
Management of Inconsistencies in Data
Integration ∗

Ekaterini Ioannou1 and Sławek Staworko2

1 Technical University of Crete, Greece
ioannou@softnet.tuc.gr

2 Mostrare, INRIA Lille – Nord Europe
University of Lille 3, France
slawomir.staworko@inria.fr

Abstract
Data integration aims at providing a unified view over data coming from various sources. One
of the most challenging tasks for data integration is handling the inconsistencies that appear in
the integrated data in an efficient and effective manner. In this chapter, we provide a survey on
techniques introduced for handling inconsistencies in data integration, focusing on two groups.
The first group contains techniques for computing consistent query answers, and includes mecha-
nisms for the compact representation of repairs, query rewriting, and logic programs. The second
group contains techniques focusing on the resolution of inconsistencies. This includes methodolo-
gies for computing similarity between atomic values as well as similarity between groups of data,
collective techniques, scaling to large datasets, and dealing with uncertainty that is related to
inconsistencies.

1998 ACM Subject Classification H.2.m [Database Management]: Miscellaneous

Keywords and phrases Data integration, Consistent query answers, Resolution of inconsistencies

Digital Object Identifier 10.4230/DFU.Vol5.10452.217

1 Introduction

Data integration aims at providing a unified view over data coming from various sources, for
example data from different applications, collections, or databases [55]. Providing efficient
data integration has received considerable attention by the database community and a variety
of approaches have been suggested, spanning from integrating relational databases with the
same schema to integrating unstructured, highly heterogeneous data collections. One of the
most challenging tasks that existing techniques for data integration focused on is the efficient
handling of inconsistencies that appear in the integrated data. The focus of this survey is to
present and discuss existing techniques that are able to manage/handle inconsistencies in an
efficient and effective manner.

Inconsistencies in data integration can appear for various reasons. One of the most
common sources is the use of different schemata and formats in the data that must be
integrated. As an example, consider a scenario where we need to integrate three databases

∗ This research has been co-financed by Ministry of Higher Education and Research, Nord-Pas de Calais
Regional Council, FEDER through the Contrat de Projets Etat Region (CPER) 2007–2013, Codex
project ANR-08-DEFIS-004, the European Union (European Social Fund – ESF) and Greek national
funds through the Operational Program “Education and Lifelong Learning” of the National Strategic
Reference Framework (NSRF) – Research Funding Program: Thalis. Investing in knowledge society
through the European Social Fund.

© Ekaterini Ioannou and Sławek Staworko;
licensed under Creative Commons License CC-BY

Data Exchange, Integration, and Streams. Dagstuhl Follow-Ups, Volume 5, ISBN 978-3-939897-61-3.
Editors: Phokion G. Kolaitis, Maurizio Lenzerini, and Nicole Schweikardt; pp. 217–235

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol5.10452.217
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-61-3

218 Management of Inconsistencies in Data Integration

providing basic information about Muppets, i.e., the CBS trivia, the Vanity Fair magazine,
and the DMV database. A fraction of the data from these databases is as follows:

CBS
Name Job DoB
Kermit Manager 14.03.1965
J. Statler Old Man 12.04.1946
Miss Piggy Diva 21.06.1976

Gonzo Stunman 01.03.1982

VF
Name Job DoB
Kermit Manager 14 May 1965
J. Statler Old Man 18 June 1942
Mlle Piggy Star 1 April 1936

Gonso Stunman 1 March 1982

DMV
Name Job DoB
Kermit Manager 03/14/65
J. Statler Old Man 06/18/42
Ms. Piggy Diva 01/09/90
Gonzo Daredevil 03/01/82

We can easily observe that integrating the data of these three databases causes inconsis-
tencies. For instance, inconsistencies arise from the use of different formats that represent
the dates (i.e., the DoB attributes), and the existence of spelling mistakes (i.e., in the name
of Gonzo). Two additional reasons of inconsistencies are the use of variance, such as for
representing “Miss Piggy”, and the use of close synonyms, such as “Diva” with “Star”, and
“Stunman” with “Daredevil”.

Modern systems, e.g., Web 2.0 applications, have introduced new challenges to handling
inconsistencies, which include the use of unstructured data, and higher levels of heterogeneity.
As also illustrated in the previous example, to effectively handle inconsistencies we need to
consider text variations, i.e., using similar strings for the same objects. Variations in text
can appear due to introduced spelling mistakes, or due to the use of acronyms (e.g., “ICDE”
for ‘International Conference on Data Engineering”), or abbreviations (e.g., “J. Web Sem.”
for “Journal of Web Semantics”). Another important source of data inconsistencies is the
evolving nature of the data. In essence, as time passed, data is added, removed, or modified
[69]. For example, the famous ex-lady of US was born as “Jacqueline Lee Bouvier” but this
was later changed to “Jackie Kennedy” and then to “Jackie Onassis”. In addition, each source
providing data for integration will provide data in a way most adequate for its purpose. For
instance, a publication will describe a person using the full name and affiliation, whereas an
email will use the email address. This is also amplified by the lack of a global coordination
for identifier assignment that forces each source to create and use its own identifiers.

In this chapter, we provide a survey on techniques introduced for handling inconsistencies
in data integration, as for example the ones discussed in the previous paragraphs. More
specifically, we present and discuss two group of techniques. The first group focuses on
techniques for computing consistent query answers, and the second group focuses on the
resolution of inconsistencies.

For the first group of techniques, we assume that the user specifies additionally a set of
integrity constraints on the global schema. Because integrity constraints play an important
role in the way the user formulates queries, it is essential that this information is incorporated
into the processing. One easy methodology to do this is to remove from consideration any
solutions that do not satisfy the integrity constraints. This naive approach may, however,
easily lead to trivialization because even in very simple data integration setting, such as data
merging, there is no consistent solution. Consequently, we focus on techniques for consistent

E. Ioannou and S. Staworko 219

query answers that adjust the semantics of queries to alleviate the possible impact of the
inconsistencies on the query answers.

The second group of techniques focuses on the resolution of inconsistencies, and in
particular on detecting and merging data fragments that describe the same real-world object.
In its simplest form, this involves computing the similarity and resemblance between data
fragments, and then merging the data fragments that have a similarity value exceeding a
predefined threshold. The whole process is performed offline, and thus at run-time, query
answering is performed over the resulted merged data. A significant amount of research
proposals focusing on efficiently and effectively addressing this challenge already exist. They
can be found in the literature under different names, such as merge-purge [46], deduplication
[71], entity identification [59], reference reconciliation [30], or entity resolution [76].

The remaining chapter is organized as follows. Section 2 presents and discusses techniques
related to consistent query answers, including mechanisms for the compact representation of
repairs, query rewriting, and logic programs. Section 3 techniques related to the resolution
of inconsistencies, and more specifically methods for computing atomic similarity, computing
similarity between groups of data, collective techniques, scaling to large datasets, and dealing
with uncertainty that is related to inconsistencies. Finally, Section 4 provides conclusions.

