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Abstract
Non-local games are widely studied as a model to investigate the properties of quantum mechanics
as opposed to classical mechanics. In this paper, we consider a subset of non-local games:
symmetric XOR games of n players with 0-1 valued questions. For this class of games, each
player receives an input bit and responds with an output bit without communicating to the
other players. The winning condition only depends on XOR of output bits and is constant w.r.t.
permutation of players.

We prove that for almost any n-player symmetric XOR game the entangled value of the
game is Θ

(√
lnn
n1/4

)
adapting an old result by Salem and Zygmund on the asymptotics of random

trigonometric polynomials. Consequently, we show that the classical-quantum gap is Θ(
√

lnn)
for almost any symmetric XOR game.
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1 Introduction

Non-local games provide a simple way to test the difference between quantum mechanics
and the classical world. A prototypical example of a non-local game is the CHSH game
[6] (based on the CHSH inequality of [5]). In the CHSH game, we have two players who
cannot communicate between themselves but may share common random bits or a bipartite
quantum state (which has been exchanged before the beginning of the game). A referee sends
one uniformly random bit a ∈ {0, 1} to the 1st player and an independent uniformly random
bit b ∈ {0, 1} to the 2nd player. Players respond by sending one-bit answers x, y ∈ {0, 1}.
They win in the following 2 cases:

(a) If at least one of a, b is equal to 0, players win if they produce x, y such that x = y;
(b) If a = b = 1, players win if they produce x, y such that x 6= y;
Classically, CHSH game can be won with probability at most 0.75. In contrast, if players
use an entangled quantum state, they can win the game with probability 1

2 + 1
2
√

2 = 0.85....
Other non-local games can be defined by changing the number of players, the number of

possible questions and answers and the winning condition. Many non-local games have been
studied and, in many cases, strategies that use an entangled quantum state outperform any
classical strategy.
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Recently [1], it has been shown that, for a large class of non-local games, quantum
strategies are better than any classical strategy for almost all games in this class. Namely,
[1] considered 2-player games in which the questions a, b are taken from the set {1, 2, . . . , n}
and the winning condition is either x = y or x 6= y, depending on a, b. (Games with a
winning condition of such form are called XOR games.) [1] showed that, for 1−o(1) fraction
of all such games, the entangled value of the game is at least 1.2... times its classical value.

Then [2], it was discovered that a similar effect might hold for another class of games:
n-player symmetric XOR games with binary questions. Namely, [2] showed a gap between
entangled and classical values of order Ω(

√
logn) - assuming that a non-rigorous argument

about the entangled value is correct.
In this paper, we make this gap rigorous, by proving upper and lower bounds on the

entangled value of a random game in this class. We show that, with a high probability, the

entangled value is equal to Θ
(√

logn
n1/4

)
. The quantum-vs-classical gap of Θ(

√
logn) follows

by combining this with the fact that the classical value is of the order Θ( 1
n1/4 ) for almost any

random game (shown in [2]).
To prove this result, we use an expression for the entangled value of a symmetric n-

player XOR game with entangled answers from [3]. This expression reduces finding the
entangled value to maximizing the absolute value of a polynomial in one complex variable.
If conditions for the XOR game are chosen at random, this expression reduces to random
trigonometric polynomials studied in [7].

Although maxima of random trigonometric polynomials have been studied in [7], they
have been studied under different conditions. For this reason, we cannot apply the results
from [7] directly. Instead, we adapt the ideas from [7] to prove a bound on maxima of
random trigonometric polynomials that would be applicable in our setting.

2 Definitions

A non-local game with n players proceeds as follows:

1) Players are separated so that they cannot communicate – hence the name non-local,
2) The players receive inputs x1, x2, . . . , xn ∈ I where I is the set of possible inputs. i-th

player receives xi,
3) The players respond with outputs y1, y2, . . . , yn ∈ O where O is the set of possible

outputs.
4) The winning condition P (x1, . . . , xn, y1, . . . , yn) is consulted to determine whether the

players win or lose. The condition is known to everyone at the start of the game.

The players are informed of the rules of the game and they can agree upon a strategy and
exchange other information. In the classical case players may only use shared randomness.
In the quantum case they can use an entangled quantum state which is distributed to the
players before the start of the game.

We will restrict ourselves to the case when I = O = {0, 1} and the vector of inputs
(x1, . . . , xn) is chosen uniformly at random. In an XOR game, the winning condition
P (x1, . . . , xn, y1, . . . , yn) depends only on x1, . . . , xn and the parity of the output bits⊕nj=1yj .
A game is symmetric if the winning condition does not change if x1, . . . , xn are permuted.

