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Abstract
With the advent of metatranscriptomics it has now become possible to study the dynamics of
microbial communities. The analysis of environmental RNA-Seq data implies several challenges
for the development of efficient tools in bioinformatics. One of the first steps in the compu-
tational analysis of metatranscriptomic sequencing reads requires the separation of rRNA and
mRNA fragments to ensure that only protein coding sequences are actually used in a subsequent
functional analysis. In the context of the rRNA filtering task it is desirable to have a broad
spectrum of different methods in order to find a suitable trade-off between speed and accuracy
for a particular dataset. We introduce a machine learning approach for the detection of rRNA
in metatranscriptomic sequencing reads that is based on support vector machines in combina-
tion with dinucleotide distance histograms for feature representation. The results show that our
SVM-based approach is at least one order of magnitude faster than any of the existing tools
with only a slight degradation of the detection performance when compared to state-of-the-art
alignment-based methods.
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1 Introduction

Metatranscriptomics has become an essential tool for the investigation of gene expression in
microbial communities [6, 16, 7, 2, 13]. Compared to metagenomics, metatranscriptomics
provides a dynamic picture of the adaptation of organisms to changing environmental condi-
tions. Depending on the particular protocol for extraction and sequencing of environmental
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RNA, a substantial amount of the resulting sequences actually correspond to ribosomal
RNA (rRNA) that cannot be used for the analysis of gene expression levels. Therefore an
important first step in the analysis of RNA-Seq data from metatranscriptomic experiments
is to filter out the fraction of sequencing reads with significant similarity to known rRNA
genes. After that the remaining messenger RNA (mRNA) reads are usually analyzed in
terms of possible gene functions based on sequence similarity to known proteins from, for
instance, the Pfam [17] or KEGG [10] databases. Without a prior rRNA filtering the risk is
high to obtain a large number of false positive protein matches. For example, in a previous
release of the Pfam database, due to misannotation, several families have been composed of
spurious ORFs on the reverse strand of rRNA and therefore systematically accounted for
false protein matches in metatranscriptomic RNA-Seq data [22]. Besides a time-consuming
BLASTN [1] search against a comprehensive rRNA database, several recent tools can be used
which all provide a computationally faster rRNA detection. The accelerating techniques in
these tools include Hidden Markov Models [9, 12], the Burrows-Wheeler transformation [21]
and TRIE-structures in combination with a fast bitvector matching [11]. We here propose
a machine learning approach using a feature space based on oligomer distance histograms
which have originally been introduced for remote homology detection in protein sequence
analysis [14]. For rRNA detection we have implemented a specific feature extraction that
counts the occurrences of all dinucleotide pairs over a range of possible distances (spacers)
between them. Our results indicate that dinucleotide distance histograms provide a suitable
representation of rRNA sequences and that SVMs are well-suitable for fast detection of rRNA
in metatranscriptomic datasets.

2 Materials & Methods

Our approach for rRNA detection in metatranscriptomic datasets is based on an RNA-specific
adaption of the oligomer distance histogram (ODH) representation for biological sequences
[14] and Support Vector Machines (SVM) for discrimination between rRNA and non-rRNA
sequence fragments. After training of SVM classifiers using reference datasets for 16S/23S-
rRNA and non-rRNA examples, we evaluate the performance of our method and several
state-of-the-art rRNA detection approaches on simulated and real-world metatranscriptomics
datasets. In the following sections we describe in detail the utilized datasets and the modified
ODH feature space and we outline the methods used for performance comparison. The C
source code for ODH-based rRNA detection is available from the authors.

2.1 Datasets

Reference datasets
To construct a reference dataset for training and test of SVM classifier models, we obtained all
available rRNA gene sequences from the SILVA database [18] and separated them according
to their phylogenetic origin (Archaea/Bacteria) and type (16S/23S). 3’ and 5’ sequence
overhangs were removed by trimming the sequences according to their relevant rRNA region
using the ARB software package [15]. To reduce the redundancy of the dataset and avoid
overlaps between training and test data, we clustered the resulting sequence sets with
USEARCH (version 6.0.307) [4] using a sequence identity threshold of 95%. The final
bacterial/archaeal rRNA reference datasets contained 80,832/4,217 16S-rRNA sequences and
1,930/137 23S-rRNA sequences, respectively.