2 Consistent query answers

In this section we discuss the framework of consistent query answers introduced by Arenas
et al. in [8] to alleviate the impact of inconsistencies in a database on the quality of query
answers. We begin by recalling standard database notions (Section 2.1) and the framework
of consistent query answers (Section 2.2). Next, we discuss exists methods of computing
consistent query answers and outline complexity results that indicate inherent challenges
laying in this task (Section 2.3).

2.1 Basic notions

We recall the standard notions of relational databases [1]. We assume a fixed database
schema S, which is a set of relation names of fixed arity. Every relation attribute is typed
but for simplicity we assume two domains only: strings and rational numbers. We define in
the standard fashion the first-order language L of formulas over S and the usual build-in
comparison predicates (=, 6=, <, ≤, >, ≥ with their natural interpretation). A formula
is: closed if it has no free variables, ground if it has no variables whatsoever, and atomic
if it consists of one predicate only (other than the built-in predicates). In the sequel, we
will denote: relation symbols by R, R1, R2,. . . , atomic formulas by A1, A2,. . . , tuples of
constant by t, t1, t2,. . . , tuples of variables by x̄, ȳ,. . . , and Boolean combinations of built-in
predicates by ϕ.

A database instance I is a structure over S but often we will view I as a finite set of facts.
An integrity constraint is any closed formula in L. A database instance I is consistent with
a set of integrity constraints Σ iff I |= Σ in the standard model-theoretic way; otherwise I is
inconsistent. We identify the following basic classes of constraints (all are closed formulas):

Universal constraints: ∀x̄A1 ∧ . . . Ak ∧ ϕ→ Ak+1 ∨ . . . ∨An.
Tuple-generating dependencies: ∀x̄A1 ∧ . . . Ak ∧ ϕ→ ∃ȳA. The dependency is full when
there are no existentially quantified variables.
Denial constraints: ∀x̄A1 ∧ . . . Ak ∧ ϕ→ false.

Chapte r 08

220 Management of Inconsistencies in Data Integration

Functional dependencies (FDs): ∀x̄, ȳ, ȳ′, z̄, z̄′. R(x̄, ȳ, z̄)∧R(x̄, z̄, z̄′)→ ȳ = z̄ with a more
common formulation R : X → Y , where X and Y are the sets of attributes corresponding
respectively to x̄ and ȳ (and z̄).
Key constraints, a special subclass of functional dependencies: R : X → Y is a key
constraint if X ∪Y is the set of all attributes of R. Key constraint R : X → Y is primary
if it the sole constraint imposed on R.
Inclusion dependencies (INDs): ∀x̄, ȳ. ∃z̄.R(x̄, ȳ)→ P (ȳ, z̄) with a common formulation
R[Y] ⊆ P [Y ′], where Y and Y ′ are the sets of attributes of respectively R and P that
correspond to ȳ.

A query is a formula of L and we distinguish the class of conjunctive queries i.e., formulas of
the form ∃x̄A1 ∧ . . . ∧Ak. A tuple t is an answer to query q in an instance I iff I |= q(t). In
the sequel, we do not treat separately closed (i.e., Boolean) queries, but simply, we define
true to be the answer of a closed query to be synonymous to the empty tuple () being the
only answer to the query.

2.2 The framework of consistent query answers
The framework of consistent query answers is based on the notion of a repair of a (possibly)
inconsistent database, which is essentially a consistent database instance minimally different
from the original database instance. The original definition used the notion of symmetric
difference between database instances to define acceptable repairs. Formally, the symmetric
difference between two database instances I and I ′ is ∆(I, I ′) = (I \ I ′)∪ (I ′ \ I). Essentially,
∆(I, I ′) is the set of all facts that need to be either deleted or inserted to obtain I ′ from
I. Now, given database instance I and two possible candidate repairs I ′ and I ′′, we use
the symmetric difference to identify the candidate repair that is easier to obtain from I:
essentially, I ′′ is closer to I than I ′ iff ∆(I, I ′′) ⊂ ∆(I, I ′).

I Definition 1. Given a set of integrity constraints Σ and two database instances I and
I ′, we say that I ′ is a repair of I w.r.t. Σ iff I ′ |= Σ and there is no database instance I ′′
consistent with Σ and such that ∆(I, I ′′) ⊂ ∆(I, I ′). By RepairsΣ(I) we denote the set of
all repairs of I w.r.t. Σ. J

I Example 2. Take a simplified Muppet schema Muppet(Name,Age) with one key constraint
Σ0 = {Muppet : Name → Age}. Consider an inconsistent database

I0 = {Muppet(Miss Piggy, 36),Muppet(Miss Piggy, 86),Muppet(Miss Piggy, 26),
Muppet(J. Statler, 73),Muppet(J. Statler, 83),Muppet(Kermit, 43)}.

I has 6 repairs w.r.t. Σ0 that follow:

I1 = {Muppet(Miss Piggy, 36),Muppet(J. Statler, 73),Muppet(Kermit, 43)},
I2 = {Muppet(Miss Piggy, 86),Muppet(J. Statler, 73),Muppet(Kermit, 43)},
I3 = {Muppet(Miss Piggy, 26),Muppet(J. Statler, 73),Muppet(Kermit, 43)},
I4 = {Muppet(Miss Piggy, 36),Muppet(J. Statler, 83),Muppet(Kermit, 43)},
I5 = {Muppet(Miss Piggy, 86),Muppet(J. Statler, 83),Muppet(Kermit, 43)},
I6 = {Muppet(Miss Piggy, 26),Muppet(J. Statler, 83),Muppet(Kermit, 43)}.

J

Intuitively, repairs represent (all) possible ways that the inconsistent database may be
repaired. A consistent answer to a query is an answer that is present in every such possibility.

E. Ioannou and S. Staworko 221

I Definition 3. Given an instance I, a set of integrity constraints Σ, and a query q, we say
that a tuple t is a consistent answer to a query q in I w.r.t. Σ iff t is the answer to q in every
repair of I w.r.t. Σ. J

Hence, if we take the query

q0(x) = ∃y. Muppet(x, y) ∧ y ≥ 65

asking for all Muppets eligible for senior discount, only J. Statler is the consistent answer to
q0 in I0 w.r.t. Σ0. On the other hand, Miss Piggy is not a consistent answer because of the
repair I1.

2.3 Computing consistent query answers
The main challenge in using the framework of consistent query answers lies in the fact that
an inconsistent database may have an exponential number of repairs even for very simple
sets of integrity constraints.

I Example 4. Fix n ≥ 0 and consider a database instance over the schema R(A,B):

In = {R(1, 0), R(1, 1), . . . , R(n, 0), R(n, 1)}.

In the presence of a single key constraint R : A→ AB, the instance In has 2n repairs. J

Consequently, a significant amount of research has been put into finding methods aiming to
use the framework without materialization of all repairs. To identify classes of queries and
integrity constraints for which this aim can be attained two basic decision problems have
been proposed and their complexity studied: consistent query answering and repair checking.
In virtually all research, the measure of data complexity has been adopted. This measure,
widely adopted for relational databases [75], expresses the complexity of a problem in terms
of the database size only, while the query and the integrity constraints are assumed to be
fixed. The first decision problem allows to identify for which classes of queries and integrity
constraints computing consistent query answers is tractable.
Consistent query answering Check whether true is the consistent answer to a given closed

query in a given database w.r.t. to a given set of integrity constraints i.e., the complexity
of the following set

DΣ,Q = {I | ∀I ′ ∈ RepairsΣ(I). I ′ |= Q}.