The winning conditions of a symmetric XOR game can be described by a list of n+1 bits:
G = (G0, G1, . . . , Gn), where the players win if and only if Gi = ⊕nj=1yj when

∑n
j=1 xj = i.

The entangled value of the game ValQ(G) is the probability of winning minus the proba-
bility of losing in the conditions that the players can use a shared quantum-physical system.

TQC’13
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In this paper, we study the value of symmetric XOR games when the winning condition G is
chosen randomly from the uniform distribution of all (n+ 1)-bit lists. We use the following
lemma (which follows from a more general result by Werner and Wolf for non-symmetric
XOR games [9]):

I Lemma 1 (See [3]). The entangled value of a symmetric XOR game [3] is

ValQ(G) = max
|λ|=1

∣∣∣∣∣∣
n∑
j=0

(−1)Gjpjλj
∣∣∣∣∣∣ (1)

where pj is the probability that players are given an input vector (x1, . . . , xn) with j variables
xi = 1.

In our case, since (x1, . . . , xn) is uniformly random, we have pj = (nj)
2n .

In the following sections we introduce additional notation to keep the proofs more concise
as well as to keep in line with the original proofs in [7]:

The Rademacher system is a set of functions {ϕm(t)} for m = 1, . . . , n over 0 ≤ t ≤ 1
such that ϕm(t) = (−1)k, where k is the m-th digit after the binary point (in the fractional
part of t) of the binary expansion of t. Rademacher system will turn out to be a convenient
way to state that {Gj} are random variables that follow a uniform distribution: if t is chosen
randomly from a uniform distribution on 0 ≤ t ≤ 1, then {ϕm(t)}n+1

m=1 generates a uniformly
random element from {+1,−1}n+1. That in turn corresponds to coefficients (−1)Gj in eq.
(1) being picked randomly.

Furthermore, we define

rm =
(
n

m

)
(n will be clear from context),

Rn =
n∑

m=0
r2
m,

Tn =
n∑

m=0
r4
m,

Pn(x, t) =
n∑

m=0
rmϕm+1(t) cosmx,

Mn(t) = max
0≤x<2π

|Pn(x, t)|.

3 Main Result

By adapting the work of Salem and Zygmund [7] on the asymptotics of random trigonometric
polynomials, we show

I Theorem 2.

lim
n→∞

Pr[Mn(t) ≥ C1
√
Rn lnn] = 1.

I Theorem 3.

lim
n→∞

Pr[Mn(t) ≤ C2
√
Rn lnn] = 1.
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Our proof yields C1 = 1
4
√

3 and C2 = 2.
We will now show how these two theorems lead to an asymptotic bound for the entangled

value of a random game.

I Corollary 4. For almost all n-player symmetric XOR games the entangled value of the
game is Θ

(√
lnn
n1/4

)
.

Proof. From Lemma 1,

ValQ(G) ≥ max
|λ|=1

∣∣∣∣∣∣Re

 n∑
j=0

(−1)Gj
(
n
j

)
λj

2n

∣∣∣∣∣∣ = max
α∈[0;2π]

∣∣∣∣∣∣
n∑
j=0

(−1)Gj
(
n
j

)
cos jα

2n

∣∣∣∣∣∣,
and

ValQ(G) ≤ max
|λ|=1

∣∣∣∣∣∣Re

 n∑
j=0

(−1)Gj
(
n
j

)
λj

2n

∣∣∣∣∣∣+ max
|λ|=1

∣∣∣∣∣∣Im
 n∑
j=0

(−1)Gj
(
n
j

)
λj

2n

∣∣∣∣∣∣ =

= max
α∈[0;2π]

∣∣∣∣∣∣
n∑
j=0

(−1)Gj
(
n
j

)
cos jα

2n

∣∣∣∣∣∣+ max
α∈[0;2π]

∣∣∣∣∣∣
n∑
j=0

(−1)Gj
(
n
j

)
sin jα

2n

∣∣∣∣∣∣.
For a random game {(−1)Gj} follow the same distribution as {ϕj+1(t)} for t uniformly
distributed from interval [0; 1]. Therefore Theorem 2 and Theorem 3 apply. Note that
Theorem 3 is true for cosines as well as sines since we only use that cos2 x ≤ 1, and so

lim
n→∞

Pr
[
C1

√
Rn lnn

2n ≤ ValQ(G) ≤ 2C2

√
Rn lnn

2n

]
= 1. (2)

Finally,

√
Rn lnn

2n =

√(2n
n

)
lnn

2n ∼

√
4n√
πn

lnn

2n =

√
lnn√
πn

.