For evaluation of different methods we partitioned the reference datasets into training
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and test sets containing 80% and 20% of the sequences, respectively. Here, we attempted
to create sequence sets with similar sequence variability (for details see Appendix). By
this means we obtained 64,665 (16,167) full length training (test) 16S-rRNA sequences for
Bacteria and 3,373 (844) sequences for Archaea. The respective 23S datasets consist of 1,544
(386) bacterial and 109 (28) archaeal sequences.

For our discriminative learning approach we also require the training and test datasets to
contain negative sequence examples, i.e. suitable non-rRNA sequences. For this purpose we
masked 1,705/121 completely sequenced bacterial/archaeal genomes with respect to known
rRNA and non-coding regions. For each rRNA reference dataset we extracted fragments from
the remaining sequence material to yield a negative dataset of identical size and sequence
length distribution.

Simulated metatranscriptome dataset
In order to evaluate the rRNA detection performance of different methods, we generated
a simulated metatranscriptome dataset with known rRNA and non-rRNA labels. For this
purpose we applied MetaSim[19] to our positive and negative test sequences to produce
rRNA and non-rRNA sequence reads, respectively. Here, the MetaSim default parameters for
the Roche 454 sequencer model (including a relatively high error rate of 5%) were used and
the average read length was set to 250 bp. Multiple (forward/reverse) reads were generated
for each reference sequence until at least 80% of the original sequence was covered. Sequence
fragments that had an overlap of more than 150 bp with another read were removed. In total,
our simulated dataset consists of 214,270/10,535 16S/23S-rRNA and 952,215 non-rRNA
reads, respectively.

Real-world metatranscriptome datasets
In [12] two metatranscriptome datasets were used for comparative evaluation of the rRNA
detection performance of the rRNASelector and Meta-RNA methods. The datasets (’Tidal
salt marsh’ and ’Mushroom Spring’) revealed a remarkably high predicted fraction (54% and
89%, respectively) of rRNA-related sequences. The Mushroom Spring dataset (SRR106861)
consists of 113,128 sequences (≈30 Mbp) and an average read length of ≈267 bp, while
the Tidal salt marsh dataset (SRR013513) comprises 238,250 sequences (≈62 Mbp) and an
average read length of ≈259 bp. Both samples have been sequenced using the Roche 454
FLX Titanium platform. We downloaded the two datasets from the National Center for
Biotechnology Information (NCBI) Sequence Read Archive (SRA1), converted the sequences
into the FASTA format and applied PRINSEQ [20] to the sequence sets to remove replicates
and sequences exceeding 5 undefined bases. After application of PRINSEQ, 196,512 sequences
(≈50 Mbp) and 91,589 sequences (≈24 Mbp) remained for testing in the reduced SRR013513
and SRR106861 dataset, respectively.

2.2 Dinucleotide distance histogram feature space
In [14], oligomer distance histograms (ODH) have been introduced as a vector space represent-
ation method for protein sequences. In the ODH feature space each sequence is represented
as a numerical vector in which each dimension indicates the number of occurrences of a
particular oligomer (k-mer) pair at a particular distance in the sequence. For a specific

1 http://www.ncbi.nlm.nih.gov/sra
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sequence analysis problem the ODH feature space consists of the required dimensions to
consider all possible oligomer pairs for all distances (including the ’zero’ distance D = 0) up
to the longest observable distance between two oligomers.

To apply ODHs to the rRNA detection problem (in a computationally efficient manner),
we here fix the length k of the oligomers to k = 2 (dinucleotides) and introduce an upper
limit Dmax for the distance between two oligomers. In contrast to [14] we here omit oligomer
distances that reflect an overlap of two oligomers, i.e. the distances D = 0 and D = 1, and
instead refer to an inventory of ’spacers’ from D0 (i.e. D = k) to Dmax (Dmax +k). Therefore,
our dinucleotide distance histogram feature space consists of 162 ∗ Dmax dimensions. The
maximum spacer value Dmax constitutes a so-called hyperparameter whose optimal value
has to be determined by evaluation.

