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Abstract
A read from 454 or Ion Torrent sequencers is natively represented as a flowgram, which is a
sequence of pairs of a nucleotide and its (fractional) intensity. Recent work has focused on
improving the accuracy of base calling (conversion of flowgrams to DNA sequences) in order to
facilitate read mapping and downstream analysis of sequence variants. However, base calling
always incurs a loss of information by discarding fractional intensity information. We argue
that base calling can be avoided entirely by directly aligning the flowgrams to DNA sequences.
We introduce an algorithm for flowgram-string alignment based on dynamic programming, but
covering more cases than standard local or global sequence alignment. We also propose a scoring
scheme that takes into account sequence variations (from substitutions, insertions, deletions)
and sequencing errors (flow intensities contradicting the homopolymer length) separately. This
allows to resolve fractional intensities, ambiguous homopolymer lengths and editing events at
alignment time by choosing the most likely read sequence given both the nucleotide intensities
and the reference sequence. We provide a proof-of-concept implementation and demonstrate the
advantages of flowgram-string alignment compared to base-called alignments.
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1 Introduction

Pyrosequencing or Sequencing by Synthesis Pyrosequencing, also sequencing by synthesis,
is a technology for DNA sequencing that does not sequence single nucleotides, but one run of
nucleotides (homopolymer), at a time. There are two commercial sequencing technologies that
use this approach: 454 (now owned by Roche) [10, 5] and Ion Torrent’s “Ion semiconductor
sequencing” (now owned by Life Technologies) [6].

Sequencing by synthesis starts with a single-stranded DNA template with an initial
sequencing primer. Nucleotides of a single type are added and extend the primer if the
next free bases on the template strand are complementary. The activity of the enzyme
that catalyzes this reaction can be measured optically through its intermediate release of
pyrophosphate (454). Alternatively, a change in pH value caused by the incorporation of
nucleotides into the double strand can be measured directly with a semiconductor chip (Ion
Torrent). The intensity of the measured signal is, in principle, proportional to the number of
bases incorporated. All remaining free nucleotides are then removed and a different type
of nucleotide is added. By cyclically flowing all four nucleotides and measuring the signal
intensity, the sequence of the template DNA fragment can be reconstructed.

Using initial key sequences for each read, the signal intensities are normalized such that
an intensity of 1.0 represents the incorporation of a single base. Due to the linearity of the
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signal, 2.0 represents two bases and so on. This linearity of signal intensity can be maintained
up to eight bases on a 454 system [5], but errors can occur at lower intensities.

The sequencing results from both mentioned technologies are natively output not as regular
DNA sequences, but as so-called flowgrams, which associate each nucleotide homopolymer
with its measured fractional intensity. It is therefore possible, for example, that a nucleotide
homopolymer was measured at an “intensity of 2.4” (see Section 2).

Information Loss from Base Calling By rounding intensities to the nearest integer, a
regular DNA sequence can be inferred (for a thymine at 2.4, this could be TT or TTT), a
step known as base calling. Subsequently, standard read-mapping and sequence alignment
algorithms can be used to compare the obtained sequence reads with reference sequences.

Recent work has focused on improving base calling from straightforward rounding to the
nearest integer towards more elaborate statistical methods based on HMMs [3]. Nevertheless,
base calling always incurs a loss of information by replacing the fractional intensity with a
sequence of integer length. For example, the distinction between a C observed at an intensity
of 5.4 vs. an intensity of 4.6 is lost. Both are called as CCCCC, but in the first case, alignment
to six Cs is much more plausible than in the latter case.

Previous Work Avoiding Base Calling We put forward the hypothesis that it makes more
sense to invent alignment algorithms that directly work on flowgrams, instead of on a base-
called sequence. A few publications on flowgram-based alignment already exist, but none
clearly separates the two processes of sequence editing and flowgram under- and overcalling.

