
Result Diversity for Multi-Modal Route Planning ∗

Hannah Bast, Mirko Brodesser, and Sabine Storandt

Albert-Ludwigs-Universität Freiburg
Freiburg, Germany
{bast,brodessm,storandt}@informatik.uni-freiburg.de

Abstract
We study multi-modal route planning allowing arbitrary (meaningful) combinations of public
transportation, walking, and taking a car / taxi. In the straightforward model, the number of
Pareto-optimal solutions explodes. It turns out that many of them are similar to each other
or unreasonable. We introduce a new filtering procedure, Types aNd Thresholds (TNT), which
leads to a small yet representative subset of the reasonable paths. We consider metropolitan areas
like New York, where a fast computation of the paths is difficult. To reduce the high compu-
tation times, optimality-preserving and heuristic approaches are introduced. We experimentally
evaluate our approach with respect to result quality and query time. The experiments confirm
that our result sets are indeed small (around 5 results per query) and representative (among the
reasonable Pareto-optimal paths), and with average query times of about one second or less.
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1 Introduction

We want to efficiently compute small yet representative sets of reasonable paths in a multi-
modal scenario (car, walking, transit). The majority of current route planning systems
computes optimal paths for a certain type of transportation. If one wants to take a car, one
uses a navigation system. If one wants to travel by public transportation, one can obtain the
optimal paths from websites like Google Maps. Both require to decide in advance for a means
of transportation. For the case when one does not want to decide this beforehand, we want to
offer the user a small yet representative set of reasonable paths. Moreover, we allow optimal
paths which include different means of transportation. Furthermore, also for metropolitan
areas like New York, computation should work fast, such that interactive queries are possible.
For road networks, state-of-the-art algorithms answer shortest path queries in the order of
milliseconds [9]. Public transportation networks are more challenging and many algorithms
of road networks are not applicable [1]. Computing optimal paths becomes more complex,
since not only the fastest connection is demanded, but also the number of transfers is an
important criterion for the quality of a path, potentially leading to multiple optimal paths.
When combining road and transit networks, this increases complexity further, bringing along
many similar paths. Typical variations are: ”take a bus for 30 minutes, then take a taxi for
9 minutes”, ”take a bus for 32 minutes, then take a taxi for 8 minutes”, . . . , ”take a bus for
42 minutes, then take a taxi for 3 minutes”. To determine a small yet representative set of
reasonable paths, it is necessary to filter, which is a challenge on its own. In the following we
introduce an approach to deal with these challenges.
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1.1 Contribution

We propose Types aNd Thresholds, an approach to efficiently compute small yet representative
sets of reasonable paths in a multi-modal scenario (car, walking, transit). To obtain diverse
sets of paths, we use Pareto sets [11] with multiple optimization criteria. Taking into account
properties (velocity, availability, costs) of the various means of transportation, we argue
that not all Pareto optimal paths are reasonable. We carefully define types of reasonable
paths and propose a two-stage filtering procedure. In the first stage, all unreasonable paths
are removed. In the second stage, a small yet representative subset of the remaining paths
is determined. To achieve average query durations of roughly one second, we make use
of properties of the types and propose a relaxation of the model and a (close to optimal)
heuristic. We confirm query durations and quality with experimental results.

2 Related Work

When considering road and transit networks separately, many algorithms exist for both
networks. Next, we give a brief overview. For road networks several variants of the famous
Dijkstra algorithm exist. An outstanding one is Contraction Hierarchies [9], which after a
brief precomputation enables to quickly answer queries, even for large areas (e.g., Europe on
the order of milliseconds). Fast routing on transit networks requires other approaches and
algorithms. Among them are a multi-criteria generalization of Dijkstra’s algorithm [8], relaxed
Pareto dominance [13] and Round-Based Public Transit Routing [6]. One state-of-the-art
algorithm is to compute transfer patterns [2] between all pairs of stations. A transfer pattern
is the sequence of stations where vehicle changes occur on an optimal path. For each pair of
stations these are few and allow to answer queries efficiently. However, the computation of
patterns is time-consuming.