Discriminative classifier training
In order to distinguish between rRNA and non-rRNA sequence reads in metatranscriptomics
datasets, we trained discriminative linear classifier models using Support Vector Machines
(SVM) in combination with dinucleotide distance histogram feature space representatives of
the reference dataset sequences. Here, we aggregated bacterial and archaeal sequences to
obtain one 16S- and one 23S-rRNA classifier, respectively. For SVM training we used the
LIBLINEAR implementation [5] with default parameters for the slack variables (C = 1) and
termination tolerance (ε = 0.1). Because the LIBLINEAR toolbox does not provide an option
to account for imbalanced numbers of positive and negative training data, we ’oversampled’
the positive examples to yield the same amount of rRNA and non-rRNA sequences while
retaining the diversity of non-rRNA sequences. As a consequence, we used up to 30 duplicates
(archaeal 23S-rRNA) of an rRNA example for model training.

2.3 Experimental setup
For performance evaluation we compared our approach to different state-of-the-art methods
for rRNA detection. Besides the riboPicker [21] and SortMeRNA [11] methods, we used
HMMER3 [3] as a representative method for HMM-based detection approaches such as Meta-
RNA [9] or rRNASelector [12]. The riboPicker detection software is based on a pre-computed
rRNA database2 which does not allow the convenient removal of particular sequences. To
avoid an overlap of training and test sequences, we refrained from using riboPicker for
evaluation on the simulated metatranscriptome dataset and instead performed a BLASTN
homology search. Here, we used the rRNA/non-rRNA assignment of the best BLAST hit
up to an E-value threshold of 1e−3 for read classification. For the simulated data, the
reference models/databases for all methods were built using only the training sequences.
Here, separate HMMER3 models for Archaea and Bacteria were trained. For evaluation on
the real-world metatranscriptome dataset we used all reference dataset sequences for training
of HMMER3 models and SVM classifiers and we utilized the default databases for riboPicker
and SortMeRNA.

3 Results

In order to evaluate our distance histogram-based rRNA detection approach, we investigated
the prediction performance on simulated and real-world metatranscriptome data. First, we

2 http://edwards.sdsu.edu/ribopicker/rrnadb/rrnadb_2012-01-17.tar.gz
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Figure 1 Dependency of the 16S-/23S-rRNA detection performance on the maximum distance
parameter. Maximum F1 performance values are indicated by triangles.

determined optimal values for the maximum distance parameter of our method for 16S- and
23S-rRNA classifiers, respectively. Then we compared the rRNA detection performance and
the runtime of our approach to those of state-of-the-art methods.

Selection of optimal values for the maximum distance parameter
Our distance histogram-based feature space for nucleotide sequences (DDH) requires the
definition of a maximum distance (spacer) Dmax between two dimers (see also section
2.2). While small values for Dmax lead to a memory-efficient feature space representation of
DNA/RNA sequences, higher values allow to model conserved long-range correlations between
particular residues in the sequence. To determine optimal values for the maximum distance
parameter, we performed a 5-fold cross-validation on simulated 16S- and 23S-rRNA training
datasets using different values for Dmax = [0, .., 19]. To yield meaningful performance measure
values, we balanced the number of positive and negative test examples by oversampling the
rRNA example sequences analogously to the classifier training procedure (see section 2.2).

Figure 1 shows the dependency of the rRNA detection performance on the maximum
distance value in terms of precision ( #T P

#T P +#F P ) and recall ( #T P
#T P +#F N ) curves. While the

recall values already start to decrease for medium values of Dmax, the precision increases
until a plateau is reached. The F1 measure, which combines precision and recall, shows
different specific local performance maxima for 16S (Dmax = 7) and 23S (Dmax = 4) data.
In the following, we use these optimal values for all evaluations.

Performance on simulated data
Our simulated dataset allows to evaluate the rRNA detection performance of different methods
independently for 16S- and 23S-rRNA sequence fragments based on a known classification of
the reads. Table 1 shows the performance values of four different methods for our simulated
16S- and 23S-rRNA datasets, respectively. For 16S-rRNA data, the HMMER3 method
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Table 1 rRNA detection performance on simulated metatranscriptome data for different methods.
All values represent percentages.

