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Abstract
Transfer pattern routing is a state-of-the-art speed-up technique for finding optimal paths which
minimize multiple cost criteria in public transportation networks. It precomputes sequences of
transfer stations along optimal paths. At query time, the optimal paths are searched among the
stored transfer patterns, which allows for very fast response times even on very large networks.
On the other hand, even a minor change to the timetables may affect many optimal paths, so
that, in principle, a new computation of all optimal transfer patterns becomes necessary. In this
paper, we examine the robustness of transfer pattern routing towards delay, which is the most
common source of such updates. The intuition is that the deviating paths caused by typical
updates are already covered by original transfer patterns. We perform experiments which show
that the transfer patterns are remarkably robust even to large and many delays, which underlines
the applicability and reliability of transfer pattern routing in realistic routing applications.
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1 Introduction

When traveling with public transportation, not only the absolute time of travel matters:
Also the number of transfers and the total fare are important or, for instance, the reliability
of connections along the journey. The goal of public transportation route planning is to find
paths that minimize a multi-criteria cost function. Public transportation data is typically
available as a set of timetables and can be modeled as a directed graph. Classical route
planning algorithms perform a multi-criteria variant of Dijkstra’s algorithm on the graph. To
our knowledge, transfer pattern routing [1] is the fastest speed-up technique for this problem.
After precomputing sequences of transfers along all optimal paths which uses quadratic
time in the number of stations, it allows to find the Pareto-optimal paths in huge networks
within a few milliseconds. Because of its excellent scalability, the idea of transfer pattern
routing is employed by Google Maps. If the underlying network (read: the information of the
timetables) changes, the precomputed transfer patterns become outdated and optimal results
cannot be guaranteed anymore. Incorporating an update into the transfer patterns is hard,
because the dependency between a changed connection and the affected transfer patterns is
unclear. In principle, the whole expensive precomputation has to be done again. But this is
impossible as in realistic settings there are often updates. Our idea is, that provided there
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are only minor changes to the network, the original transfer patterns are sufficient to find
optimal routes in most cases.

Criticism of transfer pattern routing often refers to its theoretical suboptimality and
lacking support for dynamic scenarios. At the time of writing, there are no publications
about if and how real-time updates can be handled by transfer pattern routing. But this is
an important aspect for the practicability of the algorithm, because route planning service
providers wish to recompute the transfer patterns only occasionally, when long-term changes
to the timetables are made. The main contribution of this work resides in empirically proving
the reliability of transfer pattern routing for location-to-location queries in the context of
real-time updates. We evaluate the quality of transfer patterns in different global delay
scenarios and study the immediate effect of delaying connections involved in optimal paths.
Moreover, we investigate on which parameters the robustness depends and how it can be
increased.

2 Related Work

Transfer pattern routing has been introduced by Bast et al. [1]. The authors outline the key
components of the algorithm and present a set of techniques and heuristics to render the
computation of transfer patterns feasible. Most notably is the concept of computing only
parts of transfer patterns up to important stations and combining these parts at query time.
Geisberger [6] elaborates how to compute transfer patterns in fully realistic settings with
walking between stations and for answering location-to-location queries.

The requirements for a route planning algorithm in a dynamic network are analyzed
in [10]. There have not been any publications on transfer patterns in such a setting yet.
Speed-up techniques without a time-consuming precomputation and thus suitable for dynamic
scenarios are for example SUBITO [3] and RAPTOR [4]. These approaches allow to find
Pareto-optimal paths between stations in short time (SUBITO about 100ms on German
railway network, RAPTOR about 100ms for London transit). However, the query times of
these approaches cannot compete with transfer pattern routing on large networks (43ms for
North America).