We point out that the restriction to closed (Boolean) queries only does not make DΣ,Q a
special, simpler case of the more general problem of computing consistent query answers.
Along the lines of [10] and [20], the treatment of an open query q(x̄) can be reduced to
a series of checks for closed query q(t) with t ranging over some set of candidate tuples
obtained by evaluating a simple derivative of q(x̄). The second problem aims at identifying
the complexity inherent to integrity maintenance.
Repair checking Check whether a database instance is a repair of a given database instance

w.r.t. the given set of integrity constraints i.e., the complexity of the following set

BΣ = {(I, I ′) : I ′ ∈ Repairs(I,Σ)}.

This problem is a natural formulation of model checking for repairs and negative results
highlight limitation of integrity enforcement mechanisms [2]. Another reason for the interest

Chapte r 08

222 Management of Inconsistencies in Data Integration

in this problem is its close connections to the data cleaning task. Finally, if the class of
integrity constraints includes inclusions dependencies, then repair checking is know to be
logspace-reducible to the complement of consistent query answers [19], which makes it an
alternative tool for characterizing the complexity of consistent query answering.

Several different methods for computing consistent query answers have been proposed.
They can be divided into three categories: query rewriting, compact representation of all
repairs, and logic programs. We begin by presenting the first two approaches as they yield
computing consistent query answers, and the aforementioned decisions problems, tractable
for applicable classes of queries and integrity constraints. Next, we summarize a number of
intractability results, which essentially precludes the use of approaches from the first two
categories. The solutions in the third category use logic programming, a framework know to
be capable of solving even problems complete for Πp

2, and therefore more suited for handling
difficult cases of consistent query answers.

2.3.1 Compact representation of all repairs
While approaches based on compact representation of all repairs has not been historically the
first one, we begin with this direction because it allows to present some useful notions and
tools. The most popular approach belonging to this category is based on the notion of the
conflict graph (for FDs only). First, we define the notion of a conflict: two facts R(t1) and
R(t2) are mutually conflicting w.r.t. a functional dependency R : X → Y iff t1[X] = t2[X]
and t1[Y] 6= t2[Y].

I Definition 5 ([10]). Given a database instance I and a set of functional dependencies Σ,
the conflict graph of I w.r.t. Σ is a graph G(I,Σ) whose set of nodes is I and edges connect
pairs of mutually conflicting facts in I. J

The conflict graph corresponding for the instance from Example 2 is presented in Figure 1.

Muppet(Kermit, 43)

Muppet(J. Statler, 73) Muppet(J. Statler, 83)

Muppet(Miss Piggy, 36) Muppet(Miss Piggy, 26)

Muppet(Miss Piggy, 86)

Figure 1 Conflict graph for the instance from Example 2.

The main reason for using conflict graphs lays in the simple observation that any maximal
independent set of G(I,Σ) is a repair of I w.r.t. Σ and vice versa. Let us recall that a
maximal independent set of a graph is any maximal set of nodes containing no edge and
note that any independent set can be extended to a maximal independent set.

The main use of conflict graph, and its variants, is to perform a repair existence check:
given two sets of facts, required facts {A1, . . . , Ak} and forbidden facts {Ak+1, . . . , Am},
check whether there is a repair that contains all required facts and none of the forbidden ones,
i.e., a repair that satisfies the query Ω = A1 ∧Ak ∧ ¬Ak+1 ∧ . . . ∧ ¬Am. This test attempts
to construct an independent set of nodes consisting of the required facts A1, . . . , Ak and
facts Bk+1, . . . , Bm blocking addition of facts Ak+1, . . . , Am, respectively. A fact B blocks
addition of A if {A,B} is an edge (i.e., A and B are conflicting) and thus the presence of B
precludes the presence of A in the constructed instance. The test is performed by exhaustive
enumeration of all combinations of edges adjacent to the forbidden facts. The test succeeds
if an independent set is found, which implies the existence of a repair that satisfies Ω and

E. Ioannou and S. Staworko 223

consequently does not satisfy the following (disjunctive) Boolean query:

Ψ = ¬Ω = ¬A1 ∨ . . . ∨ ¬Ak ∨Ak+1 ∨ . . . ∨Am.

This implies that true is not a consistent answer to Ψ. This check allows to compute
consistent query answers to arbitrary Boolean quantifier-free queries: if we take a Boolean
quantifier-free query in CNF Φ = Ψ1 ∧ . . .∧Ψn, then true is not the consistent query answer
to Φ if and only if there is some Ψi such that true is not consistent query answer.

This approach has been proposed by Chomicki and Marcinkowski [19] to handle denial
constraints that requires a generalization of conflict graphs to conflict hypergraps. This
algorithm is the basis of the Hippo system allowing to compute consistent answers to the class
of projection-free SQL queries [21, 20]. The conflict hypergraph has been further extended to
handle conflicts created in the presence of universal constraints. This work has been the basis
of a polynomial time repair check algorithm for sets of denial constraints, join dependencies,
and acyclic sets of full tuple-generating dependencies [72].

Another compact representation of all repairs is nucleus [77, 78]. In this approach all
repairs are represented by a tableau (a table with free variables), and queries are evaluated
in the standard way (answers with variables are discarded). We note that for some classes of
constraints, constructing the nucleus may, however, require time exponential in the size of
the input database.

2.3.2 Query rewriting
Query rewriting was the original approach proposed to compute consistent query answers,
and, in principle, it functions as follows. Given a query q ∈ Q and a set of integrity constraints
Σ, we construct a query q′ ∈ Q′ such that for any database I evaluating q′ over I yields
the consistent query answers to q in I w.r.t. Σ. This approach is parametrized by the
class of integrity constraints (containing Σ) and the class of queries Q the user can use to
formulate her queries but also the class of target language for the rewritten queries. Typically,
Q′ is richer and more expressive than Q but the query rewriting aims at using classes of
target languages that enjoy efficient query evaluation (in terms of data-complexity), and
consequently, the query rewriting yields efficient means of computing consistent query. Note
that the rewritten query q′, called often the rewritten query, is constructed independently of
the database instance.

I Example 6. Recall from Example 2 the schema Muppet(Name,Age) and the key constraint
Muppet : Name → Age, and consider the query q0(x) = ∃y. Muppet(x, y) ∧ y ≥ 65. Note
that the key constraint written as logic formula has the following form

@x, y, y′. Muppet(x, y) ∧Muppet(x, y′) ∧ y 6= y′.

This formulation allows to identify for a fact Muppet(x, y) the facts, Muppet(x, y′) ∧ y 6= y′,
that are conflicting with Muppet(x, y) and may be present in a repair instead of Muppet(x, y).
Consequently, we wish to know if Muppet(x, y) satisfying the query may be replaced in
some repair by a fact Muppet(x, y′) that does not satisfy the query, i.e., Muppet(x, y′) ∧ y 6=
y′ ∧ y′ < 65. Together, we obtain the rewritten query

q′0(x) = ∃y. Muppet(x, y) ∧ y ≥ 65 ∧ ¬(∃y′. Muppet(x, y′) ∧ y 6= y′ ∧ y′ < 65).