DDH HMMER3 BLASTN SortMeRNA # reads

16s
recall 98.79 99.94 99.06 99.90

428540precision 99.60 100.0 100.0 100.0
F1 99.19 99.97 99.53 99.95

23s
recall 97.17 99.28 91.40 98.92

21070precision 98.00 100.0 100.0 100.0
F1 97.58 99.63 95.51 99.46

achieves almost perfect classification of the reads, closely followed by SortMeRNA. BLASTN
and our DDH approach show a slightly lower detection performance in terms of the F1
measure due to a higher fraction of overlooked 16S-rRNA sequences. Remarkably, HMMER3,
SortMeRNA and BLASTN only classify very few non-rRNA reads as ribosomal RNA and
thus yield a (rounded) precision of 100%.

For the simulated 23S-rRNA data HMMER3 and SortMeRNA also achieve very high
detection performance values. The precision and recall values of the DDH method slightly
decrease as compared to the 16S dataset, which has presumably to be attributed to the
much smaller number of training examples for the 23S dataset. The detection performance
of BLASTN in terms of the recall value substantially decreases for 23S-rRNA reads due to
a considerably reduced number of significant hits to the database sequences. Additional
experiments with longer sequence reads (400bp) and a lower simulated read error rate (2.5%)
indicated that the detection performance of all methods increases, with BLASTN showing
the biggest improvement (data not shown).

3.1 Performance on metatranscriptome data
In contrast to the simulated datasets, the classification of reads from real-world metatran-
scriptome data is not known and thus no ground truth exists. Because the HMMER3 method
outperformed the other approaches on the simulated data, we first measured the overlap
with the other methods in terms of a hypothetical ground truth on the real-world datasets
provided by HMMER3 predictions. Table 2 shows the results of the overlap analysis in
terms of hypothetical recall, precision and F1 estimates for different methods on the two
real-world metatranscriptome datasets. For the Mushroom spring dataset, SortMeRNA
achieved the highest agreement with the HMMER3 prediction followed by riboPicker and our
distance histogram approach. While the overlap recall ranged from 89% to almost 100%, the
overlap precision of all methods was very high. This can be attributed to the high fraction
of predicted rRNA (≈89%) in this dataset (see also section 2.1). In contrast, the Tidal salt
marsh dataset showed a substantially lower predicted fraction of rRNA reads (≈54%). Here,
the precision value for riboPicker and our DDH approach decreased to ∼92%, while the
SortMeRNA method still showed a high value (99%). However, because of a substantially
diminished recall value for SortMeRNA on this dataset, riboPicker exhibited the highest
agreement with the HMMER3 predictions in terms of the combined F1 measure.

Figure 2 shows Venn diagrams representing the overlap of predicted rRNA fractions as
obtained from the three abovementioned methods without HMMER3. For the Mushroom
Spring datasets the three methods agreed on≈86% of the sequence fragments, while no method
exclusively classified more than 1% of the reads as rRNA. The Venn diagram associated with
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Table 2 rRNA detection overlap of different methods with HMMER3 predictions on real-world
metatranscriptome data. All values represent percentages.

riboPicker SortMeRNA DDH

Mushroom Spring
recall 97.60 99.78 89.39

precision 99.75 99.78 98.93
F1 98.66 99.78 93.92

Tidal salt marsh
recall 97.54 81.81 82.72

precision 91.57 99.00 92.80
F1 94.46 89.60 87.47

the Tidal marsh dataset shows a substantially smaller consensus of the method predictions.
Here, riboPicker and our DDH approach filtered ≈ 15% and 5% of the reads exclusively. The
classification overlap between the DDH method and riboPicker/SortMeRNA was ≈7.3%/0.9%,
respectively.

Figure 2 Venn diagrams showing the overlap of rRNA classification results for different methods
on real-world metatranscriptome data. Left-hand side: Mushroom spring dataset, right-hand side:
Tidal salt marsh dataset.