Vacic et al. [12] model the distribution of flowgram intensities and derive a probabilistic
model to compute the log-odds score that a given flowgram originates from a given
genomic sequence. Their software FLAT is intended for mapping sequenced small RNA
molecules to a reference and not for aligning diverged DNA sequences, so they do not
take into account editing events. We use a similar way of deriving log-odds scores for
differences between aligned reference and flow intensity.
Quince et al. [9] use an algorithm adapted from global alignment [8] to align two flowgrams,
first converting the reference sequence into flowspace. The authors’ idea is to introduce
gaps only in steps of four in order to take into account the cyclic nature of the flow order.
The remaining description in the paper is brief, but one can deduce that a single flow is
aligned to a homopolymer. It is unclear how editing is handled. The cost function used
is − logP (f | `), where P (f | `) is the probability of observing flow intensity f given a
homopolymer of length `.
Lysholm et al. [4] propose a different method of aligning flowgrams, which is an extension
of the Smith-Waterman local alignment algorithm [11] and can handle substitutions and
indels with affine gap costs. FAAST’s alignment is computed between the reference string
and the base-called flowgram. Its modified scoring system reduces gap costs at points of
uncertain homopolymer lengths.

Our Contributions In contrast to previous work, we do neither convert the reference into
flowspace nor the flowgram to a string. Instead, we present the first algorithm that directly
aligns a flowgram to a reference sequence, being aware of two processes in between: sequence
editing between the reference and the (unknown) sequenced sample, and sequencing errors
resulting in imprecise flow intensities.

After stating basic definitions (Section 2), we introduce a dynamic programming algorithm
for optimal flowgram-string alignment (Section 3). The key component is a detailed scoring
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scheme that models both sequence editing events and flow intensity measurement errors; it
is described in detail in Section 4, where we also explain how the scoring parameters can
be set to reasonable values. In Section 5, we demonstrate how flowgram-string alignment
improves upon aligning a base-called sequence. A discussion and outlook on future work
concludes the paper. A proof-of-concept implementation is available as a Python module
from http://www.rahmannlab.de/software.

2 Basic Definitions and Ideas

Let Σ be the DNA alphabet. Let b` be the character b ∈ Σ repeated ` times. Such a string
is called a homopolymer of length `.

The output of a 454 or Ion Torrent sequencer for a single read is a sequence of pairs of a
nucleotide character and an intensity, called a flowgram [5], which we now define formally.

I Definition 1 (Flow). A flow is a pair (b, f), where b ∈ Σ is the flow character (or flow
nucleotide) and f ∈ R+

0 is the flow intensity.

In analogy to exponentiation, we also write a single flow as bfi

i , that is, as the flow character
followed by the flow intensity as a superscript. For example, instead of (A, 3.4), we write A3.4.

I Definition 2 (Flowgram). A flowgram is a finite sequence F = (F1, F2, . . . , Fm) of flows
Fi = (bi, fi). The flowgram length is m. For k = 1, . . . ,m− 1, we require that bi 6= bi+1.

The four nucleotides are typically added in repeating cycles. While our algorithm does not
depend on it, we assume in the following that the order is (T, A, C, G, . . . ), the typical order
used in 454 instruments (that for Ion Torrent is different), and that the first flow character
is always T. We may also say that a read is in flowspace to indicate that it is a flowgram.

Given flowgram F = (F1, . . . , Fm), the sequence Fj...k := (Fj , . . . , Fk) is a subflowgram.
For j = 1, it is a flowgram prefix, and for k = m, it is a flowgram suffix.

I Example 3. A possible measured flowgram for the sequence TTCGG is T2.3A0.1C0.9G1.9.

The data output by both 454 and Ion Torrent sequencers contains flowgrams and uses
the Standard Flowgram Format (.sff). The cycle order is stored once globally, and each
flow intensity is stored as a 16-bit unsigned integer value and scaled such that a value of 100
represents an intensity of 1, thus allowing values from 0.00 up to (216 − 1)/100 = 655.35.

I Definition 4 (Canonical flowgram). Given a string s, the canonical flowgram for s is the
flowgram that arises when we substitute all runs of character b of length n with the flow bn

and insert appropriate flows of intensity zero in between or in the beginning in order to get
the correct order of nucleotides according to cycle order.