A related field of research focuses on robustness to delay in the sense that the probability
of missing a connection along a route is minimized. Most recently, a framework of algorithms
based on a technique called Connection Scan has been introduced [5]. The authors report
convincing average query times for finding the route with earliest arrival time (1.8ms) and for
multi-criteria profile queries (255ms) on the London data set. However, it remains unclear
how fast the algorithm answers one-to-one queries when more than one cost-criterion is
minimized. Besides the solution of classical route planning problems, the authors apply
Connection Scan to find alternative routes by minimizing the expected arrival time. Goerigk
et al. [7] compute routes which are robust to delays in the sense that all transfers along
a route are guaranteed, given a specific delay scenario. They observe that strictly robust
routes last longer than the fastest routes, whereas light robust routes have a relatively small
overhead. Keyhani et al. [9] introduce a stochastic model which rates the reliability of
transfers along routes. Other than in those articles, robustness does not refer to routes with
reliable transfers in this paper, but to sustaining optimality. Section 4.1 refers to the delay
models of the aforementioned works in more detail.
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44 Delay-Robustness of Transfer Pattern Routing

3 Preliminaries

This section defines preliminary concepts and models. It explains the idea and components
of transfer pattern routing.

3.1 Modeling timetables
A transit network is described by a set of timetables. It comprises information about
stations S (e.g. train stations or bus stops) and trips of transport vehicles. A trip T

serves a sequence of stations stops(T ) = (s1, s2, . . . , sn), si ∈ S at arrival and departure
times (tarr

1 , tdep
1 ), (tarr

2 , tdep
2 ), . . . (tarr

n , tdep
n ). Let stop(T, s) denote the index of s in the station

sequence of T . We say a trip connects two stations sa and sb, if sa, sb ∈ stops(T ) and
stop(T, sa) < stop(T, sb), and call sa and sb the start- and endpoint of the connection,
respectively. Multiple trips which share the same sequence of stations and do not overtake
each other form a line.

A route between two stations is a sequence of alternating rides on board of a vehicle
and transfers between connections. The start- and endpoints of the n connections along
a route form a sequence of 2n stations, which is called transfer pattern of the route. For
queries between two locations (not stations) X and Y , there is an additional walking part
at the beginning and the end. A routing algorithm answers a query with a set of routes
that minimize multiple cost criteria. The costs of a route are the sum of the costs of all its
connections and transfers. When comparing cost tuples, we say that a dominates b (a < b),
if it is as good as b in every component and better in at least one. a and b are incomparable,
if neither a < b nor b < a. The costs of optimal paths to a query are pairwise incomparable,
they form a Pareto-set.

Time-expanded Graph We use publicly available timetable data following the General
Transit Feed Specification (GTFS) format and model it as time-expanded graph according
to Pyrga et al. [11]. Each departure and arrival event along a trip is explicitly modeled as a
node with a timestamp. The successive nodes are connected with arcs of costs corresponding
to the time difference between the two events. Beside arrival and departure nodes, there
are nodes modeling transfers and waiting at a station. For each departure node, there is a
transfer node with the same timestamp and an arc connecting it to the departure node. At
each station, every transfer node is connected to the next transfer node in time. To model
transfers between vehicles, an arc connects each arrival node to a subsequent transfer node.
Usually, a traveler cannot instantly change from one vehicle to another. We model this with
the difference between the arrival and the connected transfer node not being less than a fixed
transfer buffer of 120 seconds. We want to find routes which minimize the time of travel
and the number of transfers. Therefore, the arcs have a tuple weight consisting of the time
difference between the connected nodes and the penalty, which is 1 for arcs from arrival to
transfer nodes and 0 for all other arcs. In order to decrease the size of the graph, we remove
departure nodes by redirecting incoming arcs to the respective successors.

Walking Between Stations In a model for realistic route planning, transfers involving
walking between two stations must be possible. Therefore, we maintain an additional walking
graph with arcs between neighboring stations and the duration of walking as costs. For the
sake of simplicity, we take the straight-line distance between the connected stations and
assume a fixed speed of 5 km/h to compute the costs. During search, when expanding a
label at an arrival node at station S and time tarr, the walking graph is used to determine
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the first transfer node after tarr + walk(S, T ) + transfer buffer for every neighbor station T .
The time difference between the two nodes and a penalty of 1 are used as weight for the
relaxed virtual arc. By restricting walking to happen between arrival and transfer nodes,
this model implicitly forbids via-walking over multiple stations in a row.