J

Chapte r 08

224 Management of Inconsistencies in Data Integration

The fact that the rewriting is constructed independently of the database instance has its
strong and weak points. On the one hand, this approach has no overhead in the architecture
when adapting existing applications: it suffices to replace its queries by the rewritten versions.
On the other hand, rewriting introduces a next level of complexity to the queries, which
may have a negative impact on the performance of the system. It is also known that there
exists relational queries that are not rewritable within the class of relational queries while
computing their consistent answers is tractable.

Query rewriting was the first approach proposed to compute consistent query answers [8].
It uses the notion of residues obtained from constraints to identify potential impact of
integrity violations on the query results. The residues are used to construct rewriting rules for
the atoms used in the query. This approach has been shown to be applicable to quantifier-free
conjunction of literals in the presence of binary universal constraints.

Chomicki and Marcinkowski [19] observed that if the set of constraints contains one FD
per relation only, the conflict graph is a disjoint union of full multipartie graphs. This simple
structure allows to construct rewriting for conjunctive queries without repeated relation
names and no variable sharing. They also show that relaxing the conditions imposed on
the queries and constraints leads to intractability: consistent query answering becomes
coNP-complete.

The result of Chomicki and Marcinkowski has been further generalized by Fuxman and
Miller [37] to allow restricted variable sharing (joins) in the conjunctive queries. The class
Cforest of allowed queries is defined using the notion of join graph of a query whose vertices
are the literals used in the query and an edge runs from a literal Ri to literal Rj if there is a
variable that occurs on a non-key attribute of Ri and any attribute of Rj (both occurrences
have to be different if i = j). The class Cforest consist of queries whose join graph is a forest,
the joins are full and the join conditions are non-key to key.

Fuxman et al. [36], presented the ConQuer system that computes consistent answers to
queries from Cforest. The queries can also use aggregates, and then range-consistent answers
are computed [10]: minimal intervals containing the set of values of the aggregate obtained
over the repairs. This allows the system to compute consistent answers to 20 out of 22 queries
of the TCP-H decision support benchmark. The experimental evaluation of the system shows
that the system performs reasonably well and is scalable w.r.t. both the size of the database
and the number of conflicts in the database.

2.3.3 Complexity results
The rewriting scheme presented in [8] renders consistent query answering polynomial for
quantifier-free conjunctive queries with negative atoms in the presence of binary universal
constraints, which include functional dependencies and full inclusion dependencies. In a
followup work, Cali et al. [17] showed that allowing arbitrary inclusion dependencies, together
with functional dependencies, leads to undecidability. This large increase in complexity
comes from the fact that a violation of non-full inclusion dependencies, caused by absence of
a tuple, can be repaired by inserting a tuple chosen among a possibly infinite set of tuples.
Furthermore, if the set of constraints has cycles, a cascading effect can occur.

I Example 7. Consider schema consisting of one relation symbol R(A,B) and one (cyclic)
inclusion dependency R[B] ⊆ R[A], which written as a formula is ∀x, y. R(x, y)→ ∃z. R(y, z).
Now, take this inconsistent instance I0 = {R(0, 1)}. The empty instance I ′0 = ∅ is one
of repairs of I0 but also for any n ≥ 1 so is the instance I ′n = {R(0, 1), R(1, 2), . . . , R(n −
1, n), R(n, n)}. Hence, not only does I0 have an infinite number of repairs but also there is
no bound on their size. J

E. Ioannou and S. Staworko 225

One way to tackle the problem of infinite choice is to consider repairs obtained by deleting
facts only, a setting studied in [19]. In the previous example, this yields only the empty repair
I ′0 = ∅. In this setting, the complexity of consistent query answering becomes Π2

p-complete.
Another approach proposed in [16] by Bravo and Bertossi uses a null value to instantiate the
existentially quantified attributes in the facts to be inserted. The semantics of constraint
satisfaction is adapted to the null value so that the presence of tuple with null value may
satisfy the constraints but not violate it. For instance, the repairs of I0 from the previous
example obtained this way in this setting are the empty repair I ′0 = ∅ and the repair
I ′′0 = {R(0, 1), R(1,null)}. On the one hand, the presence of R(0, 1) requires the presence of
a fact of the form R(1, y) and the fact R(1,null) fits the role perfectly. On the other hand,
the presence of R(1,null) does not require the presence of any other fact.

There are two natural classes of constraints, universal dependencies and full tuple-
generating dependencies, that similarly to full inclusion dependencies, may be violated by
the absence of some tuples but repairing a violation requires choosing a tuple to insert
from a finite set. A recent study by Staworko and Chomicki [72] showed that consistent
query answering is Πp

2-complete for arbitrary universal dependencies, coNP-complete for
denial constraints and arbitrary full tuple-generating dependencies, and in PTIME for denial
constraints, join dependencies, and acyclic full tuple-generating dependencies.

Establishing the computational complexity of consistent query answering has also served
to determine the boundaries of query rewriting for consistent query answering. The data
complexity of computing answers to relational queries is known to be in AC0, a complexity
class properly contained in P, and therefore, it is impossible for a relational query to express
a coNP-hard problem. For instance, Chomicki and Marcinkowski have shown in [19] coNP-
completeness of consistent answering to a conjunctive query in the presence of primary
key constraints (i.e., one key constraint per relation), which precludes the applicability of
rewriting for the full class of conjunctive queries. Because the class of conjunctive queries
and the class of primary key constraints is most commonly found in practice, a considerable
amount of effort has been put into finding a subclasses allowing tractable consistent query
answering, e.g., Fuxman and Miller have proposed in [37] a practical subclass Cforest of
conjunctive queries with tractable consistent query answering. This direction of research
goes often together with an attempt of establishing a dichotomy for consistent query answers:
essentially, finding a subclass of (conjunctive) queries containing only queries for which
consistent query answering is either intractable or can be accomplished with query rewriting.
An extension C∗ of the class Cforest was believed to have this property, until very recently
Wijsen has found otherwise [80]. Wijsen has also characterized sufficient and necessary
conditions for first-order rewritability for a subclass acyclic conjunctive queries [79]. An
interesting approach to the dichotomy question, based on structural properties of conflict
graphs, is currently pursed by Pema [66].

As for repair checking, while the repair characterization based on the conflict (hyper)graph
gives a PTIME repair checking for the class of denial constraints [19], adding arbitrary
inclusion dependencies leads to intractability, and under the subset repair semantics (deletions
only) repair checking is shown to be coNP-complete for functional dependencies and arbitrary
inclusion dependencies. Various restrictions allow to bring the complexity back to PTIME,
e.g., the class of functional dependencies and acyclic inclusion dependencies [19], the class of
denial constraints and full tuple-generating dependencies [72], the class of weekly acyclic LAV
depenencies [2], and semi-LAV dependencies [39]. Repair checking is also coNP-complete for
the class of universal constraints [72].