I Example 5. The canonical flowgram for ACTT (using cycle order TACG) is T0A1C1G0T2.

I Definition 6 (Canonical DNA sequence). Given a flowgram F , let F̄ be the flowgram with
each intensity rounded to the nearest integer. The canonical DNA sequence for F is the
DNA sequence which has the canonical flowgram F̄ , if it exists, and is undefined otherwise.

Note that a canonical DNA sequence for F = T1.1A0.1C0.4G0.2T2.3 does not exist, as rounding
leads to F̄ = T1A0C0G0T2, but TTT has a canonical flowgram starting with T3. (A base
caller that is cleverer than rounding [3] calls TCTT in this example instead of a non-existing
canonical DNA sequence.)
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reference r editing read/sample s sequencing flowgram F
substring t −→ homopolymer b` −→ flow bf

(known) (unknown) (observed)

Figure 1 Differences between an observed flowgram F and a reference sequence r arise from two
different processes that cannot be distinguished by the observer: Sequence editing, responsible for
differences between the sequenced sample and the reference in databases, and sequencing errors
(intensity overcalls and undercalls) incurred during the sequencing process.

A2.1

C1.1

G2.2

A0.1

C2.7

G0.2

T A A G G A T G T C C

substitution G→T

homopolymer

error
insertion
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T1.0

T3.1

empty �ows

match

Figure 2 A visualization of the alignment of Example 8. The black path represents the alignment.
The path may skip an arbitrary number of columns, but it cannot skip rows.

The problem just illustrated is sufficient motivation to find methods that skip base calling
and directly align a flowgram to a reference sequence. Our main idea is to conceptually
model a two-stage process (sequence editing, errors during sequencing) within one model
and scoring function. It is best visualized with Figure 1.

We align a flowgram directly to a reference, without converting it to a string. Fractional
intensities and ambiguous run lengths are resolved at alignment time by choosing the most
likely read sequence given flowgram and reference sequence. In contrast to Vacic et al.’s
work [12], we also model differences due to editing events. Every observed flow bf must be
explained by a substring t of the reference. The substring and the flow need not necessarily
agree: If there is a non-b character in t, then there is a substitution or an insertion, and if
the absolute difference between f and |t| is sufficiently large, then there is an insertion or
deletion event or a homopolymer error. Thus, a flow bf can be explained as a sequenced
homopolymer b` (where ` is integer), which in turn is an edited version of t (cf. Figure 1).

3 A Flowgram-String Alignment Algorithm

3.1 Alignments

I Definition 7 (Flowgram-string alignment). A flowgram-string alignment F between a
flowgram F of length m and a string s of length n is a finite sequence of pairs F = (F ′i , ti),
where each F ′i is a flow or the space character (−) such that the concatenation of all non-space



M. Martin and S. Rahmann 129

s1 s2 sj-1 sj

bi

fi

insertion or
empty �ow

…

matches to suffixes of s1,…,j

deletion (i,j)

Figure 3 Visualization of different types of edges of the alignment graph and of the recurrence
for cell (i, j) in the dynamic programming matrix.

F ′i is the flowgram F , and where the ti are (possible empty) substrings of s such that their
concatenation is equal to s.

I Example 8. Given are flowgram F = T1.0A2.1C1.1G2.2T3.1A0.1C2.7G0.2 and the string s =
TAAGGATGTCC. Using a notation in which F ′i is written above ti, separating elements (F ′i , ti)
with a vertical line, a possible alignment is the following (see also Figure 2):

T1.0 A2.1 C1.1 G2.2 − T3.1 A0.1 C2.7 G0.2

T AA ε GG A TGT ε CC ε

We see that flowgram-string alignment can describe all editing events: T3.1 aligned to TGT
involves a mismatch (G instead of T); C1.1 aligned to ε means that there is an insertion;
and the space aligned to an A is a deletion. We will also see below that, with the proper
scoring function, flowgram-string alignment can distinguish between homopolymer errors
and insertions. The scoring function will inform us whether the rightmost flow G0.2 aligned
to an empty string ε of the reference needs to be interpreted as a homopolymer error of 0.2
or as an insertion. Our alignment algorithm picks the option with the better score.