3.2 Routing with Transfer Patterns

The transfer pattern of a route is the sequence of stations where a change of the transportation
vehicle occurs, including the departure and arrival station. When considering all possible
departure times at a station A, the optimal paths for journeys A→ B form a set of transfer
patterns. In public transportation, this set has typically only a few elements. For example,
when traveling from Paris to Nice there is a direct TGV which leaves every other hour. In
between its departure times, the journey with the earliest arrival time at Nice is one of two
connections with transfers at Lyon or Marseilles. We say that Paris – Nice, Paris – Lyon –
Nice and Paris – Marseilles – Nice are the optimal transfer patterns for this station pair.

The key idea of the algorithm is that the set of optimal transfer patterns between two
stations A and B at all times form a search space, which is orders of magnitude smaller than
the original graph. Given they are known, the Pareto-optimal paths at a specific time can
be found among them. In short, the algorithm determines the optimal transfer patterns for
all pairs of stations and searches on the graph described by the patterns.

Computation of Optimal Transfer Patterns Conceptually, the optimal transfer patterns
for a station pair A,B can be determined by running a multi-criteria variant of Dijkstra’s
algorithm from A. On the time-expanded graph1, we compute the transfer patterns as
described in [1]: From every station, a profile query determines the optimal paths to all
reachable destinations. For every destination and its arrival nodes at times t1 < t2 < . . .

the arrival-chain algorithm selects a dominating subset among the set of labels consisting
of (i) labels settled at ti, and (2) labels settled at ti−1 with duration increased by ti − ti−1.
Every selected label corresponds to an optimal path, which is backtracked to its origin while
recording stations where transfers happened. The resulting optimal transfer patterns are
stored as a directed acyclic graph (DAG). In extension to [1], we exploit the fact that the
departure and destination station of a transfer pattern is always known from context [12].
This allows to store all patterns in one joint DAG, which automatically resolves redundancies
and reduces the size of the data.

The precomputation has quadratic time effort in the number of stations. When computing
transfer patterns for location-to-location queries (which we do), the arrival-chain algorithm
has to consider all arrival events in the walking neighborhood N (s) of each destination s.
With an unbound neighborhood radius the running time would become cubic. Therefore
we limit walking to stations within 1 000 meters. Nevertheless, the precomputation is very
expensive. This is the price for the very fast query times. In order to reduce its duration, we
employ the concept of important stations (hubs) and compute only parts of transfer patterns
[1]. Global (unlimited) transfer patterns are computed only from important stations. From
all other stations, we compute the transfer patterns up to the first transfer at a hub and a
maximum of three trips. Although this heuristic leads to a loss of optimality (the search
cannot find optimal paths with more than two transfers, none of which is at a hub), in

1 Note that our results are independent of the used graph model.
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practice, only very few optimal paths are affected [1]. In Section 5 we will see its marginal
effect on the optimality of the algorithm’s results.

Routing with Transfer Patterns Once computed, the patterns between stations A and B
describe a compact graph. A location-to-location queryX@t→ Y is answered by constructing
a query graph and performing a search on it. The query graph is created from the transfer
patterns between departure stations s ∈ N (X), the important stations and the destination
stations s′ ∈ N (Y ) as demonstrated in [1, 6]. We follow the refinements of Geisberger [6]
and distinguish between two nodes representing alternating arrival and departure events for
each station. The arcs in this graph correspond to (walking-) transfers or direct connections
between stations. During the search, the travel time along these arcs can be determined
using an efficient data structure. We proceed in analogy to [1] and store trips grouped by
lines like this:

line17 s14 s9 s56 ...
trip1 8:05 9:00 9:15 10:00 10:05 ...
trip2 8:35 9:30 9:45 10:30 10:35 ...

... ... ... ... ...

For each station, we compute a list of incident lines with the respective position of the station
along the line. For instance: s14 : {(line17, 0), (line26, 8), . . .}, s56 : {(line12, 6), (line17, 2), . . .}
and so on. To determine the next direct connection between two stations, their incidence-lists
are intersected and the next trip of a line connecting both stations is determined. With the
query graph consisting of only several hundred arcs and the direct connection queries taking
2-10µs each, the total search time is only a few milliseconds.

4 Delay and Robustness

This section presents our delay model, points out the problem of frequent updates for a
preprocessing-based algorithm and introduces our approach to handle delay with transfer
pattern routing.