Also for multi-modal networks several approaches exist. However, many of those are quite
limited with respect to the extent of their multi-modality. For instance, [5] limits car usage
to the beginning and end of journeys. Other approaches [12] compute a single optimal path
by combining multiple criteria to one, but this results in missing reasonable paths (see [3] for
an example). Further approaches [16, 7] expect the user to specify a hierarchy of modes (e.g.
between train usage, car is forbidden). The problem is that one has to know the constraints
in advance, which in practice is often not the case.

A less restricted approach focussing on computing multiple optimal paths in a multi-modal
scenario similar to ours was presented in [4]. To not miss reasonable paths, multiple criteria
with Pareto sets [11] are used. As this leads to numerous optimal paths, fuzzy filtering is
used to rank them according to scores. For the found set of paths P = {p1, . . . , pn}, the score
of pi is dependent on P and a measure for fractional dominance between a path p ∈ P and
the paths in P\{p}. However, for the measures used in [4], the set of the top-k paths is not
necessarily representative when k is small, and no experiments are provided on this quality
aspect in [4]. In short, it is not clear if and how small yet representative sets of optimal
paths can be determined with this approach.

3 Preliminaries

In this section, we describe how to model a multi-modal network and discuss the necessity for
multiple optimality criteria. We briefly recapitulate Contraction Hierarchies as a speed-up
technique and explain how to use existing algorithms to compute optimal paths in our setting.
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3.1 Modelling
In the following we describe separate models for road and transit networks and how to
combine them to a multi-modal model. To model the static road networks (car, walking),
we use the common approach of one node per location (given as longitude, latitude) and
time-independent arcs annotated with the duration to travel from one node to the other.
For simplicity, we ignore turn restrictions and assume that all roads can be traveled in both
directions by car and by foot. That is, the car and walking network have the same structure.

To model the transit network, we decided for a variation of the train-route model as
explained in [15]. In the following we provide basic definitions and describe the model. A
transit connection starting at a specific time at a specific station and ending at some station
is called a trip. Trips sharing the same stop sequence and not overtaking each other are
grouped as a line. For each stop, a station arrival and a station departure node are created.
For each line, for each of its stops, a line arrival node and a line departure node are created.
The nodes of a line are connected according to their stop sequence and the durations of the
arcs are time-dependent. When boarding a line, the transfer buffer is added (we chose 5
minutes). Station arrival and station departure nodes are connected with their geographically
closest car and walking node. We call these nodes link nodes. That is, each station arrival
node has outgoing arcs to the closest car and walking node and they have outgoing arcs to
the station departure node.

Unlike the model used in [4], our model prohibits to change from car to walking (and
vice versa). The intention is that when going to a station by car, one does not stop on the
way and walk the rest (or the other way around). Instead, to reach a station one either takes
the car or walks. We consider this reasonable, since taking the car and walking is possible
from and to all stations in our model. In practice, walking a short distance to or from a car
is no problem, as we can consider this part of the transfer buffer. Note that car usage is not
limited to the beginning and end of a journey, but is also allowed between taking two public
transportation vehicles. We chose this model, because we consider it the most efficient in
terms of query duration. Note that our filtering approach, which we describe in Section 4, is
independent of the used model.

3.2 Optimality Criteria
In the following we explain the necessity for multiple optimality criteria to compute diverse
sets of paths in our multi-modal scenario. When referring to duration, we mean the duration
to reach the target, given a fixed departure time. Using duration as a single criterion would
result in exactly one path. Therefore, we use multiple criteria with Pareto sets. Each criterion
corresponds to one entry in a tuple. For tuples t1, t2, tuple t1 is said to dominate t2 if t1 is
at least as good as t2 with respect to all criteria. Two tuples are called incomparable if none
of them dominates the other. A Pareto set is a maximal set of non-dominating tuples. A
label contains such a tuple and is associated with a predecessor label. In a multi-criteria
Dijkstra, each node contains a Pareto set of labels.

For transit networks, duration and transfer penalty (= number of boarded vehicles) are
two commonly used Pareto criteria. However, in our setting this almost always leads to
exactly two optimal paths: walking the whole way and using the car for the whole way. The
reasons are: Taking a car is very fast and in our model is available everywhere and boarding
it once yields a transfer penalty of one, therefore it usually dominates all paths which include
transit usage. Walking the whole way is incomparable to using the car, because it is slower
and has zero transfers.