A flowgram-string alignment describes how (1) editing events and (2) sequencing errors
due to over- or undercalling add up to result in an observed flowgram. In contrast to previous
flowgram alignment ideas, there is no need to convert the reference to a flowgram or to
convert the flowgram into a string. Instead, a flowgram-string alignment describes a direct
relationship between flowgram and reference.

3.2 The Flowgram-String Alignment Graph
A flowgram-string alignment can be interpreted as a path through a graph of (m+1)× (n+1)
vertices (i, j) ∈ { 0, . . . ,m }×{ 0, . . . , n } that has different types of edges with different scores
(see Figures 2 and 3). The score of an alignment F is the sum of the scores of the individual
edges used by the alignment, and so finding the optimal alignment is equivalent to finding a
highest-scoring path. The following two edge type exist:

horizontal edges that connect (i, j) to (i, j − 1). These represent deletions, i.e., the
flowgram indicates that a nucleotide from the reference is missing in the sample. The
score del < 0 is assigned to these edges.
vertical and diagonal edges that connect (i, j) to (i− 1, j − k) for all k ∈ { 0, . . . , j }. For
k = 0, the edge is vertical and interpreted as either an empty flow aligned to an empty
substring, or as an insertion, where the flowgram indicates a homopolymer not present in
the reference. These edges use a complex scoring function v(b, f, t) for aligning flow bf to
substring t = sk+1...j . This scoring function is central to our method and discussed in
detail in Section 4.

GCB 2013
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3.3 Recurrence
Let (b, f) be a flow and t ∈ Σ∗ a string. We assume that scoring parameter del and scoring
function v(b, f, t) are available (see Section 4).

Let S(i, j) be the optimal score between the length-i prefix of flowgram F of total lengthm
and the length-j prefix of string s of total length n = |s|. The recurrence for S(i, j) follows
from the structure of the alignment graph, in which the optimal flowgram-string alignment
is a highest-scoring path, analogously to standard global alignment. Other variants (local,
free end gaps, etc.) are possible; for ease of exposition, we focus on the global case. We have

S(0, j) = j · del,

S(i, 0) =
i∑

k=1
v(bk, fk, ε),

S(i, j) = max
{

S(i, j − 1) + del,
max

k=0,...,j

(
S(i− 1, k) + v(bi, fi, sk+1...j)

) } . (1)

The two cases for S(i, j) correspond to the two types of edges. The inner maximization
corresponds to the vertical and diagonal edges, in which the score of aligning the current
flowgram to all suffixes of s1...j (including the empty suffix for case k = j) is found. It is the
main difference to regular global alignment. With dynamic programming, S(m,n) can be
computed in time O(mn2), assuming v can be evaluated in constant time.

4 Scoring

The score v(b, f, t) for pairing flow (b, f) with string t must take into account two different
processes that cannot be distinguished by an observer (Figure 1). First, editing events occur
that change a substring t of the reference into b`, but ` is unknown. Second, an intensity f
is measured for b`. We score the first process by sedit(b, `, t), which is the score of an optimal
alignment between t and b`. The score σ(f, `) is assigned to measuring intensity f for a
homopolymer run of length `; we assume that it does not depend on the nucleotide b.

Since ` is unknown, to obtain v(b, f, t) we maximize over all possible lengths in order to
pick the most plausible explanation:

v(b, f, t) := max
`=0,1,2,...

(
sedit(b, `, t) + σ(f, `)

)
(2)

As we will see in the two following subsections, this potentially infinite maximization is in
fact finite, since a value of `� max{|t|, f} will yield a strongly negative score in both terms
and cannot achieve the maximum. In practice, positive scores are only obtained if f ≈ |t| for
a choice of ` close to both f and |t|.