4.1 Delay Scenarios
Among different sources of real-time updates to timetables (trip cancellation, redirection,
auxiliary connections, ...) we focus on the most common one, which is delay of trips. The
literature distinguishes between primary delay (e.g. a train is late due to engine issues) and
secondary delay (other trains waiting for the former) [10]. Delay models in related projects
range from simplistic independence assumptions [5] over models which allow for delay to
accrue [7] to sophisticated models respecting primary delay of trains, knock-on delay to other
trips and delay due to waiting for late connections [8]. In a survey of stochastic models
for delay, Yuan [13] successfully anneals distributions of non-negative primary delay with
exponential functions. Once a trip is delayed, the propagation over successive connections
follows complex rules. Refer to Berger et al. [2] for an overview and a stochastic model for
delay propagation in timetables.

For the sake of simplicity and because data about real-time updates is hardly available,
we focus on primary delay, ignore knock-on effects as well as scheduled security headways
between trains and model delay independently between trips. In six different scenarios (Table
1), the set of trips is partitioned into groups of common average delay Eδ. For each group, a
random subset of all trips is selected. Every selected trip is delayed with time δ drawn from
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Table 1 How many trips are delayed by
how much in our six delay scenarios.

Scenario Average delay Eδ
5min 15min 50min

Low 25% - -
Medium - 25% -
High - - 25%
Mix Low 10% 3% 1%
Mix Normal 20% 10% 5%
Mix Chaos 40% 40% 20%
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Figure 1 Probability density functions for
exponential distributions with mean Eδ.

an exponential distribution with probability density function pdf (δ) = 1/Eδ · exp(−1/Eδ · δ)
(Figure 1). The delay is inserted starting at a uniformly random stop i, i.e. the trip’s times
(tarr

j , tdep
j ) are replaced with (tarr

j + δ, tdep
j + δ) for j ≥ i. We choose three different scenarios

where one quarter of the connections are delayed with 5 (Low), 15 (Medium) an 50 minutes
(High) in average. In addition, we generate three combined scenarios with an increasing
mixture of average delay (Mix Low, Mix Normal and Mix Chaos). In the last scenario,
every trip is delayed.

One might argue that this model is too far from reality. However, by modeling delay
independently between trips, the scenarios become harder to deal with than in reality. If
delay occurs frequently along a specific line or in a street prone to congestion, alternative
routes are more obvious and could be retrieved during the precomputation. Furthermore, in
typical metropolitan networks with high service frequencies, connections typically do not
wait for delayed trips. Waiting policies in hierarchical train networks are designed such that
the important transfers between trips are maintained and the resulting delay for waiting
trips can be compensated during the remainder of their trip and knock-on delay to further
connections is minimized. Therefore, we believe that in a refined model with realistic waiting
rules transfer patterns will perform more robust than in our simplified model. We are working
on another set of experiments with such a model, but by the time of writing there are no
results yet.

4.2 Delay and Transfer Patterns
The routing algorithm finds optimal routes only if the precomputed transfer patterns are
optimal. If a trip is delayed, it is possible that an optimal route previously taking this
trip will resort to another connection, thereby changing its transfer pattern. Unfortunately,
not only routes along the delayed trip are affected and it is hard to decide which transfer
patterns have to be updated. To make this clear, think of a train which is delayed and stops
at some station at 10:15 instead of 9:45. Another train arrives at the same station at 10:00.
Passengers of this train may benefit from the delayed train and arrive at their destination
earlier than with a regular connection.

Thus, the optimal transfer patterns have to be computed from scratch. But this is time-
consuming: for example, the transfer pattern computation for New York requires around 800
core hours ([1], Table 3). Given a steady flow of updates to the timetables, it is impossible
to keep the transfer patterns up to date. On the other hand, the data structure for direct
connection lookup can be computed within a few minutes ([1], Table 2). Updating a single
trip is fast, as we will prove. It is thus adaptable to frequent changes of the timetables. Our
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approach to deal with real-time updates is to update only the direct connection data, and
search on query graphs generated from the original transfer patterns.