ATMOS’13
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Therefore, we use car duration as another Pareto criterion, leading to a diverse set of
optimal paths. However, solutions then become too numerous and many of them are similar.
A typical variation is the one mentioned in the introduction, where paths differ only slightly
in the car duration. In one of the scenarios from [4], they use arrival time (equivalent to our
duration), number of transfers, walking duration, and taxi cost as Pareto criteria.

3.3 Contracting the Road Networks
As the majority of nodes are car and walking nodes (see Table 4 for details), optimizing the
routing on the road network is important to reduce computation times. A well-known speed-
up technique applicable to road networks is Contraction Hierarchies [9]. During shortest
path queries it allows to skip many nodes, hence unnecessary propagation of labels is avoided.
Recently, a variant [4] for a multi-modal scenario similar to ours was introduced, we refer
to this as contracting the road network. Next, we summarize its most important properties.
After an efficient precomputation, all nodes in the road network have a rank. There exists
a core of nodes which comprises all link nodes and the rank of these nodes is infinity. For
queries from all road network nodes the following holds: when ignoring arcs to nodes with
lower rank, distances to all link nodes are equal to those in the original road network. As a
special case distances between all pairs of link nodes are preserved. In the next section, we
describe how to use these properties to efficiently compute shortest paths.

3.4 Computing Multi-Criteria Optimal Paths
In the following we explain how to perform location-to-location queries. We call the graph
with inverted arc directions backwards graph. Given the road network is contracted as
mentioned above (one contraction for usage by car, and one contraction for usage by walking),
location-to-location queries are performed in two steps.

First, a query from the source to all nodes and a query (in the backwards graph) from the
target to all nodes are performed. Recall that during the contraction process road network
nodes were assigned a rank. For both queries, arcs to nodes with lower rank are ignored.
We call the duration of walking (taking the car) from the source to the target, pure walking
(car) duration.

Second, a multi-criteria Dijkstra initialized with the labels of the link nodes reached from
the source is run. Temporary arcs with the previously computed durations from the link
nodes to the target are added. Again, arcs to nodes with lower rank are ignored. The Pareto
set of pure car and walking duration and the labels at the target forms the result. Dominance
by early results and label forwarding [8] are used to accelerate query computation.

Note that this is essentially one of the query algorithms proposed in [4].

4 Types aNd Thresholds

In this section we describe the concept of Types aNd Thresholds (TNT) to obtain small but
representative sets of reasonable paths. We present speed-up techniques to reduce query
times towards practical usage. We start by introducing the idea of discretization which leads
to TNT.

4.1 Discretization
Using duration, transfer penalty and car duration as Pareto criteria leads to numerous
optimal paths, among which many are similar. To filter out a more concise subset, we
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Table 1 Excerpt of the tuples of the optimal paths of an example query using duration, trans-
fer penalty and car duration as Pareto criteria. Green tuples are still Pareto optimal after the
discretization, gray ones are not.

duration transfer penalty car duration discretized car duration
0:28:57 1 0:28:57 0:30:00

. . .
1:43:43 3 0:16:35 0:20:00
1:44:01 3 0:16:26 0:20:00
1:44:09 3 0:16:04 0:20:00
1:44:34 5 0:11:07 0:20:00
1:44:36 3 0:15:56 0:20:00
1:45:12 4 0:15:51 0:20:00

. . .
7:06:00 0 0 0:00:00

examine the post-processing step of discretizing car duration to certain blocks (for example,
ten minutes). Table 1 shows an excerpt of the results of a query on New York.

Discretization was also introduced in [4], however, it was used as a heuristic during query
time to reduce computation complexity. Our motivation is different: given that many Pareto
optimal solutions are similar, we use it to choose a representative subset.

Although discretization allows to reduce the number of Pareto-optimal solutions remark-
ably, unreasonable paths can remain. Consider the example in Figure 1. It is not very
meaningful to walk a long distance and then take a taxi for a short distance. We argue that,
in practice, one would either walk the whole way, walk and take a train or use the car for
the whole way. In the following we propose a new approach to filter out such unreasonable
paths, and then to obtain a small representative subset of the remaining paths.