To reconstruct the most plausible process to flow bf via homopolymer b` from sequence t,
we also store the value of ` maximizing v(b, f, t) in (2),

L(b, f, t) := argmax`=0,1,2,...

(
sedit(b, `, t) + σ(f, `)

)
. (3)

It is this (unknown but inferred) value of ` = L(b, f, t) that links the two processes of sequence
editing and sequencing shown in Figure 1.

As we will show, the score v(b, f, t), and hence L(b, f, t), depends on b and t only through
the number e = e(t, b) of characters in t that are equal to b and the number ē = ē(t, b) of
characters different from b (see Section 4.1). Therefore we can write v(b, f, t) = v′(f, e, ē) and
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L(b, f, t) = L′(f, e, ē). A table of L′ (or tables of both L′ and v′ for realistic flow intensities
f ∈ {0.00, 0.01, . . . , 9.99} and values of e and ē, both in {0, . . . , 9}, i.e., 100 000 values overall,
is pre-computed. As the recurrence (1) considers different substrings t that differ in length
by 1, the bs in t can be counted in amortized constant time for each t, so each value of
v(b, f, t) is available in constant time. The non-tabulated rare cases can be computed on
demand without measurably affecting the running time.

4.1 Scoring of Editing Events
In this section, we derive the edit score sedit(b, `, t) to align two sequences: b` and t. This is,
in fact, a classical sequence alignment problem, with the special property that one sequence
b` is a homopolymer. Instead of using a standard global alignment algorithm every time
when sedit is called, we can give a closed formula because of the special structure.

We assume that scores for insertion (ins), deletion (del), mismatch (mis) and match
(mat) are available and fulfill ins, del < mis < 0 < mat.

Let e and ē = |t| − e be the number of characters in t that are equal to b and not equal
to b, respectively. If |t| = `, the score is composed of only match (e times) and mismatch (ē
times) scores. If t is longer than `, then |t| − ` characters must be deleted from t to obtain
length `, and it is advantageous to delete only non-b characters, as long as there are any.
If t is shorter than `, we have e matches and ē mismatches, and `− |t| characters must be
inserted into t. Thus the score for aligning t to b` can be expressed as

sedit(b, `, t) =


e ·mat + ē ·mis if ` = |t|,
e ·mat + ē ·mis + (`− |t|) · ins if ` > |t|,
min{e, `} ·mat + max{`− e, 0} ·mis + (|t| − `) · del if ` < |t|.

The parameter values for mat, mis, ins, del must be compatible with the scores for
scoring flow intensities f against substring lengths `, which we discuss next. We come back
to choosing appropriate values in Section 4.3.

4.2 Scoring of Flow Intensities Against Substring Lengths
Here we describe how to set the scores σ(f, `) for scoring the event that a flow of intensity f
is aligned to a DNA sequence of length `. Our approach is similar to that of Vacic et al. [12],
but we go further by analyzing the resulting empirical scores parametrically.

Intuitively, the score should be positive if f ≈ ` and drop into the negative range when
|f − `| gets large. A consistent set of score values is obtained by using log-odds scores [2, 7],
having their roots in the theory of score matrices for amino acids, such as the famous
PAM matrices [2]. There the score Σij between amino acids i and j is computed as the
log-odds Σij = log(Pij/(πi · πj)), where Pij is the probability of observing i and j paired
in an alignment and πi, πj are the background frequencies of amino acids i, j, respectively.
Moreover, the joint probabilities Pij depend on the divergence time t of the aligned sequences,
and so different score matrices Σ(t)

ij are used for differently diverged sequences.
Here we follow a similar idea for deriving scores for evaluating differences between f and

`. We estimate frequencies from (assumedly correctly) aligned flowgrams to DNA sequences.
For ease of exposition, we do not discuss different divergence times, and we assume that the
flowgrams have been obtained from the DNA reference by sequencing, or at least from a very
closely related reference sequence.

