previous operation with a term responsible for sorting n pairs from a constant
number of parents p ≤ 8, which results in O(p · (n ·d) + p ·n · log(p ·n)) = O(n · (log n + d))
time.
With directed mutations we swap of a number r ≤ 20 randomly chosen “bad” pairs in the
mapping of an individual. At the end, the one swap that induces the best score is kept.
One swap requires recomputing two pair scores. Thus, the running time of the operation
is bound by O(r · 2 · n · (d + s)) = O(n · d).

These operations are GEDEVO’s strategies to find and keep “good” pairs while a “bad”
pair is swapped more often with another “bad” pair, in this way improving the final score of
the mapping. Over a number of iterations, many individuals are exposed to these operations
by GEDEVO to traverses the search space and optimizes the final score.

2.2.3 Termination
No practical exact algorithm for the Graph Edit Distance computation on large graphs exists.
Consequently, it is hard to theoretically estimate the number of necessary iterations until a
“good” solution can be achieved. Convergence time mainly depends on the population size as
well as on the input graphs’ topological properties. Our implementation of GEDEVO can
be set to execute (1) a specified number of iterations, (2) a pre-specified running time, or
(3) a fixed number of iterations of no significant changes in the mapping scores of the best
individuals (such that convergence was probably reached).

The total theoretical running time of GEDEVO is based on the run times of the individual
steps. The evaluation step is performed in O(N · n · d), where N is the population size. The
offspring generation step requires O(N ·(n+n ·d+n ·(log n+d)+n ·d)) = O(N ·n ·(log n+d))
time. The selection step sorts the individuals from the older and new generations in
O(2 · N · log(2 · N)) time. Given that GEDEVO runs I iterations, its total running time
sums up to O(I ·N · n · (log n + d)).

3 Data

For the evaluation of GEDEVO with existing tools we used several PPI networks (see
Table 2). The following six networks were previously used for evaluating C-GRAAL and
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Table 2 Summary of PPI networks used for evaluations.

Short
name Species Source Proteins Interactions

cjejuni Campylobacter jejuni [19] 1,095 2,988
Meso Mesorhizobium loti [28] 1,803 3,094
Syne Synechocystis sp.(PCC6803) [25] 1,908 3,102
ecoli_fi Escherichia coli [21] 1,941 3,989
yeast2 Saccharomyces cerevisiae [7] 2,390 16,127
SC Saccharomyces cerevisiae [31] 5,152 24,847
HS Homo Sapiens [31] 5,878 14,015
DM Drosophila Melanogaster [31] 7,533 22,477
ulitsky Homo Sapiens [30] 7,384 23,462
human1 Homo Sapiens [23] 9,141 41,456
hprd Homo Sapiens [22] 9,672 3,7047

MI-GRAAL. The two bacterial networks cjejuni and ecoli_fi are well-studied high-confidence
networks: The first network resulted from high-throughput yeast two-hybrid screens; the
second network was constructed using experimental and computational data (see [21]). The
Syne network was obtained through a modified high-throughput yeast two-hybrid assay and
covers around half (52%) of the total protein coding genes; similarly for network Meso that
involves 24% of the protein coding genes. The high-confidence network human1 was created
by combining data from multiple sources including HPRD [22]. The network from [7] is
based on (post-processed) data from high throughput experiments.

In addition, we obtained the networks DM, SC, and HS from the DIP database, which
contains experimentally determined and manually curated protein interactions. The hprd
network is a PPI network obtained from the Human Protein Reference Database (HPRD),
which is a repository storing high-quality manually curated human interaction data. The
human interactome network ulitsky is a compilation of protein-protein interactions, based
mostly on small-scale experiments, from several interaction databases, including the HPRD
database. Refer to Table 2 for a summary and citations.

4 Result and Discussions

Here, we evaluate GEDEVO against the four tools GHOST, SPINAL, C-GRAAL and
MI-GRAAL, which form the current state of the art and have been shown to outperform
other existing tools [1, 14, 16].