Chapte r 08

226 Management of Inconsistencies in Data Integration

2.3.4 Logic programs
Several different approaches have been developed to compute consistent query answers using
logic programs with disjunction and classical negation [9, 11, 33, 41, 42, 74]. Approaches
based on logic programs can be seen as a special case of query rewriting: essentially, we
incorporate in the program that defines the original query, a special program that defines
repairs. The main difference lays in the fact that evaluation of disjunctive logic programs is
known to be Πp

2-complete while query rewritting uses a target language with tractable query
evaluation.

Virtually all approaches falling into the category of logic programs use disjunctive rules
to model the process of repairing violations of constraints and stable models of the program
correspond to the repairs of the inconsistent database. A query evaluated under the cautious
semantics returns the answers present in every model, which naturally yields the consistent
query answers.

I Example 8. Consider the schema Muppet(Name,Age) from Example 2 with the key
constraint Muppet :Name → Age. The repairing logic program consists of the following rules:

Triggering rule which identifies conflicts and specify the possible repairing actions

¬Muppet′(X,Y) ∨ ¬Muppet′(X,Y ′)← Muppet(X,Y) ∧Muppet(X,Y ′) ∧ Y 6= Y ′.

Stabilizing rule which ensures that the constructed instance is consistent

¬Muppet′(X,Y)← Muppet′(X,Y) ∧Muppet′(X,Y ′) ∧ Y 6= Y ′.

Persistence rule which copies facts from the original instance unless the fact has been
banned by the repairing process

Muppet′(X,Y)← Muppet(X,Y) ∧ not¬Muppet′(X,Y).

Note that this program uses the classical negation ¬ and the negation as failure not.
Essentially, ¬A means that it is known that A is not true while notA captures the assertion
that it is not know whether A is true (or the failure of proving that A is true).

The program above is evaluated together with the facts present in the instance and the
predicates used in the query need to be interpreted accordingly, e.g., the query q0(x) becomes

Q0(X)← Muppet′(X,Y) ∧ Y ≥ 65.

There is an one-to-one correspondence between the stable models of this program and the
repairs. For instance, the stable model corresponding to the repair I1 of the instance I0
(Example 2) is

M1 = {Muppet(Miss Piggy, 36),Muppet(Miss Piggy, 86),Muppet(Miss Piggy, 26),
Muppet(J. Statler, 73),Muppet(J. Statler, 83),Muppet(Kermit, 43),
Muppet′(Miss Piggy, 36),¬Muppet′(Miss Piggy, 86),¬Muppet′(Miss Piggy, 26),
Muppet′(J. Statler, 73),¬Muppet′(J. Statler, 83),Muppet′(Kermit, 43),
Q0(J. Statler)}.

J

The main advantage of using logic programs is the generality of this approach: typically
arbitrary first-order (or even Datalog¬) queries are handled in the presence of universal

E. Ioannou and S. Staworko 227

constraints. Also, the repairing programs can be easily evaluated with existing logic program
environments like Smodels or dlv [32]. We note, however, that the systems computing
answers to logic programs usually perform grounding, which may be cost prohibitive if we
wish to work with large databases. Another disadvantage of this approach is the fact that
the class of disjunctive logic programs is known to be Π2

p-complete.
These difficulties are addressed in the INFOMIX system [33] with several optimizations

geared toward effective execution of repairing programs. One is localization of conflicts
with identification of the affected database that consists of all tuples involved in constraint
violations and all syntactically propagated conflict-bound tuples. Another optimization
involves using bit-vectors to encode tuple membership to each repair and subsequent use of
bitwise aggregate function to find tuples present in every repair. This optimization, however,
may be insufficient to handle databases with large numbers of conflicts because typically the
number of repairs is exponential in the number of conflicts.

Recently, this deficiency has been addressed with repair factorization [34]. Essentially,
the affected database is decomposed into parts that are conflict-disjoint (no two mutually
conflicting tuples are in separate parts). When computing consistent answers to a query only
parts that are simultaneously spanned by the query are considered at a time. The presented
experimental results validate this approach: the system computes consistent query answers in
a reasonable time and is scalable w.r.t. the size of the database and the number of conflicts.
Tests with up to 2001000 conflicts are reported.

3 Resolution of Inconsistencies

In this section, we present and discuss techniques that can be used for the resolution of
inconsistencies. More specifically, we focus on inconsistencies arising from the use of different
representations for describing the same real-world object, for example the same conference,
person, or location. The techniques we present here aim at detecting such representations.
Once detected, the representations with a similarity higher than a predefined threshold are
merged together. The final results are used for replacing the original representations in the
integrated data, and thus, query processing is performed over the merged data.

The following paragraphs present the techniques for resolution of inconsistencies grouped
into five categories according to the data included in the representation (that are used during
the processing): (i) atomic similarity techniques for comparing representations that are
strings (Section 3.1); (ii) similarity techniques for comparing representations corresponding
to groups of data (Section 3.2); (iii) collective techniques that also use inner-relationships
between representations (Section 3.3); (iv) techniques for scaling the processing to datasets
of large sizes (Section 3.4); and (v) dealing with the uncertainty that is related to the
inconsistencies (Section 3.5).

Additional information related to existing techniques in this domain, can be found in
surveys [28, 38, 35] and tutorials [54, 44].

3.1 Atomic Similarity Techniques
This category includes techniques that compute similarity when the representations are either
a single word, or a small sequence of words. Few examples of representations for this category
are: r1=“John D. Smith”, r2=“J. D. Smith”, r3=“Transactions on Knowledge and Data
Engineering”, and r4= “IEEE Trans. Knowl. Data Eng.”. As already discussed in Section 1,
such differences in representations (i.e., single words or sequence of words) are a common
situation that is typically resulted from misspellings, or naming variants due to the use of

Chapte r 08

228 Management of Inconsistencies in Data Integration

abbreviations, acronyms, etc. The merging of two such representations (e.g., “John D. Smith”
with “J. D. Smith”) is performed when the technique detects high resemblance between the
text values composing the representations.

The first group of techniques that belong to the category of atomic similarity techniques
are based on the characters composing the string. These techniques compute the similarity
between two representations (i.e., strings) as a cost that indicates the total number of the
operations needed to convert the string of the first representation to the string of the second
representation. The basic method of edit distance, named Levenshtein distance [56], counts
the number of character deletions, additions, or modifications that are required for converting
the first to the second string. The variations of this technique extends it with additional
aspects, such as operation cost depending on the character’s location, consideration of
additional operations, including open gap, and extend gap [60]. Jaro [49] computes similarity
by considering the overlapping characters in the two strings along with their locations. It
suitable to small strings, for instance first and last names. An extension of this technique is
the Jaro-Winkler [81]. This technique gives higher weight to the prefix (i.e., first characters)
of the string, and thus it increases the applicability of this approach to person names.

A second group of techniques are the ones that compute the similarity between collections
of words. The basic techniques from this group are the Jaccard similarity coefficient, and
the TF/IDF similarity [70]. Fuzzy matching similarity [18] is another technique of this
category. It is a generalized edit distance similarity that combines transformation operations
with edit distance techniques. Another method is the Soundex similarity. The Soundex
method converts each word into a phonetic encoding by assigning the same code to the
string parts that sound the same. The similarity between two words is then calculated as the
difference between the corresponding phonetic encodings of these words. Finally, [23] and
[15] describe and discuss an experimental comparison of various basic similarity techniques
used for matching names.