4.3 Updating the Direct Connection Data
Now we explain how a single trip in the direct connection data structure can be updated
in real-time. When constructing the data from a collection of trips, we create a mapping
from sequences of station ids to all lines that serve these stations in the given order. When
updating a specific trip, the trip’s stop times are changed within its line. If the line still has
the FIFO-property (the trip does not overtake another trip and is not overtaken), we are
done. Otherwise, the trip is removed from the line. If it does not fit into another line serving
the same sequence of stations, a new line is created. The line id and the respective stop
position along the line is added to the incidence list of every served station (see Section 3.2).

I Lemma 1. Let L denote the set of lines and let trips(l) denote the trips of l ∈ L. Further,
C ⊆ L is the set of lines which share the same station sequence as l. Then updating a trip
T ∈ trips(l) in the direct connection data structure has running time

O (log |L| · |stops(T )|+ |C| · (|stops(T )|+ log |trips(l)|))

Proof. (1) Finding the trip in the line can be done in O(log |trips(l)|), because the trips of l
are sorted by time (Section 3.2). (2) Updating the trip’s stop times is in O(|stops(T )|). (3)
Checking the FIFO-property takes O(|stops(T )|). In case it is violated, candidate lines C with
the same same sequence of stations have to be found in L. This takes time O(log |L|·|stops(T )|)
using the mapping described above. Steps (1) and (3) have to be repeated for every c ∈ C in
the worst case. J

For example in New York City, there are 16 454 lines and C has a maximum size of 66. For
the most frequent lines, |trips(l)| is 299 and for the longest trips |stops(T )| is 117. Updating a
trip takes 40–80µs. Typical update rates are about 70 updates per second (German railway;
primary delay, secondary delay and forecast) [10], so our approach clearly allows for real-time
updates.

5 Experiments

In the previous section, we proposed to deal with delays by searching routes using the original
transfer patterns (computed for the graph without delays) and updated direct connection
data. This potentially leads to non-optimal responses. In this section, we present several
experiments which show that this is rarely the case, even for many and large delays.

5.1 Global Delay Scenarios
Method We present experiments conducted on the data sets of Toronto (10 883 stations,
1.5M departures) and New York City (16 765 stations, 2.3M departures). The data can be
accessed at http://ad.informatik.uni-freiburg.de/publications. The time-expanded
graph is generated for a random weekday (from 1:00 am until 6:30 am the next day) and
the transfer patterns are computed on this graph according to Section 3.2. This forms the
baseline Null. We apply different delay scenarios from Section 4.1 to the data sets and
compute the direct connection data and the updated time-expanded graph from it. At search
time, the query graphs are constructed from the transfer patterns computed on the original
graph.

http://ad.informatik.uni-freiburg.de/publications
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Table 2 Classification of paths under different scenarios. Abbreviates almost optimal σ as σ.

(a) Toronto

optimal a b bad

Null 99.97% 0.02% 0.01% 0.00%
Low 99.71% 0.15% 0.04% 0.10%
Medium 99.55% 0.22% 0.06% 0.17%
High 99.42% 0.29% 0.08% 0.21%
Mix Low 99.81% 0.10% 0.03% 0.06%
Mix Normal 99.52% 0.26% 0.06% 0.16%
Mix Chaos 97.46% 1.40% 0.34% 0.80%

(b) New York City

optimal a b bad

Null 99.99% 0.01% 0.00% 0.00%
Low 99.87% 0.01% 0.00% 0.04%
Medium 99.68% 0.19% 0.03% 0.10%
High 99.72% 0.17% 0.02% 0.09%
Mix Low 99.93% 0.05% 0.00% 0.02%
Mix Normal 99.89% 0.07% 0.01% 0.03%
Mix Chaos 99.19% 0.57% 0.07% 0.17%

We generate random queries X@t → Y in the following manner: The departure and
destination locations X and Y are drawn from the set of locations of the stations S, taking
into account the number of departing connections ns at each station s ∈ S: The probability
of selecting s is ps = √ns/

∑
s′∈S

√
ns′ . To avoid trivial connections, the two locations must

be more than 2 000 meters away from each other. The departure time t is drawn from an
interval of 24 hours starting at 4:00 am. To account for varying traffic density during the
day, departure times during the rush hours are selected twice as often.