2 hours 10 min 5 min

Figure 1 An example for a path which we consider unreasonable.

4.2 Types
With the example in Figure 1, we illustrated that some Pareto optimal solutions can be
unreasonable. To justify why certain types of paths are unreasonable, we analyze triples of
transit, walking and car duration with respect to their relative durations (RD). We classify
each possible triple as either reasonable or unreasonable. As relative durations we use the
abstract terms zero ( ), little ( ) and much ( ), hence RD := { , , }. In Section 4.3 we
provide concrete definitions. We assume the natural order of < < . For example, the
triple ( , , ) represents paths with much transit usage, zero walking and little car usage.

Our rationale behind this (rather coarse) classification is as follows. Small differences in
duration are of little practical concern to users, little is little. However, there is a difference
between little and zero, because using a particular mode of transport at all incurs a tangible
overhead (organizing a car/taxi, dealing with the circumstances of public transportation).

ATMOS’13
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Table 2 All combinations of relative durations (zero = , little = , much = ) for transit, car
and walking duration with the classifications and violated axioms. White background indicates a
relative duration triple is not valid. From the remaining triples, the ones classified reasonable are
green, the others are red.

transit walking car violated
duration duration duration axiom classification

7
7
3
7
7

A1 7
3

A2 7
A1 7

7
7

A1 7
7
7

A1 7
3

A2 7
A1 7

3
3

A1 7
3
3

A1 7
3

A2 7
A1 7

Once a certain mode of transportation is used more than little, it is reasonable to assume
that one is willing to use it as much as is necessary to obtain an optimal solution. For
example, if one is willing to use the car for one hour, one might as well use it for the whole
trip if that is the fastest way. This is not necessarily true for walking (one might be willing to
walk 1 hour but not 10 hours), however, that is not a problem in practice, because optimal
paths rarely comprise very much walking (with the exception of the trivial walk-everything
solution, which is always computed in our model).

As and can be distinguished with respect to the total duration only if both occur in a
triple, the set of all triples containing but not is equivalent to the set of triples containing
but not . Moreover, the triple without and , that is ( , , ), does not exist for real

paths. Therefore, we call a triple valid iff at least one component is .
Consider the properties of our model and of the different modes of transportation:

Public transit is limited to stations and schedules, medium-fast and medium-expensive.
Walking is possible everywhere at all times, slow and cheap.
Cars (taxis) are available everywhere at all times, fast and expensive.

Given these properties, we claim the following axioms should hold for all reasonable paths:
A1: Much car usage implies zero walking and zero transit usage.
A2: Much walking implies zero car usage.

From the axioms we deduce which triples of relative durations are reasonable. Table 2
contains all triples, annotated with the classification as reasonable (3) or unreasonable (7).
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The classification is consistent in the sense that for each triple classified as reasonable,
each valid component-wise smaller triple is classified reasonable, too. This can be inferred
from Table 2. For instance, triple ( , , ) is valid and triple ( , , ), too. Finally, we
determine three types incorporating all triples classified as reasonable:
1. Only car.
2. Much transit, much walking, no car.
3. Much transit, little walking, little car.

Here, the attributes much and little should be thought of to include the smaller relative
durations. The types are complete to the effect that all relative duration triples classified as
reasonable are included. This can again be deduced from Table 2. For practical purposes,
relative durations need to be defined concretely. In the following, we introduce such definitions.