Given a large number of such aligned flowgram-DNA alignments, we construct a count
matrix C = (Cf,`) for all reasonable genomic lengths ` ∈ {0, 1, 2, . . . } and flow intensities
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Figure 4 Left: Empirically determined score functions σ(f, l) for each genomic sequence length `
(see legend) from carefully crafted alignments of flowgrams against an Arabidopsis reference. Right:
As each function on the left panel can be described by a piecewise affine function with three
components, one of them constant, we estimated five parameters from five characteristic score values:
for each length `, the score values at f ∈ {`− 1.0, `− 0.75, `, `+ 0.75, `+ 1.0}. The plot shows these
five score values as a function of `.

f ∈ {0.00, 0.01, 0.02, . . . , 1.00, . . . }, such that Cf,` counts the number of times we observe a
flow of intensity f aligned to a genomic sequence of length `. We obtain a joint probability
matrix P = (Pf,`) by dividing C through the sum of its entries. Background frequencies
π = (π`) for genomic lengths are obtained as marginal probabilities π` =

∑
f Pf,`, and

similarly background frequencies τ = (τf ) for flow intensities. The score component for
aligning a flow of intensity f to homopolymer of length ` is defined in units of nats as

σ(f, `) := log Pf,`

τf · π`
.

To obtain such scores, we used three .sff files containing Arabiopsis reads (from an unspecified
strain), provided by the chair of Genome Research at Bielefeld University. To measure only
the effects of homopolymer errors, only reads aligning close-to-perfectly to the A. thaliana
reference sequence were considered further, and the empirical joint distribution of flow
intensities f and homopolymer lengths ` was tabulated where f ∈ [`− 1, `+ 1]. The resulting
scores are shown in Figure 4, one curve for each ` with sufficient data. Unsurprisingly,
the maximum score occurs at flow f = ` for each `. More remarkably, the score stays
almost constant at the same level in the interval f ∈ [` − 0.5, ` + 0.5]. At ` ± 0.5, there
appears to be a sudden drop in the scoring function, beyond which we can observe an
affine-linear course in the intervals [` − 1.0, ` − 0.5] and [` + 0.5, ` + 1.0]. Therefore, for
each `, the score function can be described by five parameters, namely the values of S`,f

for f ∈ {`− 1.0, `− 0.75, `, `+ 0.75, `+ 1.0}. Scores at other values of f are obtained by
linear resp. constant interpolation (or extrapolation outside the 1.0-neighborhood). The
parameters for lengths ` ≤ 7 are shown in Figure 4 (right). As empirical data becomes
sparser for larger `, it is advisable to extrapolate the parameters instead of relying on data.

In summary, we implement σ(f, `) for each ` as a piecewise affine function consisting of
three components, given by the empirically determined parameters shown in Figure 4 (right).
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(A) (B)
original reference r TAAGAAC TAAACACCCGG

mutated sample s TAAAAAC TAAAACCCCGG
flowgram F T0.9A4.4C1.1 T0.9A3.4C3.4G2.0

base-called TAA-AAC TAAA--CCCGG
reconstructed TAAAAAC TAAAACCCCGG
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Figure 5 Left: Example errors made by alignment after base calling in contrast to flowgram-string
alignment: (A) The G → A substitution is mistakenly reported as a 1 bp deletion because of the
low flow value. For flowgram-string alignment with the surrounding context, the case that AAGAA
generated A4.4 is plausible. (B) Similarly, but slightly more complex, the CA→ AC flip is mistakenly
reported as a 2 bp deletion after base calling. For our method, however, two mismatches plus
small intensity errors are more plausible than two deletions. Right: Histograms of the number of
differences due to sequencing and base-calling errors for naive base calling (blue) and our method
(red). Note how the red distribution is shifted towards zero.

4.3 Parameters for Editing Events
It remains to appropriately set the match, mismatch, insertion and deletion score parameters
mat, mis, ins and del, respectively. These depend on the assumed degree of divergence of
the sequenced sample and the reference and can be obtained by (approximate) log-odds.