Although, the existing techniques are successful in identifying similar representations,
the idea of merging representations based on their string similarity is only partly correct,
since the objects to which the context of these representations refer is totally ignored. For
example, consider two representations for people with the exact same name. Using a similarity
technique from this category would result in incorrectly merging the representation of these
people. For this reason, these representations are typically used only as part of the initial
steps of more sophisticated representations, in order to identify potential merges, which can
be then further processed.

3.2 Computing Similarity between Groups of Data
In contrast to the previous category, the techniques of this category focus on dealing with
representations that are composed by a group of data. Few examples of representations for
this category are: r1={“John D. Smith”, “male”, “United States of America”}, and r2= {“J.
D. Smith”, “male”, “USA”}. They extend techniques of the previous category since they
combine basic string similarity with more complicated methodologies.

The first group of techniques for this category are those that consider the data of each tuple
(i.e., record) as the representation. The approaches suggested in [53] and [22] concatenate all
data composing each tuple and create a string. These strings are then compare using one
of the string similarity techniques (Section 3.1). One of the most known techniques of this
category is the merge-purge [46], aiming in identifying whether two relational records refer
to the same real-world object. Merge-purge considers every database relation (i.e., record) as
a representation. This approach first sorts the relations using the different available column

E. Ioannou and S. Staworko 229

names, and then uses the sorting to easy compare between similar information. The merging
of records is performed according to the found resemblances.

The techniques proposed in [73] and [29] aim at matching representations by discovering
possible mappings from one representation to another representation. More specifically, in
[73] a mapping is identified by applying a collection of transformations, such as abbreviation,
stemming, and initials. For the same purpose, Doan et al. [29] apply profilers, which are
described as predefined rules with knowledge about specific representations. Profilers are
created by various sources, such as domain experts, learned from training data, or constructed
from external data.

Cohen et al. [24] use techniques for string similarity (presented in the previous category)
to create techniques to adaptively modify the document similarity metrics. Li et al. [57] also
focus in handling multiple types of representations, addressing the problem as this appears
in the context of the text documents.

3.3 Collective Techniques
This category includes techniques that identify matches between two representations by
using not only the information available in the specific representations but also related
information from other representations. In particular, these techniques discover and exploit
the inner-relationships that exist among all representations of the given data collection.
These inner-relationships can be seen as links, or associations, between the representations
and parts of the representation data. As an example consider co-authorship in publications,
which is widely used by collective approaches. By knowing that a publication has α, β, and
γ as authors, and another publication has β’, and γ as authors, we can increase our belief
that β describes the same author as β’. Thus, we now have two sources for computing the
belief we have that authors β and β’ describe the same real-world object: the first is that
their strings are similar (computed using a technique for Sections 3.1-3.2), and the second is
that both authors have a publication with γ author.

To capture the inner-relationships found inside a data collection, the techniques of this
category model the collection into an intermediary structure. For instance, the technique in
[6] uses dimensional hierarchies, and the techniques introduced in [13] and [52] use graphs.
Ananthakrishna et al. [6] exploit dimensional hierarchies to detect fuzzy duplicates in
dimensional tables. The hierarchies are build by following the links between the data from
one table to data other tables. Representations are matched when the information along
these generated hierarchies is found similar. Getoor et al. [13, 14] model the metadata as
a graph structure. The nodes in this graph correspond to the information describing the
representations, and edges are the inner-relationships between representations. The technique
uses the edges from the graphs to cluster the nodes, and the clusters detected are then used
to identify the common representations.

In [52, 51], the data collection is also modeled as a graph following a similar methodology
as the previous methods. These techniques also generate other possible relationships to
represent the candidate matches between representations. The additional relationships
became edges that enhance the generated graph. Then, graph theoretic techniques are
applied for analyzing the relationships in the graph and deciding the possible matches
between representations. Other techniques follow a different methodology to create their
internal supportive structures. In [65], the nodes represent the possible matches between
two representations (and not one node representing one representation) and the edges the
inner-relationships between the possible representation matches. The relationships from the
structure are then used to decide the existence of nodes (matches between representations),

Chapte r 08

230 Management of Inconsistencies in Data Integration

and information encapsulated in identified matches is propagated to the rest of the structure.
Some of the proposed techniques of this category are from the area of metadata manage-

ment. The TAP system [43] uses a process named Semantic Negotiation to identify common
representations (if any) between the different resources. These common representations
are used to create a unified view of the data. Benjelloun et al. [12] identify the different
properties on which the efficiency of such a technique depends on, and introduce different
techniques to address the possible combinations of the found properties.

Another well-know technique is the Reference Reconciliation [30]. Here, the authors begin
their computation by identifying possible associations between representations by comparing
their corresponding data. The information encoded in the found associations is propagated
to the rest of the representations in order to enrich their information and improve the quality
of final results. The approach in [5] is a modified version of the reference reconciliation
algorithm that is focused on detecting conflict of interests in paper reviewing processes. The
approach introduced in [48] models the resolution-related information a Bayesian network,
and uses probabilistic inference for computing the probabilities of representation matches
and for propagating the information between matching.

3.4 Scaling to Large Datasets
As noted in [35], applying processing to datasets of a large size can be achieved through data
blocking, i.e., instead of comparing each representation with all other representations, the
representations are separated into blocks, and only the representations of the same block are
compared. The challenge is to create blocks of representations that are most likely to refer
to the same real-world objects. The majority of the proposed techniques typically associate
each representation with a Blocking Key Value (BKV) summarizing the values of selected
attributes and then operate exclusively based on the BKVs.

For instance, the Sorted Neighborhood technique [45], sorts blocks according to their BKV
and then slides a window of fixed size over them, comparing the representations it contains.
The StringMap techniques [50] maps the BKV of each representation to a multi-dimensional
Euclidean space, and employs suitable data structures for efficiently identifying pairs of
similar representations. Alternatively, the q-grams based blocking presented in [40] builds
overlapping clusters of representations that share at least one q-gram (i.e., sub-string of
length q) of their BKV. Canopy clustering [58] employs a cheap string similarity metric for
building high-dimensional overlapping blocks, whereas the Suffix Arrays technique, coined in
[4] and enhanced in [27], considers the suffixes of the BKV instead. The technique in [62]
introduces a mechanism for eliminating the redundancy of blocking methods by removing
superfluous comparisons.

More recently introduced techniques based on blocking focused not only on scaling
the resolution process to large datasets, but also on capturing additional issues related to
resolution. Papadakis et al. [61, 63, 64] investigated how to apply the blocking mechanism
on heterogeneous semi-structured data with loose schema binding. Among other, the authors
introduce an attribute-agnostic mechanism for generating the blocks, and explain how
efficiency can be improved through scheduling the order of block processing and identifying
when to stop the processing. The approach introduced by Whang et al. [76], iteratively
processes blocks in order to use the results of one block when processing other blocks, and
thus include the advantages illustrated by collective approaches (i.e., discussed in Section
3.3). The idea of iteratively block processing was also studied in [67], which provided a
principled framework with message passing algorithms for generating a global solution for
the resolution over the complete collection.