4.3 Thresholds
To practically use the types defined above, we propose to use threshold values for the
relative durations. The following definitions reflect that zero signifies a transportation mode
is not used, little depends on the mode and much means unlimited usage of a mode (durations
in minutes):

zero(∗) := 0 min
little(walking) := 10 min

little(car) :=
{
0 min, if pure car duration < 20 min
max(10 min, 0.25 · pure car duration), otherwise

much(∗) :=∞ min

Note that we defined the thresholds for a metropolitan setting. The definition for much is
natural, since it represents everything which is greater than little. One can observe that
the definition of little(car) is only relevant for paths belonging to type 3. Moreover, a path
of this type is only interesting if it significantly differs from the path of type 1 (using the
car for the whole way) in terms of car usage, otherwise one could just choose the path of
type 1. Therefore, we chose 25% of its duration as upper bound but at least 10 minutes
in order to avoid enforcing absurdly low car durations. For little(walking) we decided for a
fixed threshold in order to allow nearby stations to be reached but avoiding journeys where
walking significantly exceeds car usage. We consider a fixed threshold reasonable, as paths
of type 3 have a duration of at most a few hours (in a metropolitan setting). If we chose
little(walking) dependent on this maximal duration, it would be bounded from above by an
absolute value anyway. However, we want to stress that the types can be used with other
definitions of thresholds as well.

4.4 Filtering
We introduce a post-processing procedure to obtain small yet representative sets of reasonable
paths from Pareto sets. Given the above defined types and (arbitrary) thresholds, we explain
how to use them to remove unreasonable paths and how to obtain small yet representative
paths in a second step. We call the whole concept Types aNd Thresholds (TNT).

We say a path belongs to a type if none of the type’s thresholds is exceeded. For instance,
assuming a pure car duration of 15 minutes, the path of Figure 1 belongs to none of the
three types. To remove all unreasonable paths, the ones belonging to no type are removed.
Note that for optimal results, walking duration must be considered as a Pareto criterion, too.
That is, Pareto criteria are duration, transfer penalty, car duration and walking duration.

ATMOS’13
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Table 3 Excerpt of the tuples of the optimal paths for an example query for Dallas. Pareto
criteria are duration, transfer penalty, car duration and walking duration. Green tuples remained
after filtering with TNT, gray ones did not. Before filtering, there were 66 Pareto optimal paths,
after filtering only 7 reasonable paths remain.

duration transfer penalty walking duration car duration type
0:29:17 1 0:00:00 0:29:17 1

. . .
1:52:11 4 0:07:33 0:13:35 none
1:56:10 4 0:04:18 0:09:52 3
1:56:10 5 0:06:54 0:09:35 3

. . .
2:08:49 3 0:02:17 0:09:43 3
2:42:13 3 0:48:42 0:00:00 2
2:57:49 2 0:54:38 0:00:00 2
3:37:10 1 2:23:07 0:00:00 2
6:02:31 0 6:02:31 0:00:00 2

After removing the unreasonable paths, we drop walking duration as a Pareto criterion.
This removes undesired (minor) variation in the result set with respect to walking duration.
Potentially, this can lead to the loss of interesting (reasonable) optimal paths. However, that
is unlikely because it is unlikely that a path with higher walking duration dominates a path
with lower walking duration in all other criteria.

To determine a small and representative subset from the remaining paths, we propose to
transform all car durations according to their relative durations:

rd(car duration) :=


0, if car duration = zero(car)
1, if zero(car) < car duration ≤ little(car)
2, if little(car) < car duration < much(car)

Note that this coarse discretization is in sync with our coarse classification of travel times
into three categories (zero, little, much) argued for in Section 4.2. The Pareto set of the
transformed labels constitutes the result, now indeed a small yet representative subset of the
reasonable Pareto-optimal solutions. Table 3 shows an excerpt of the results of a real query
for Dallas.

Influence of Thresholds on the Results. The choice of fixed thresholds obviously restricts
the space of possible paths, but one does not want to miss significantly better paths which
do not severely exceed the thresholds. Next, we explain how this can be achieved.

An advantage of our system is that lowering the thresholds can never lead to better
paths with respect to duration and transfer penalty. To avoid missing significantly better
paths which are not severely above the thresholds we propose to offer the user an outlook
of how the paths improve with a higher threshold. One way to achieve this is to compute
the difference in duration of the fastest paths for two significantly different thresholds. This
enables the user to decide if she wants to run another query with modified threshold values.