The random queries are answered by transfer pattern routing. The resulting paths are
compared to reference routes. In order to compute the latter, the delayed time-expanded
graph is extended with two nodes x, y representing the source and target location X and
Y . For each station s ∈ N (X), x is connected to the first transfer node of s after time
t + walk(X, s) and every arrival node at s′ ∈ N (Y ) is connected to y by an arc of costs
walk(s′, Y ). On this extended graph, a multi-criteria Dijkstra is used to determine the
optimal paths.

In this setting, we evaluate the robustness in each scenario. For each response to a
query, the paths found by transfer pattern routing are classified independently as follows:
If a path of equal costs is among the reference paths, the response is optimal. For every
Dijkstra-generated path which has no correspondent of equal costs, the most similar path in
terms of penalty is selected. If there is a path with the same penalty, the duration difference
is inspected. If the path found by transfer pattern routing is less than 5% of the total travel
time and less than five minutes slower than the reference path, it is almost optimal a. If
it is not classified as almost optimal a but less than 10% and less than ten minutes late,
it is almost optimal b. Otherwise, the path is classified as bad.

Results Tables 2a and 2b show the results of our experiments with 50 000 random queries
with at least one feasible route found by the reference algorithm. For each delay scenario,
the found paths were classified (about 82 000 paths in Toronto, 67 000 in New York City).
The classification results show the influence of the scenarios: With increasing average delay,
the share of optimal paths decreases. Although we are using the important station heuristic,
almost all paths found by transfer pattern routing are optimal for the baseline Null. The
few suboptimal paths are dominated by paths with more than two transfers without an
important station, which cannot be found because of the restriction of local profile queries to
three trips (see Section 3.2).

Among the results for the different scenarios there are just very few suboptimal paths.
Even for the worst scenario the share of suboptimal paths is below 2.6% for Toronto, and
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50 Delay-Robustness of Transfer Pattern Routing

Table 3 Suboptimal paths: Relative offset to optimal travel time. Summary statistics of
distributions for different delay scenarios. For example, in Toronto under the scenario Low, 25% of
the suboptimal paths are at most 0.02 times slower than the optimal path.

(a) Toronto

N Q0.25 Q0.5 Q0.75 max

Low 276 0.02 0.04 0.08 4.95
Medium 441 0.01 0.04 0.08 3.96
High 552 0.01 0.04 0.08 3.17
Mix Low 184 0.01 0.04 0.08 0.74
Mix Normal 451 0.02 0.04 0.10 0.69
Mix Chaos 2300 0.02 0.05 0.09 4.42

(b) New York City

N Q0.25 Q0.5 Q0.75 max

Low 46 0.00 0.03 0.05 0.20
Medium 149 0.01 0.03 0.06 0.19
High 144 0.01 0.04 0.06 0.23
Mix Low 24 0.00 0.01 0.02 0.29
Mix Normal 41 0.02 0.03 0.06 0.21
Mix Chaos 332 0.02 0.05 0.09 0.40

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Relative offset to optimal travel time

Mix Chaos

Mix Normal

Mix Low

High

Medium

Low

(a) Toronto

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Relative offset to optimal travel time

Mix Chaos

Mix Normal

Mix Low

High

Medium

Low

(b) New York City

Figure 2 Suboptimal paths: Boxplot for relative time of travel compared to the optimal path with
equal number of transfers. The red line marks the median, the box contains the interval between the
upper and lower quartile of the data. The whiskers have a length of 1.5 times the distance between
the quartiles. The crosses mark outliers. Outliers above 0.6 are not shown.

below 1% for New York City. Beside this, most of the suboptimal paths are quite close to the
optimum: The major part is classified as almost optimal a and the share of bad paths is
never larger than 0.8%. For suboptimal paths, Tables 3a, 3b and Figures 2a, 2b show the
distribution of the relative differences to the corresponding optimal path. The influence of
the scenarios’ average delay reflects similarly in the distributions as for the classification
results above. We observe that the median of the distributions is below 0.05 for both data
sets in all scenarios. There are a few outliers, some of which are much worse than the optimal
path (at most factor 4.95 for Toronto, factor 0.37 for New York City). Manual inspection of
these critical outliers showed that they typically stem from queries between remote locations
with bad connectivity. For example, the worst route in Toronto misses the last connection
before midnight and has to wait for six hours. Note that only paths which are dominated by
a reference path of equal number of transfers are reported here. Therefore, the number of
paths in the Tables 3a, 3b is slightly smaller than the number of suboptimal paths in the
classification tables.