J

4 Proof of Upper and Lower Bounds

We now proceed to prove theorems 2 and 3. Our proof is based on an old result by Salem
and Zygmund [7], in which they prove bounds on the asymptotics of random trigonometric
polynomials in a different setting (in which the coefficients rm are not allowed to depend on
n).

Due to the difference in the two settings, we cannot immediately apply the results from
[7]. Instead, we prove corresponding theorems for our setting, re-using the parts of proof
from [7] which also work in our case and replacing other parts with different arguments.

I Lemma 5 (From [7]). Let fn(t) =
∑n
m=0 cmϕm+1(t), where {ϕm+1(t)} is the Rademacher

system and cm are real constants. Let Cn =
∑n
m=0 c

2
m, Dn =

∑n
m=0 c

4
m and let λ be any real

number. Then

e
1
2λ

2Cn−λ4Dn ≤
∫ 1

0
eλfn(t) dt ≤ e 1

2λ
2Cn .

TQC’13
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I Lemma 6 (From [7]). Let g(x, y), a ≤ x ≤ b, c ≤ y ≤ d, be a bounded real function.
Suppose that

|g(x, y)| ≤ A,
∫ d
c

∫ b
a
g2(x, y) dx dy

(b− a)(d− c) = B.

Then, for any positive number µ,∫ d
c

∫ b
a
eµg(x,y) dx dy

(b− a)(d− c) ≤ 1 + µ
√
B + B

A2 e
µA.

Furthermore, when
∫ d
c

∫ b
a
g(x, y) dx dy = 0,∫ d

c

∫ b
a
eµg(x,y) dx dy

(b− a)(d− c) ≤ 1 + B

A2 e
µA. (3)

I Lemma 7 (From [7]). Let x be real and P (x) =
∑n
m=0 αm cosmx+ βm sinmx be a tri-

gonometric polynomial of order n, with real or imaginary coefficients. Let M denote the
maximum of |P (x)| and let θ be a positive number less than 1. Then there exists an interval
of length not less than 1−θ

n in which |P (x)| ≥ θM .

I Lemma 8 (From [7]). Let ϕ(x) ≥ 0, and suppose that∫ 1

0
ϕ(x) dx ≥ A > 0,

∫ 1

0
ϕ2(x) dx ≤ B

(clearly, A2 ≤ B). Let 0 < δ < 1. Then

Pr [ϕ(x) ≥ δA | 0 ≤ x ≤ 1] ≥ (1− δ)2A
2

B
.

I Lemma 9.∑n
i=0
(
n
i

)4(∑n
i=0
(
n
i

)2
)2 ≤

4
3n
− 1

2

Proof. If n is even:∑n
i=0
(
n
i

)4(∑n
i=0
(
n
i

)2
)2 ≤

∑n
i=0
(
n
i

)2( n
n/2
)2(∑n

i=0
(
n
i

)2
)2 =

(
n
n/2
)2(2n

n

) ≤

≤

(
2n√
3n2 +1

)2

4n√
4n

≤
√

4n
3n2 + 1 ≤

4
3n
− 1

2

If n is odd:

∑n
i=0
(
n
i

)4(∑n
i=0
(
n
i

)2
)2 ≤

∑n
i=0
(
n
i

)2( n
bn/2c

)2(∑n
i=0
(
n
i

)2
)2 =

(
(n+1
n+1

2
)

2

)2

(2n
n

) ≤

≤

(
2n+1

2
√

3n+1
2 +1

)2

4n√
4n

≤
√

4n
3n+1

2 + 1
≤ 4

3n
− 1

2

J
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Proof of Theorem 2. Set In(t) = 1
2π
∫ 2π

0 eλPn(x,t) dx. We proceed to give an upper bound
for
∫ 1

0 In(t) dt and lower bound for
∫ 1

0 I
2
n(t) dt using Lemma 5. Then we will plug in these

bounds in Lemma 8 for ϕ = In.
First, the lower bound clause of Lemma 5 applied to In(t) gives for any real λ (we will

assign its value later, at our convenience),

∫ 1

0
In(t) dt =

∫ 1

0

(
1

2π

∫ 2π

0
eλPn(x,t) dx

)
dt = 1

2π

∫ 2π

0

∫ 1

0
eλPn(x,t) dt dx ≥

≥ 1
2π

∫ 2π

0
e

1
2λ

2
∑n

m=0
(rm cosmx)2−λ4

∑n

m=0
(rm cosmx)4

dx ≥

≥ 1
2π

∫ 2π

0
e

1
2λ

2
∑n

m=0
(rm cosmx)2−λ4Tn dx =

=
(
e

1
4λ

2Rn−λ4Tn
)
· 1

2π

∫ 2π

0
e

1
2λ

2
∑n

m=0
(rm cosmx)2− r

2
m
2 dx =

=
(
e

1
4λ

2Rn−λ4Tn
)
· 1

2π

∫ 2π

0
e

1
4λ

2
∑n

m=0
(r2
m cos 2mx) dx >

>
(
e

1
4λ

2Rn−λ4Tn
)
· 1

2π

∫ 2π

0

(
1 + 1

4λ
2

n∑
m=0

(r2
m cos 2mx)