4.5 Speed-up Techniques for Faster Query Answering
Each additional Pareto criterion enlarges the set of optimal paths significantly, resulting in
infeasible query times for large datasets. To speed up query computation we introduce an
optimality preserving extension, a relaxation of the model and a heuristic.
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4.5.1 Extended Dominance by Early Results
To prune labels during query computation dominance by early results was introduced in
[8]. All labels dominated by the target labels can be discarded, since they and all their
extensions can not become Pareto-optimal at the target. For TNT, this can be extended to
labels not belonging to any type. Extensions of such labels can not belong to any type and
can therefore be discarded. Therefore, for the multi-criteria Dijkstra, dominance by early
results can be extended to ignore labels for which the following holds:

walking duration > little(walking) and car duration > zero(car) or
car duration > little(car)

Recall that little(car) depends on pure car duration, which is computed in the first step of
the shortest-path computation described in Section 3.4. Hence, it is available for the (time-
consuming) multi-criteria Dijkstra. Note that this optimization is applicable independent
from the threshold definition.

4.5.2 Rounding on Transfers
As we exemplified in Table 1, many Pareto optimal paths are similar. The table indicates
that many solutions differ only by seconds. In our implementation, arc durations are stored
with a resolution of one second. This is enough to avoid the accumulation of rounding errors
(which for a resolution of, say, one minute, would tangibly impact result optimality). For road
networks, we calculate durations depending on distances and speed, leading to an accuracy of
seconds. The GTFS data [10], which we use to model the transit network, provides durations
in seconds.

However, public transportation in practice rarely provides accuracy by seconds and the
speed of humans in terms of walking and car usage varies, too. Inspired by discretization,
we propose to relax the model and to round up durations to full minutes immediately before
transfers. Compared to rounding at each node, this restricts error accumulation sufficiently.
Moreover, it can be interpreted as a coarse transfer buffer. With respect to reality, we
consider this an optimality preserving technique.

Arc relaxations will happen for less labels, and less comparisons have to be performed
when inserting a label to the set of labels attached to a node. Therefore, we expect rounding
during query time to notably speed-up computation time.

4.5.3 Using Implicit Walking Duration
As mentioned in Section 4.4, when filtering labels to their types, walking duration has to be
a Pareto criterion to obtain optimal results. Nevertheless, when walking duration is not a
Pareto criterion, we expect the difference to the optimal results to be minor. Therefore, we
propose the heuristic of using implicit walking duration by keeping it in a hidden variable,
which is not used as Pareto criterion. The priority queue order is chosen such that in case of
tie-breaking the label with less walking duration is released earlier from the queue. For labels
with equal Pareto criteria the one with less walking duration is kept. It is worth noting that
using implicit walking duration does not affect the quality of type 1 (only car) and type 2
(much transit, much walking, no car) paths. For type 1, this is clear since the optimal path
is computed separately using only duration as criterion. As labels of type 2 (that is, with car
duration = 0) cannot be dominated from labels with car duration > 0, we can ignore car
duration when proving the optimality for labels of type 2 in the following lemma.

ATMOS’13
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I Lemma 1. Let LA be the label set at a node u ∈ V after termination of the Pareto-Dijkstra
run considering the criteria D(uration), T(ransfer) P(enalty) and W(alking) D(uration).
Also let LB be the respective label set for a Pareto-Dijkstra run regarding only the criteria D
and TP. We claim that ∀l ∈ LA∃l′ ∈ LB : l′ ≤ l |(D,T P ).

Proof. Let l∗ ∈ LA be the label with TP (l∗) = TP (l) and minimal duration. Obviously when
neglecting walking duration and following the same path that lead to the creation of l∗ at u,
the label l∗ |(D,T P ) is a possible candidate for being in LB . Hence it must exist a label l′ ∈ LB

with TP (l′) ≤ TP (l∗) and D(l′) ≤ D(l∗). Therefore it holds l′ ≤ l∗ |(D,T P )≤ l |(D,T P ). J

To see that paths of type 3 are not necessarily optimal, consider the following tuples which
are incomparable with Pareto criteria duration, transfer penalty, car and walking duration:
(40 min, 2, 10 min, 5 min) and (30 min, 2, 10 min, 6 min). Using implicit walking duration,
only the latter would be optimal. However, assuming an extension by 5 minutes of walking,
the latter tuple would belong to no type and hence be filtered out, whereas the former would
not.