In comparison with our performance analysis on simulated data the results on the real-
world datasets indicate a much larger disagreement of different methods than expected.
This discrepancy, in principle, could already be seen in the evaluation of the SortMeRNA
tool [11]. On one hand this indicates that the simulation setup that we used in a similar
way like other researchers have done before, is too simple to capture the complexity of real
metatranscriptomic data. On the other hand this shows the difficulty of measuring the rRNA
detection performance in general and we have to admit that the assumption of a putative
best method (HMMER3) is possibly not appropriate to tackle this problem.

3.1.1 Runtimes
Current next-generation sequencing methods yield a large number of sequencing reads with
rapidly growing sizes of the resulting datasets. Therefore, the speed of an rRNA detection
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Table 3 Runtimes of different methods on real-world metatranscriptome datasets.

dataset method time in sec

Mushroom Spring

DDH 5.7
SortMeRNA 81.2
riboPicker 363
HMM 3016

Tidal salt marsh

DDH 12.1
SortMeRNA 156
riboPicker 591
HMM 4487

method is an important aspect for the timely downstream analysis of the functionally
relevant metatranscriptome data. To compare the runtimes of different detection methods,
we performed all classification analyses for the real-world metatranscriptome datasets in
single core mode on an Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz with 32GB RAM. Here,
the runtimes for HMMER3 and our DDH approach are aggregated over all (16S, 23S, Archaea,
Bacteria) model/classifier evaluations.

As shown in table 3, our distance histogram approach is ≈13 times faster than the
second-fastest method, SortMeRNA. The speed-up factor of the DDH method over riboPicker
and HMMER3 ranged between ≈47 to 64 and 370 to 530, respectively. These numbers
indicate the suitability of our approach for fast rRNA detection in very large datasets.

4 Discussion

We introduced a machine learning approach to the detection of ribosomal RNA in metatran-
scriptomic sequences. The utilized feature space is composed of frequencies of spacer lengths
between pairs of dinucleotides. The corresponding dinculeotide distance histograms (DDH)
provide a natural representation of mismatches and therefore can cope with a relatively
high rate of sequencing errors. In our experiments we found that a maximum distance of
approximately 10 nt, i.e. a feature space with at most 2500 dimensions, is sufficient to provide
a good discrimination of rRNA from coding regions. In comparison with alignment-based
methods the DDH implies a position independent analysis and therefore neglects some
conserved position information that is present in rRNA sequences. As a consequence, our
results indicate a slightly lower detection sensitivity and specificity. The advantage over the
existing methods is the computational speed, which is more than 10 times higher than for
the previously fastest method (SortMeRNA). In future work we will address some of the
limitations that result from our current training setup where we utilize the LIBLINEAR
SVM implementation. With this library we have to keep all training vectors in memory
and therefore the number of examples is restricted to about 150,000 DDH feature vectors
for 32GB RAM. Using regularized least squares training (see e.g. [8]), we will be able to
substantially increase training sets and therefore more realistic training examples may be
obtained from a large number of simulated sequencing reads. In particular, we expect a
better representation of 23S-rRNA and a better coverage of the negative examples in terms
of a more comprehensive sampling of coding regions.

Acknowledgements This work was supported by the Deutsche Forschungsgemeinschaft
[grant numbers Me3138 (“Computational models for metatranscriptome analysis”) and Li2050
(“Machine learning methods for functional characterization of the peroxisome”)].
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A Construction of training and test sets

To create training and test sets with similar sequence variability, we analyzed the original
SILVA alignments regarding the variability of the alignment columns and assigned a score
to each sequence that reflects its distance from the consensus sequence/profile. Given an
alphabet A = {A,C,G,T,N,-} and a sequence S, the score Tk,j for a symbol k ∈ A and an
alignment position j is calculated by

Tk,j =

 0, if
∑m

i=1
Si,j=′-′

m > 0.5

log10(
∑m

i=1
Si,j=k

m ), else

whereby m represents the number of sequences. The sequence score is then calculated as
score(S) =

∑L
j=1 TSk,j

. As a result, a lower sequence score indicates a higher deviation from
the consensus sequence. Sequences for the final training and test datasets were then sampled
from the reference datasets subject to similarly distributed sequence scores.
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