)
dx ≥

≥
(
e

1
4λ

2Rn−λ4Tn
)

The second step is to establish an upper bound for
∫ 1

0 I
2
n(t) dt. We start out in a similar

fashion, by applying Lemma 5:∫ 1

0
I2
n(t) dt = 1

(2π)2

∫ 2π

0

∫ 2π

0

∫ 1

0
eλ(Pn(x,t)+Pn(y,t)) dt dx dy ≤

≤ 1
(2π)2

∫ 2π

0

∫ 2π

0
e

1
2λ

2
∑n

m=0
r2
m(cosmx+cosmy)2

dx dy =

= e
1
2λ

2(Rn+r2
0) · 1

(2π)2

∫ 2π

0

∫ 2π

0
e

1
2λ

2Sn(x,y) dx dy

where

Sn(x, y) =
n∑

m=1

(
1
2r

2
m cos 2mx+ 1

2r
2
m cos 2my + 2r2

m cosmx cosmy
)
.

One can verify that

a)

∫ 2π

0

∫ 2π

0
Sn(x, y) dx dy = 0,

b)

1
(2π)2

∫ 2π

0

∫ 2π

0
Sn(x, y)2 dx dy =

TQC’13
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= 1
2π

n∑
m=1

∫ 2π

0

(
1
2r

2
m cos 2mx

)2
dx+

+ 1
2π

n∑
m=1

∫ 2π

0

(
1
2r

2
m cos 2my

)2
dy+

+ 1
(2π)2

n∑
m=1

∫ 2π

0

∫ 2π

0

(
2r2
m cosmx cosmy

)2 dx dy =

= 5
4Tn,

c)

|Sn(x, y)| ≤ 3Rn.

We apply eq. 3 from Lemma 6 with function g = Sn, µ = 1
2λ

2, A = 3Rn and B = 5
4Tn. We

get

1
(2π)2

∫ 2π

0

∫ 2π

0
e

1
2λ

2Sn(x,y) dx dy ≤ 1 +
5
4Tn

9R2
n

e
3
2λ

2Rn ≤

≤ 1 + Tn
R2
n

e
3
2λ

2Rn .

And by Lemma 9,

1 + Tn
R2
n

e
3
2λ

2Rn ≤ 1 + 4
3n
− 1

2 e
3
2λ

2Rn .

So far we have established the two prerequisites for Lemma 8:

1) ∫ 1

0
In(t) dt > e

1
4λ

2Rn−λ4Tn ,

2) ∫ 1

0
I2
n(t) dt ≤ e 1

2λ
2(Rn+r2

0)
(

1 + 4
3n
− 1

2 e
3
2λ

2Rn

)
.

The third step is to apply Lemma 8 with ϕ = In, A = e
1
4λ

2Rn−λ4Tn , B = e
1
2λ

2(Rn+r2
0) ×

×
(

1 + 4
3n
− 1

2 e
3
2λ

2Rn
)
and δ = n−η. This results in

Pr[In(t) ≥ n−ηe 1
4λ

2Rn−λ4Tn ] ≥ (1− n−η)2 e
1
2λ

2Rn−2λ4Tn

e
1
2λ

2(Rn+r2
0)
(

1 + 4
3n
− 1

2 e
3
2λ

2Rn
) ≥

≥ (1− n−η)2e−2λ4Tn− 1
2λ

2r2
0

(
1− 4

3n
− 1

2 e
3
2λ

2Rn

)
.

Finally we show that for suitably chosen λ, θ and η the claim follows. Set λ = θ
√

lnn
Rn

having

θ such that 2√η < θ <
√

1
3 . We deal with the two claims separately:

I Lemma 10.

In(t) ≥ n−ηe 1
4λ

2Rn−λ4Tn =⇒ Mn(t) ≥ C1
√
Rn lnn.
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Proof. Note that

eλMn(t) ≥ In(t) ≥ e 1
4λ

2Rn−λ4Tn−η lnn.