All tools were executed on a 64 bit Linux 2.6.32 kernel, running on an Intel Xeon CPU
W3550 @ 3.07GHz and 12 GB RAM. SPINAL is deterministic and was thus executed only
one time for each pair of the input networks, while MI-GRAAL, GHOST, C-GRAAL and
GEDEVO, as randomized algorithms, we executed 10 times for each pair. The execution of
all tools was interrupted after 24 hours of runtime without termination. MI-GRAAL and
C-GRAAL, similarly to GHOST, require graphlet degree signatures as preliminary node
similarity measures, which were precomputed and used as input (precomputation time not
taken into account for evaluation). The termination criterion for GEDEVO was set to stop
after 3,000 iterations of no significant improvement of the GED score amongst the best
solutions (individuals).

The performance of all methods, similarly to [14] and [16], is assessed with the so-called
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Figure 2 The influence of the population size to the performance of GEDEVO aligning yeast2
vs. human1 in comparison to SPINAL, C-GRAAL and MI-GRAAL. Each line/symbol represents
one run.

Edge Correctness, which is particularly useful when comparing many networks with different
numbers of nodes and edges. Defined as EC = #sharedInteractions

min(|E1|,|E2|) × 100 [%], its highest value
is 100% and occurs if one input network is isomorphic (or sub-isomorphic) to the other.

Note that GEDEVO internally utilizes the Graph Edit Distance for optimization, not the
EC. This makes GEDEVO more applicable to general graph comparison problems outside
computational biology. However, if we set the costs for node deletions/insertions/substitutions
and edge substitution to zero but only the cost for edge deletions/insertions to one, the EC
will be related to GED as EC = (|E1|+ |E2| −GED)/(2 ·min(|E1|, |E2|))× 100 [%]. This
allows us to compare GEDEVO to existing approaches on protein-protein interaction Network
Alignment based on the EC criterion, as in previous work [14, 16], which is particularly
useful for networks where differences between |V1| and |V2| are common (as in PPI networks
from different organisms).

In Figure 2 we depict the influence of the population size to the progression of the EC
(convergence). Runs with 50 individuals (black line) converged earlier to the final solution,
still providing quite high values of EC. With larger population sizes the runs obtained slightly
better alignments with higher EC and reached them slightly faster. This indicates that
GEDEVO is quite robust to different population sizes, given that they are reasonably large.
In the remaining (below described) evaluations we used 500 individuals per run.

We executed GEDEVO and the four competing tools on multiple pairs of networks from
Table 2. The resulting edge correctnesses and the according run times for all tools are depicted
in Figure 3. Since SPINAL, C-GRAAL and MI-GRAAL do not provide intermediate results,
the final values are shown point-wise (diamonds, triangles, and circles); for GEDEVO the
progression of EC is depicted with lines. The plot illustrates that GEDEVO can provide a
“good” solution comparably fast. A summary of the maximal EC values from the plot is given
in Table 3. Unsuccessful runs (no termination after 24 hours) of SPINAL and MI-GRAAL
are marked with an “x”). Note: Since GHOST only terminated for the alignment of the two
small networks Meso and Syne (with best EC: 41.98, runtime: 140 sec) we did not add it to
Table 2 and Figure 3.

The networks human1, hprd and ulitsky are all human PPI networks, therefore the EC
scores for GEDEVO are comparably high. The results for aligning ulitsky with human1 or
hprd are rather “poor” since ulitsky is a compilation of data from different databases. The
known overlap of ulitsky with hprd is only 649 nodes and 15, 305 interactions, from which
GEDEVO aligned 11, 800.
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Figure 4 Aligning a network against itself
should result in an Edge Correctness of 100%,
which is achieved with GEDEVO and C-GRAAL
in most cases (see text). Each line/symbol rep-
resents one run. Unfilled symbols (at the right
side of the plot) mean that it took more than 10
minutes to achieve the corresponding EC values.