5 Experimental Results

In this section we evaluate the concept of using Types aNd Thresholds (TNT) and its
speed-up techniques with respect to result quality and query time.

5.1 Setup
Our implementation of the graph model and the optimal path algorithm, as described in
Section 3, is written in C++ and compiled with GCC 4.6.3 with the -O3 flag. Experiments
were performed on a machine with 96GB of RAM and two Intel Xenon E5649 CPUs with 8
cores, each having a frequency of 2.53 GHz (exactly one core was used at a time). The used
OS is Ubuntu 12.04, operating in 64-bit mode.

To instantiate the multi-modal networks we used publicly available OSM [14] and
GTFS data [10]. Details on our data sets can be found under http://ad.informatik.
uni-freiburg.de/publications. We used the data of the first available Monday. OSM
data was chosen to cover the terrain corresponding to the GTFS data. The road network
graphs are symmetric and reduced to their largest connected component. For walking, we
assumed an average speed of 5 km/h. For the car network, average velocity was chosen
depending on the road type, ranging from 5 to 110 km/h. We evaluated our algorithm on
the networks of Austin, Dallas, Toronto and New York City (in the following abbreviated
as just New York). Table 4 contains an overview of the most important properties of these
networks.
For each dataset, experiments were performed using 1000 queries between two random
locations, each at most 1 km away from at least one transit station. We chose this restriction
to avoid a significant amount of queries in areas where transit is not available, in which case
the only interesting solutions would be car-only and walking-only. Departure times were
chosen uniformly at random from the time range between 6:00 a.m. and 10:00 p.m.

5.2 Results
We evaluate the concept of TNT with respect to query time and quality of the found sets of
paths. Experiments were performed for the normal graph model (Section 3.1) and the model
with rounding on transfers (Section 4.5.2). We refer to the latter as the relaxed model. For

http://ad.informatik.uni-freiburg.de/publications
http://ad.informatik.uni-freiburg.de/publications
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Table 4 Overview of important properties of the evaluated networks. Recall that the time-
consuming step of the path computation operates on the cores instead of the whole road networks.

Graph Austin Dallas Toronto New York

Complete Nodes 0.7M 2.8M 0.9M 4.0M
Arcs 2.9M 12.0M 3.7M 17.3M

Transit

Stations 2.7K 11.6K 10.9K 16.9K
Nodes 14.3K 49.0K 80.4K 118.6K
Arcs 21.2K 73.0K 119.5K 175.9K
Lines 235 563 1120 1989
Trips 6062 10849 40740 62824

Car Nodes (core) 3.3K 20.8K 10.9K 28.1K
Walking Nodes (core) 4.0K 20.2K 12.2K 32.5K

Table 5 Average query times for all datasets.

Model Algo Austin Dallas Toronto New York

Normal Basic 0.6s 3.7s 16.6s 108.0s
IWD 0.1s 0.8s 0.6s 1.7s

Relaxed Basic 0.4s 2.2s 4.0s 18.0s
IWD 0.1s 0.8s 0.6s 1.4s

both models we compare the basic algorithm (Section 3.4) and the heuristic of using implicit
walking duration (IWD, Section 4.5.3).

Table 5 shows average query times for all of our four datasets.
It indicates that both, rounding on transfers and the IWD heuristic reduce query times.

While the heuristic has a stronger effect, the lowest query times (roughly one second) are
achieved by applying both. It is noteworthy that the speed-up increases significantly with
the size of the network (roughly from factor 5 to factor 75). Query times are comparable to
those presented in [4].

For the largest dataset (New York) we evaluate the basic algorithm and the IWD heuristic
in more detail, for both models and with respect to both result quality and query time; see
Table 6. As quality measures of the heuristic we use precision1 and recall2. It can be seen
that (with the IWD heuristic in the relaxed model) for a few outliers the query time rises
up to seven seconds, but the majority of queries can be answered in roughly one second.
Precision and recall indicate that for both models the IWD heuristic leads to only a small
fraction of non-optimal results.