Assuming 3% divergence (i.e., 97% matches, as opposed to about 30% in alignments of
random sequences), and rare insertions/deletion with a rate of 1/3000, it is reasonable to use

mat ≈ log(0.97/0.3) = 1.173 ≈ 1.2,
mis ≈ log(0.03/0.7) = −3.1498 ≈ −3.1,
ins = del ≈ log

(
(1/3000)/C

)
≈ −8.0 with some C ≈ 1.

These are the scores that we use for evaluation; other assumptions will result in different
scores. It is important to use the same logarithm (and scaling, if any) as for σ(f, `) in order
to keep both score components compatible.

5 Evaluation

Before we evaluate flowgram-string alignment against base-called alignment, let us illustrate
typical miscalls made by base calling. Obviously, the most common case is that a homopolymer
length is simply off by 1 because of rounding in the wrong direction. This can always be
corrected by post-processing the alignments. However, there are more complex errors, such
as spurious indels in the middle or between two homopolymers, as illustrated in Figure 5
(left).

We now demonstrate that flowgram-string alignment reduces the number of differences
between observed sequence and reference that are due to sequencing errors, but leaves
actual mutation events untouched (see Figure 1). We simulate DNA fragments of E. coli
K12 (NC_000913); call this the original data. We introduce mutations by adding 3%
substitutions and 0.05% indels (mutated data). Then the 454 sequencing process is simulated
with flowsim [1]. Reads in the resulting .sff file are base-called by rounding flow intensities
(basecalled) and aligned to the original sequence. Alternatively, we use our flowgram alignment
algorithm to align each flowgram to the original sequence. During the process, the most likely
base-space mutated sequence is reconstructed using function L(b, f, t) from (3) (reconstructed).

All differences between mutated and basecalled are necessarily due to sequencing errors
and wrong base calls. Similarly, all differences between mutated and reconstructed are due to
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sequencing errors and errors by our alignment method. Figure 5 compares histograms of the
number of differences, measured by unit-cost edit distance. The differences are considerably
reduced for flowgram-string alignment in comparison to base-calling: The distribution is
shifted towards the left side. Thus, flowgram alignment is able to distinguish editing events
and true mutations.

6 Discussion and Conclusion

We presented a dynamic programming alignment algorithm that optimally aligns flowgrams
output by Roche/454 or Ion Torrent sequencers to DNA reference sequences directly, without
explicit base calling. Our approach can also be interpreted as calling bases conditional on
the reference we align to, i.e., doing both steps at the same time instead of sequentially. Our
algorithm is based on a two-stage process model (Figure 1) that explains both sequence
editing and homopolymer sequencing errors. In particular, in the process, we can reconstruct
the most plausible homopolymer length ` for each flow bf and thus separate flow intensity
over- and under-calling from sequence editing. Our method is the first one that cleanly
separates the two processes.

A major challenge is to design a scoring scheme for flowgram-DNA alignment that is of
low complexity (i.e., has few parameters) and statistically well-founded. We here started
from a classical log-odds framework [2] that was also used by Vacic et al. [12]. Going a step
further, we noted that for each length `, the score function has a simple three-component
piecewise affine form that can be described by only five parameters. This yields the first
low-complexity scoring scheme for directly aligning 454 flowgrams to DNA sequences.

There are several ways to extend this work in the future. For example, finding a more
robust way to estimate the divergence rate between reference and sample than guessing it
before computing alignments would be of interest. On the practical side, several optimizations
of the basic alignment algorithm are possible, improving the running time from O(mn2) to
O(mn) by restricting the considered predecessors in each node (i, j) of the alignment graph
(cf. Figure 3). It is clear that for a flow bf , the best choices for t and ` have |t| ≈ ` ≈ f .
Extending the algorithm to be able to use affine gap costs would be of high practical relevance.
This is not entirely trivial, as gaps could extend over several flows, which in the current
model can only be considered separately.

Our approach should of course work on Ion Torrent datasets as well, using a different
scoring function. The 454 technology can be used for bisulfite amplicon sequencing to
determine CpG methylation. The resulting datasets contain long T- or A-homopolymers after
bisulfite conversion and have different characteristics than standard 454 datasets. Thus it is
of interest to estimate scoring parameters for this application.
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