E. Ioannou and S. Staworko 231

3.5 Dealing with Uncertainty related to Inconsistencies

Uncertain data management approaches deal with a variation of inconsistency resolution.
More specifically, they consider the existence of probabilities that model the belief related
to the inconsistencies. For example, [68, 26] considers the existence of more than one
representations (modeled as relational relations) for the same real-world object. Thus, for
each real-world object the database contains a small set of possible-alternative representations,
with each representation accompanied by a probability that indicates the belief we have that
this is the correct representation.

The approach suggested by the Trio system [3] focuses on creating a database that support
uncertainty along with inconsistency and lineage, while also dealing with duplicate tuples,
i.e., representations. Dalvi and Suciu [25] follow the “possible worlds” semantics to introduce
query processing for independent probabilistic data that model alternative matches between
representations, and introduced a methodology for efficiently evaluating queries.

Dong et al. [31] investigate the use of the probabilistic mappings between the attributes of
the contributing sources with a mediated schema. Applying this method on representations
would have considered the possible mappings between the attribute names as given by con-
tributing sources with a mediated schema S. This means that an attribute of representations
α, β, and γ is mapped to an attribute from S with a probability to show the uncertainty of
each mapping. The authors explain how answering queries over the mediated schema S can
be performed using these mappings.

Andritsos et al. [7] do not focus on the schema information, as the approach presented
in [31], but on the actual data. The authors assume that the duplicate tuples for each
representation are given, for example as the results computed by a technique from Sections 3.1-
3.3. Thus, all tuples describing alternative representations of the same representation
have the same identifier. The tuples of the alternative representations are considered as
disjoined, which means that only one tuple for each identifier can be part of the final
resulted representation. The approach in [47] addresses more challenges of heterogeneous
data. In particular, this approach does not assume that the alternative representations of
representations are known, but that an representation collection comes with a set of possible
linkages between representations. Each linkage represents a possible match between two
representations and is accompanied with a probability that indicates the belief we have that
the specific representations are for the same real-world object. Representations are compiled
on-the-fly, by effectively processing the incoming query over representations and linkages,
and thus, query answers reflect the most probable solution for the specific query.

4 Conclusions

In this chapter we elaborated on the management of inconsistencies in data integration. More
specifically, we presented and discussed two group of techniques: (i) computing consistent
query answers, focusing on mechanisms for the compact representation of repairs, query
rewriting, and logic programs; and (ii) resolution of inconsistencies, focusing on methods for
computing similarity between atomic values or groups of data, collective techniques, scaling
to large datasets, and dealing with uncertainty that is related to inconsistencies.

Chapte r 08

232 Management of Inconsistencies in Data Integration

References
1 S. Abiteboul, R. Hull, and V Vianu. Foundations of Databases. Addison-Wesley, 1995.
2 F. Afrati and P. Kolaitis. Repair checking in inconsistent databases: Algorithms and

complexity. In ICDT, pages 31–41, 2009.
3 P. Agrawal, O. Benjelloun, A. Sarma, C. Hayworth, S. Nabar, T. Sugihara, and J. Widom.

Trio: A system for data, uncertainty, and lineage. In VLDB, pages 1151–1154, 2006.
4 A. Aizawa and K. Oyama. A fast linkage detection scheme for multi-source information

integration. In WIRI, pages 30–39, 2005.
5 B. Aleman-Meza, M. Nagarajan, C. Ramakrishnan, L. Ding, P. Kolari, A. Sheth, I. Arpinar,

A. Joshi, and T. Finin. Semantic analytics on social networks: Experiences in addressing
the problem of conflict of interest detection. In WWW, pages 407–416, 2006.

6 R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in data
warehouses. In VLDB, pages 586–597, 2002.

7 P. Andritsos, A. Fuxman, and R. Miller. Clean answers over dirty databases: A probabilistic
approach. In ICDE, 2006.

8 M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent
databases. In PODS, pages 68–79, 1999.

9 M. Arenas, L. Bertossi, and J. Chomicki. Answer sets for consistent query answering in
inconsistent databases. Theory and Practice of Logic Programming, 3(4-5):393–424, 2003.

10 M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad. Scalar aggre-
gation in inconsistent databases. Theoretical Computer Science (TCS), 296(3):405–434,
2003.

11 P. Barcelo and L. Bertossi. Logic programs for querying inconsistent databases. In PADL,
pages 208–222, 2003.

12 O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. Whang, and J. Widom. Swoosh:
a generic approach to entity resolution. VLDB Journal, 18(1):255–276, 2009.

13 I. Bhattacharya and L. Getoor. Deduplication and group detection using links. In LinkKDD,
2004.

14 I. Bhattacharya and L. Getoor. Iterative record linkage for cleaning and integration. In
DMKD, pages 11–18, 2004.

15 M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fienberg. Adaptive name match-
ing in information integration. IEEE Intelligent Systems, 18(5):16–23, 2003.

16 L. Bravo and L. E. Bertoss. Semantically correct query answers in the presence of null
values. In IIDB Workshop co-located with EDBT, pages 336–357, 2006.

17 A Cali, D. Lembo, and R. Rosati. On the decidability and complexity of query answering
over inconsistent and incomplete databases. In PODS, pages 260–271, 2003.

18 S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and efficient fuzzy match
for online data cleaning. In SIGMOD, pages 313–324, 2003.

19 J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance using tuple dele-
tions. Information and Computation, 197(1-2):90–121, February 2005.

20 J. Chomicki, J. Marcinkowski, and S. Staworko. Computing consistent query answers using
conflict hypergraphs. In CIKM, pages 417–426, 2004.

21 J. Chomicki, J. Marcinkowski, and S. Staworko. Hippo: A system for computing consistent
answers to a class of SQL queries. In EDBT, pages 841–844, 2004.

22 W. Cohen. Data integration using similarity joins and a word-based information repre-
sentation language. ACM Transactions on Information Systems (TOIS), 18(3):288–321,
2000.

23 W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string distance metrics for
name-matching tasks. In IIWeb co-located with IJCAI, pages 73–78, 2003.

E. Ioannou and S. Staworko 233

24 W. Cohen and J. Richman. Learning to match and cluster entity names. In MF/IR
Workshop co-located with SIGIR, 2001.

25 N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. VLDB Journal,
16(4):523–544, 2007.

26 N. Dalvi and D. Suciu. Management of probabilistic data: foundations and challenges. In
PODS, pages 1–12, 2007.

27 T. de Vries, H. Ke, S. Chawla, and P. Christen. Robust record linkage blocking using suffix
arrays. In CIKM, pages 305–314, 2009.

28 A. Doan and A. Halevy. Semantic integration research in the database community: A brief
survey. AI Magazine, 26(1):83–94, 2005.

29 A. Doan, Y. Lu, Y. Lee, and J. Han. Object matching for information integration: A
profiler-based approach. In IIWeb co-located with IJCAI, pages 53–58, 2003.

30 X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in complex information
spaces. In SIGMOD, pages 85–96, 2005.

31 X. Dong, A. Halevy, and C. Yu. Data integration with uncertainty. In VLDB, pages
687–698, 2007.

32 T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem-solving in dlv. In
J. Minker, editor, Logic-Based Artificial Intelligence, pages 79–103. Springer, 2001.