In summary, the results indicate that transfer patterns are very robust to delay. Even in
the worst scenario the share of suboptimal responses is very small, and most of these paths
are almost optimal. Furthermore, the results show that the limit of three trips for local
transfer patterns leads only to very few suboptimal results.
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Figure 3 Number of queries which are still answered optimally after iteratively adding systematic
delay of 30 minutes to the optimal paths and repeating the query. Results for 5 000 queries with a
limit of nine iterations on New York City.

5.2 Controlled Delay

In our opinion, the global scenarios discussed beforehand model real transportation networks
quite sufficiently. On the other hand, delaying random trips in a memoryless fashion does
not clearly show why transfer patterns are robust. It is still possible that the optimal paths
remain rather unchanged, for example when the delay is so small that a trip reaches the
same connections as without delay. To examine the robustness of transfer patterns in more
detail, we conduct another series of experiments and directly delay the optimal routes.

In a first setup, random queries are issued on the New York City data set. For every
resulting optimal route one of its conducting trips is delayed with 30 minutes, such that the
delay definitely affects the optimal routes. Then the query is repeated on the delayed data
and the response is classified as in Section 5.1. Repeating this experiment for more than
32 000 queries showed that only 1.34% of the queries become suboptimal if we influence the
connections of the optimal routes in this way.

In order to get a better understanding of the robustness, we extend this experiment to
multiple rounds: A random query is drawn as before. In each round, the response of transfer
pattern routing is compared to the reference response. Then, one trip of each optimal route
is delayed by 30 minutes. This is repeated until the response becomes suboptimal, at most
for nine times. Figure 3 summarizes the number of executed iterations until the response
became suboptimal. The majority of queries was still optimal after nine successive delays.
Also in this setting the transfer patterns computed on the original network proved to be very
robust.

5.3 Dependencies of the Robustness

Consider an arbitrary query X@t→ Y . Let r0 = {p0
1, p

0
2, . . .} denote the set of paths found

by transfer pattern routing in the baseline null. In the delayed scenario, the response is
r = {p1, p2, . . .} and r∗ = {p∗1, p∗2, . . .} is the (guaranteed optimal) response of the reference
algorithm. The transfer patterns are robust if r = r∗ in terms of path costs. An alternative
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path is a path pi ∈ r with costs equal to the costs of a reference path p∗i ∈ r∗ and pi 6= p0
i

in terms of the transfer stations. How come such alternative paths are contained in the
query graph? This is because in the precomputation, during the course of time paths of
different transfer pattern are optimal for a station pair A,B. Besides, the query graph is a
digraph with one node (-pair) for each station and can therefore contain further alternatives.
For illustration, consider the digraph build from the patterns A → B → C → D and
A→ C → B → D. In addition to the patterns it is created from, it also contains the paths
ABD and ACD. This effect increases with growing number of patterns between a station pair,
and thus also by building the query graph from patterns to and from important stations.

The number of alternatives depends also on the number of neighboring stations of X and
Y , as the query graph is built from all patterns between these stations. The observations
for both data sets in Section 5.1 differ. For Toronto, there are more suboptimal responses
and they deviate more from the optimum. Here, the average number of neighbor stations
|S|−1 ·

∑
s∈S |N (s)| is 50, whereas for New York City it is 92. To investigate this further,

we select the ten percent of stations with the most and with the fewest neighbor stations of
New York City and answer queries as in Section 5.1, but with locations X, Y drawn from
one of the groups. The results clearly express a difference. Queries in the group with 152 to
306 neighbor stations are less often answered suboptimally than in the group with 1 to 36
neighbors (for Mix Chaos: 0,61% vs. 3.11%). As the maximum walking distance influences
the size of the neighborhood, increasing this parameter will probably further improve the
robustness.