Thus

Mn(t) ≥ 1
4λRn − λ

3Tn −
η

λ
lnn =

= θ

4
√
Rn lnn− θ3

√
Rn lnn lnn Tn

R2
n

− η

θ

√
Rn lnn =

=
√
Rn lnn

(
θ

4 − θ
3 4 lnn

3
√
n
− η

θ

)
→
√
Rn lnn

(
θ

4 −
η

θ

)
.

But θ
4 −

η
θ = constant > 0. We can choose θ arbitrarily close to

√
1
3 and η arbitrarily close

to 0 to obtain C1 = 1
4
√

3 . J

I Lemma 11.

lim
n→∞

(1− n−η)2e−2λ4Tn− 1
2λ

2r2
0

(
1− 4

3n
− 1

2 e
3
2λ

2Rn

)
= 1

Proof. Since η is positive, n−η → 0. Similarly,

e−2λ4Tn− 1
2λ

2r2
0 = e

−2θ4(lnn)2 Tn
R2
n
− 1

2 θ
2r2

0
lnn
Rn ≥ e−

8
3
√
n
θ4(lnn)2− 1

2 θ
2r2

0
lnn
Rn → e0 = 1,

and
4
3n
− 1

2 e
3
2λ

2Rn = 4
3n
− 1

2 e
3
2 θ

2 lnn = 4
3n

3θ2−1
2 → 0.

J

J

Proof of Theorem 3. We will examine
∫ 1

0
∫ 2π

0 eλ|Pn(x,t)| dx dt. By Lemma 7 there exists
0 < θ < 1 such that:∫ 1

0

∫ 2π

0
eλ|Pn(x,t)| dx dt ≥

≥
∫ 1

0

1− θ
n

eθλMn(t) dt.

On the other hand, by Lemma 5 we obtain:∫ 1

0

∫ 2π

0
eλ|Pn(x,t)| dx dt =

=
∫ 2π

0

∫ 1

0
eλ|Pn(x,t)| dt dx ≤

≤
∫ 2π

0

∫ 1

0
eλPn(x,t) + e−λPn(x,t) dt dx ≤

≤
∫ 2π

0

∫ 1

0
2e

1
2λ

2
∑n

m=0
r2
m cos2 mx dt dx ≤

≤
∫ 2π

0

∫ 1

0
2e 1

2λ
2Rn dt dx =

= 4πe 1
2λ

2Rn .
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Therefore,

∫ 1

0
eθλMn(t) dt ≤ 4π

1− θ e
1
2λ

2Rn+lnn.

Have λ = 2
√

lnn
Rn

and multiply both sides by n−4−η, where η > 0. Then

∫ 1

0
eθλMn(t)−(4+η) lnn dt ≤ 4π

1− θn
−(1+η).

The sum over all n converges:

∞∑
n=1

∫ 1

0
eθλMn(t)−(4+η) lnn dt ≤

∞∑
n=1

4π
1− θn

−(1+η) <∞.

Since the exponent function is non-negative and the whole sum converges, it is safe to
interchange sum and integral:

∫ 1

0

∞∑
n=1

eθλMn(t)−(4+η) lnn dt <∞.

Therefore, for almost all t

∞∑
n=1

eθλMn(t)−(4+η) lnn <∞.

Hence, for almost all t there exists n0 such that for all n ≥ n0

θλMn(t)− (4 + η) lnn < 0.

It follows that

lim
n→∞

Pr
[
Mn(t) < (4 + η)

2θ
√
Rn lnn

]
= 1.

J

5 Conclusion

We have proven that the entangled value of almost any n-player symmetric XOR game is
Θ
(√

lnn
n1/4

)
and therefore is by a factor of

√
lnn greater than its classical value.

In Fig. 1 we have plotted the sample mean value of the coefficient ValQ(n)√
Rn lnn

2n

over 105

random games for each n up to 100. We point out that the mean value of the coefficient is
approaching ≈ 0.85. It would be interesting to determine if C1 and 2C2 (see, eq. 2) can be
further improved and whether the coefficients in fact tend to a common limit near 0.85.
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Figure 1 ValQ(n)√
Rn ln n

2n

for a random sample of n player games.

In this paper we have dealt with a small portion of non-local games. In particular,
the case of random non-symmetric games is still open and there has been little progress in
multiplayer XOR games with m − ary input. The primary hurdle in the n-player m − ary
input setting is that at the moment it lacks a description in terms of algebraic and analytic
expressions.

Recently Briët and Vidick have shown large quantum-classical gaps for some 3-player
m − ary input XOR games [4]. Despite being able to establish quantum-classical gaps for
specific games, for a general 3-player m−ary input XOR game calculating its the entangled
value is difficult [8].
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