33 T. Eiter, M. Fink, G. Greco, and D. Lembo. Efficient evaluation of logic programs for
querying data integration systems. In ICLP, pages 163–177, 2003.

34 T. Eiter, M. Fink, G. Greco, and D. Lembo. Repair localization for query answering from
inconsistent databases. Technical Report 1843-07-01, Institut Fur Informationssysteme,
Technische Universitat Wien, 2007.

35 A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record detection: A survey. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 19(1):1–16, 2007.

36 A. Fuxman, E. Fazli, and R. J. Miller. Conquer: Efficient management of inconsistent
databases. In SIGMOD, pages 155–166, 2005.

37 A. Fuxman and R. J. Miller. First-order query rewriting for inconsistent databases. In
ICDT, pages 335–349, 2005.

38 L. Getoor and C. Diehl. Link mining: a survey. SIGKDD Explorations, 7(2):3–12, 2005.
39 G. Grahne and A. Onet. Data correspondence, exchange and repair. In ICDT, pages

219–230, 2010.
40 L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivastava.

Approximate string joins in a database (almost) for free. In VLDB, pages 491–500, 2001.
41 G. Greco, S. Greco, and E. Zumpano. A logic programming approach to the integration,

repairing and querying of inconsistent databases. In ICLP, pages 348–364, 2001.
42 G. Greco, S. Greco, and E. Zumpano. A logical framework for querying and repairing

inconsistent databases. IEEE Transactions on Knowledge and Data Engineering (TKDE),
15(6):1389–1408, 2003.

43 R. Guha and R. McCool. TAP: a semantic web platform. Computer Networks, 42(5):557–
577, 2003.

44 O. Hassanzadeh, A. Kementsietsidis, and Y. Velegrakis. Data management issues on the
semantic web. In ICDE, pages 1204–1206, 2012.

45 M. Hernández and S. Stolfo. The merge/purge problem for large databases. In SIGMOD,
pages 127–138, 1995.

46 M. Hernández and S. Stolfo. Real-world data is dirty: Data cleansing and the merge/purge
problem. Data Mining and Knowledge Discovery, 2(1):9–37, 1998.

47 E. Ioannou, W. Nejdl, C. Niederée, and Y. Velegrakis. On-the-fly entity-aware query pro-
cessing in the presence of linkage. PVLDB, 3(1):429–438, 2010.

Chapte r 08

234 Management of Inconsistencies in Data Integration

48 E. Ioannou, C. Niederée, and W. Nejdl. Probabilistic entity linkage for heterogeneous
information spaces. In CAiSE, pages 556–570, 2008.

49 M. Jaro. Advances in record-linkage methodology as applied to matching the 1985 census
of tampa, florida. American Statistical Association, 84, 1989.

50 L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large data sets. In DASFAA,
2003.

51 D. Kalashnikov and S. Mehrotra. Domain-independent data cleaning via analysis of entity-
relationship graph. ACM Transactions on Database Systems (TODS), 31(2):716–767, 2006.

52 D. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting relationships for domain-independent
data cleaning. In SIAM SDM, 2005.

53 N. Koudas, A. Marathe, and D. Srivastava. Flexible string matching against large databases
in practice. In VLDB, pages 1078–1086, 2004.

54 N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity measures and algo-
rithms. In SIGMOD, pages 802–803, 2006.

55 M. Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246, 2002.
56 V. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet

Physics Doklady, 10(8):707–710, 1966.
57 X. Li, P. Morie, and D. Roth. Semantic integration in text: From ambiguous names to

identifiable entities. AI Magazine, 26(1):45–58, 2005.
58 A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional data sets

with application to reference matching. In KDD, pages 169–178, 2000.
59 A. Morris, Y. Velegrakis, and P. Bouquet. Entity identification on the semantic web. In

SWAP, 2008.
60 G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys,

33(1):31–88, 2001.
61 G. Papadakis, E. Ioannou, C. Niederée, and P. Fankhauser. Efficient entity resolution for

large heterogeneous information spaces. In WSDM, pages 535–544, 2011.
62 G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl. Eliminating the

redundancy in blocking-based entity resolution methods. In JCDL, pages 85–94, 2011.
63 G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl. Beyond 100 million

entities: large-scale blocking-based resolution for heterogeneous data. In WSDM, pages
53–62, 2012.

64 G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, and W. Nejdl. A blocking framework
for entity resolution in highly heterogeneous information spaces. IEEE Transactions on
Knowledge and Data Engineering (TKDE), (to appear).

65 Parag and P. Domingos. Multi-relational record linkage. In MRDM Workshop co-located
with KDD, pages 31–48, 2004.

66 E. Pema. On the tractability ond intractability of consistent conjunctive query answering.
In Ph.D. Workshop co-located with EDBT/ICDT, 2011.

67 V. Rastogi, N. Dalvi, and M. Garofalakis. Large-scale collective entity matching. PVLDB,
4(4):208–218, 2011.

68 C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic data. In
ICDE, pages 886–895, 2007.

69 F. Rizzolo, Y. Velegrakis, J. Mylopoulos, and S. Bykau. Modeling concept evolution: A
historical perspective. In ER, pages 331–345, 2009.

70 G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,
Inc., New York, NY, USA, 1986.

71 S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. In KDD,
pages 269–278, 2002.

E. Ioannou and S. Staworko 235

72 S. Staworko and J. Chomicki. Consistent query answers in the presence of universal con-
straints. Information Systems, 35(1):1–22, 2010.

73 S. Tejada, C. Knoblock, and S. Minton. Learning domain-independent string transforma-
tion weights for high accuracy object identification. In KDD, pages 350–359, 2002.

74 D. Van Nieuwenborgh and D. Vermeir. Preferred answer sets for ordered logic programs.
In JELIA, pages 432–443, 2002.

75 M. Vardi. The complexity of relational query languages. In STOC, pages 137–146, 1982.
76 S. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina. Entity reso-

lution with iterative blocking. In SIGMOD, pages 219–232, 2009.
77 J. Wijsen. Condensed representation of database repairs for consistent query answering. In

ICDT, pages 378–393, 2003.
78 J. Wijsen. Database repairing using updates. TODS, 30(3):722–768, 2005.
79 J. Wijsen. On the first-order expressibility of computing certain answers to conjunctive

queries over uncertain databases. In PODS, pages 179–190, 2010.
80 J. Wijsen. A remark on the complexity of consistent conjunctive query answering under

primary key violations. Information Processing Letters, 110(21):950–955, 2010.
81 W. Winkler. The state of record linkage and current research problems, 1999.

Chapte r 08

	Introduction
	Consistent query answers
	Basic notions
	The framework of consistent query answers
	Computing consistent query answers
	Compact representation of all repairs
	Query rewriting
	Complexity results
	Logic programs

	Resolution of Inconsistencies
	Atomic Similarity Techniques
	Computing Similarity between Groups of Data
	Collective Techniques
	Scaling to Large Datasets
	Dealing with Uncertainty related to Inconsistencies

	Conclusions