In summary, transfer patterns allow for alternative routes. When the optimal path is
iteratively delayed, at some point the optimum switches to a path with another pattern.
Figure 4 shows some examples how the transfer pattern of the optimal path evolves, if the
trips along the optimal path are subsequently delayed.

5.4 Improving the Robustness
The routing algorithm yields suboptimal responses whenever the optimal path is not contained
in the query graph or the overlaid transfer patterns respectively. We studied reasons why
the optimal paths in case of delay cannot be found in the overlaid patterns. When there is
no delay, these paths are typically just slightly dominated by other paths.

The arrival-chain algorithm described in Section 3.2 selects a dominant subset among the
paths between two stations. In a first approach to improve the robustness of the transfer
patterns, we relaxed the domination relation for travel times in the arrival-chain algorithm:
A cost-tuple a dominates another tuple b, if its travel time increased by 5%/10%/20% or
at least 2/2/5 minutes is less than that of b. Other than expected, the resulting patterns
are only slightly more robust, whereas even in the first setting the number of patterns has
doubled. This would slow down the search time. Provided that the suboptimal responses are
only a few, this minor improvement does not seem worth the additional effort.

To motivate our next approach, consider an optimal path with the transfer pattern
U → V →W → X and imagine the trip serving V →W is delayed. We observed that some
of the not-found optimal paths take redirections over some station R, but otherwise use parts
of the original pattern, for example UVRX or URWX. As described in Section 5.3, overlaying
transfer patterns generates a graph which contains additional paths. We tried to exploit
this by enhancing the query graph with additional patterns. In the example, we would add
transfer patterns for the station pairs U,W and V,X hoping that this adds subpaths VRX or
URW to the query graph. While this works in theory, in practice the trigger of this extension
remains unclear. Extending the query graph for every delayed arc is impractical, as this
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Figure 4 Evolution of the pattern of an optimal path. From the response to a fixed query, the
path with the highest number of transfers is selected and one of its connections is iteratively delayed
with two minutes. The plots show how the travel time increases and the pattern is occasionally
changed for four exemplary queries.

would blow up its size and the construction time. Triggering the extension only for arcs
with delay above a fixed threshold does not reflect the fact that occurrence and severity
of suboptimal paths are only weakly related to the amount of delay. Another idea is to
repeat the search on the query graph whenever the first search yields a path over a delayed
connection. Alternative routes for this connection would be added to the graph. However,
the suboptimal paths often do not go via delayed connections, so this is unreliable, too.

6 Conclusion & Future Work

We described how delays can be handled by transfer pattern routing without repeating its
expensive precomputation. We showed how the data structure for efficient direct connection
queries can be updated fast, allowing to adapt to updates in real-time. It transpired that
our approach sustains the high quality of results even under extreme delay scenarios. Just a
few paths are suboptimal, most of which do not deviate too much from the optimum. For
example, when delaying every trip on the New York City data set with 5–50 minutes in
average and answering 50 000 queries, only 450 of the resulting paths are not optimal. More
than 75% of these are less than 10% and less than ten minutes off the optimum. Furthermore,
we provided insight why the transfer patterns contain alternative routes and we analyzed on
which factors the robustness depends.

The inherent disadvantage of the scenarios is that they model delay independently. On
the one hand, in realistic public transportation delay is often systemic. For example, a traffic
jam will delay a series of trips. On the other hand, there are mechanisms to compensate
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delay: a bus can drive faster to catch up with its schedule. Another example are traffic
agencies in the EU, which are bound by law to reimburse passengers for excessive delay.
Because of this, the agencies employ decision algorithms which can make connections wait for
delayed trains. As delay occurs not independently as assumed in this paper, the acquisition
of realistic delay data and repetition of the experiments on top of that is a topic for future
research.

Although the quality of responses are almost always optimal, there are some critically
suboptimal paths. Future work should focus on eliminating these or making them less severe,
for example by adding alternative transfer patterns for frequently delayed trips. We proposed
three improvement approaches and discussed why they fail. If a detection mechanism for
such bad responses can be found, a fall-back algorithm [3, 4, 5] could be used to find optimal
responses on the updated transportation network. In order to be practicable, such a detection
must not increase the running-time for the majority of queries, which are already answered
optimally. This seems to be a hard problem.
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