To further investigate the robustness of the four methods on networks where we definitely
know the correct solution, we aligned some PPI networks against themselves. Naturally, this
should result in an EC of 100%. In Figure 4, we plot the EC vs. run time for the following
data sets: Meso, ecoli_fi, ulitsky, DM, and human1. Note that GHOST only terminated for
the self-alignment of the two smallest networks Meso (with best EC: 100%, runtime: 197
sec) and ecoli_fi (with best EC: 100%, runtime: 173 sec). We also downloaded and tested
Natalie 2.0 [9] on our servers. It terminated with memory faults for all network pairs but
the two smallest ones: For cjejuni vs. ecoli_fi (runtime: 7 hours) and self-alignment of
Meso (runtime: 11 hours) the tool resulted with edge correctnesses of 97.64% and 20.38%
respectively. Hence, we did not include GHOST and Natalie 2.0 with Figure 4. Further
note that a set of methods exists that restrict alignment candidates to a set of pre-mapped
nodes (limited search space), see for example [12] and [5]. GEDEVO can be restricted to
such pre-mappings (e.g. with BLAST as preprocessing) but it does not rely on it.

In conclusion, GEDEVO, in contrast to the other approaches, was able to achieve the
expected 100% EC in all cases, often even faster than the existing tools. C-GRAAL reached
around 97-98% of EC in most cases, but required up to 11 hours for the biggest networks
(hprd, human), for which GEDEVO needed only approx. 10 minutes.

To sum up, in almost all cases, GEDEVO outperformed SPINAL, GHOST, C-GRAAL
and MI-GRAAL in terms of quality and run time. Moreover, GEDEVO in contrast to the
other methods was able to recognize the high similarity (human1 vs. hprd) and composition
(ulitsky vs. hprd) between the human PPI networks using topological information only. In
addition, we wish to emphasize that GEDEVO provides intermediate results that allow
for a manual termination of the software at earlier iterations when a high EC score (or a
corresponding low Graph Edit Distance solution) has been found and convergence seems to
be reached.
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Table 3 The highest achieved Edge Correctness (EC) quality scores for alignments of different
PPI networks from Figure 3.

EC (%)
Network 1 Network 2 GEDEVO MI-GRAAL C-GRAAL SPINAL

cjejuni ecoli_fi 33.70 24.60 22.56 22.09
Meso Syne 43.60 39.88 33.19 25.86
yeast2 human1 38.14 21.38 22.20 19.33
HS SC 30.40 26.15 24.15 25.59
SC DM 20.79 17.73 20.59 21.07
DM human1 21.88 x 27.36 27.04
ulitsky hprd 32.00 x 27.56 24.68
human1 hprd 89.37 x 47.07 x

5 Conclusion

We presented GEDEVO, a novel Network Alignment algorithm, and evaluated it on protein-
protein interaction networks. GEDEVO uses an evolutionary algorithm to heuristically
approximate the Graph Edit Distance optimization problem. On a wide range of real PPI
networks our approach outperforms state-of-the-art methods in terms of speed and quality,
and provides intermediate alignment results on the fly. GEDEVO is robust and not limited
to PPI networks (unlabeled, undirected, and unweighted graphs), but flexible enough to be
applicable to other types of networks as well, biological and non-biological.

In the future we will speed-up the convergence of our algorithm by improving the
population initialization by complementing the random permutations in this step with an
assignment function that depends, for instance, on the degree differences between candidate
node pairs (the less the difference, the higher the chance to contribute to low GED and high
EC in the final solution). While in this paper, the quality measures were derived from purely
topological alignments, in the future we will experiment with integrating additional external
node-to-node scoring functions, such as BLAST.

GEDEVO as well as all used data sets are publicly available at http://gedevo.mpi-inf.
mpg.de.
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