To evaluate if the computed sets of paths are small and representative, Table 7 shows the
distribution of paths with respect to our types for the basic algorithm on New York. Paths
of type 3 that also belong to type 2 were only counted for type 3. For example, the table
shows that around 15.8% of the queries lead to exactly one path of type 1, three paths of
type 2 and one path of type 3. Note that for almost 50% of the queries there is no optimal
path of type 3. One reason for this is that if pure car duration is relatively small (below 20
minutes, see section 4.3 and 4.4), no path solely belonging to type 3 can exist.

To see how paths of type 3 improve when increasing the little(car) threshold, we experi-

1 Precision = |relevant-paths ∩ found-paths| / |found-paths|
2 Recall = |relevant-paths ∩ found-paths| / |relevant-paths|

ATMOS’13



134 Result Diversity for Multi-Modal Route Planning

Table 6 Query times and result quality for New York. For all measured variables we list average,
50-percentile, 90-percentile and 99-percentile values.

Time [s] Precision Recall
Model Algo avg 50 90 99 avg 50 90 99 avg 50 90 99

Normal Basic 108.0 32.7 289.0 865.0 1 1 1 1 1 1 1 1
IWD 1.7 1.0 3.3 10.0 0.99 1 1 1 0.96 1 1 1

Relaxed Basic 18.0 8.8 40.0 140.0 1 1 1 1 1 1 1 1
IWD 1.4 1.0 2.5 6.6 0.99 1 1 1 0.96 1 1 1

Table 7 Percentage of queries which lead to the different combinations of paths of type 2 and
type 3. For each query one path of type 1 was optimal.

#
ty
pe

-3
pa

th
s 3 - - 0.1% 1.0% 0.2% - -

2 - 0.9% 5.6% 7.0% 2.2% 0.4% -
1 - 1.2% 15.8% 14.4% 2.7% 0.3% 0.1%
0 1.6% 10.6% 20.9% 12.5% 2.4% 0.1% -

1 2 3 4 5 6 7
#type-2 paths

mentally evaluated the maximal gain in time when extending the threshold by 10 minutes.
For this, we considered queries which already for little(car) had labels of type 3 and compared
the fastest such label (= with the smallest duration) with the fastest label when using
the extended threshold. Figure 2 shows the results for New York. For 42% of the queries,
increasing car travel time up to 10 minutes allows to reduce the total duration by 20-30
minutes. For practically every query increasing little(car) leads to faster paths. As explained
in Section 4.4, this information could be communicated to the user (for the given query),
with the option to relaunch the query with an accordingly modified threshold value.

Figure 2 Maximal possible gain in time for labels of type 3, when allowing additional car travel
time of up to 10 minutes. The heat map shows the gain in time and respective additional car travel
time (with respect to little(car)) for the different queries.

0 10 20 30 40 50 60 70
Gain in time (min)

0
2
4
6
8

10

Ad
d.

 c
ar

 d
ur

at
io

n 
(m

in
)

0% 1% 2% 3%

6 Conclusions & Future Work

We studied multi-modal route planning involving (almost) unrestricted combinations of
walking, car, and transit. The goal was to efficiently compute small yet representative sets of
optimal paths. We illustrated that multiple criteria are necessary to obtain diverse sets of
paths. To remove unreasonable paths and to extract a small representative subset of the
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remaining paths, we introduced a new approach of using Types aNd Thresholds (TNT).
To reduce infeasible query times induced by multiple optimality criteria, we introduced an
extension of dominance by early results, a relaxation of the model (rounding on transfers) and
a heuristic. We experimentally evaluated TNT and the speed-up techniques. While the basic
algorithm results in infeasible query times, relaxing the model and using the (almost optimal)
heuristic reduces them to an average of roughly one second. Our experiments confirmed that
our result sets are indeed small and representative, at least from the point of view of our
model. Possible future work comprises examining other threshold definitions, extending the
filtering step and considering fare zones. Lowering query times when using TNT is a further
challenge. For the latter, one possibility could be to extend Transfer Pattern Routing [2]
to our multi-modal scenario. Moreover, reliability and robustness (i.e., if connections are
missed, how good are the alternatives) are important issues to consider.

Acknowledgements We want to thank an anonymous reviewer for his/her extensive feed-
back.
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