
Classical and Quantum Algorithms for Testing
Equivalence of Group Extensions∗

Kevin C. Zatloukal

Univerisity of Washington
Seattle, WA 98195
kevinz@cs.washington.edu

Abstract
While efficient algorithms are known for solving many important problems related to groups, no
efficient algorithm is known for determining whether two arbitrary groups are isomorphic. The
particular case of 2-nilpotent groups, a special type of central extension, is widely believed to
contain the essential hard cases. However, looking specifically at central extensions, the natural
formulation of being “the same” is not isomorphism but rather “equivalence,” which requires an
isomorphism to preserves the structure of the extension. In this paper, we show that equivalence
of central extensions can be computed efficiently on a classical computer when the groups are
small enough to be given by their multiplication tables. However, in the model of black box groups,
which allows the groups to be much larger, we show that equivalence can be computed efficiently
on a quantum computer but not a classical one (under common complexity assumptions). Our
quantum algorithm demonstrates a new application of the hidden subgroup problem for general
abelian groups.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases quantum computing, algorithms, computational group theory

Digital Object Identifier 10.4230/LIPIcs.TQC.2013.126

1 Introduction

Finding an efficient algorithm for group isomorphism is one of the most notable open problems
in computational group theory. While the problem is easily solved for abelian groups, the
problem remains unsolved even for some very simple generalizations to non-abelian groups.
In particular, the 2-nilpotent groups, which are central extensions of an abelian group by
another abelian group, are widely believed to contain the essential hard cases (see e.g. [1]).
Hence, the computational issues surrounding this type of group extension merit further study.

While isomorphism is the natural notion of what it means to be the same group, the
natural notion of being the same extension is slightly different. Indeed, the theory of group
extensions1, whose study began near the start of the 20th century, defines two extensions to
be the same or “equivalent” if there exists an isomorphism that preserves the structure of
the extension. (We will define this precisely in the next section.)

Thus, it is interesting to consider whether there exists an efficient algorithm for testing
equivalence of those extensions for which isomorphism appears difficult. In this paper, we
will see that there is indeed an efficient algorithm.

∗ This work was partially supported by NSF grants CCF-0916400 and CCF-1111382.
1 See the chapter in [2] for a nice introduction to the theory of group extensions.

T Q C

© Kevin C. Zatloukal;
licensed under Creative Commons License CC-BY

8th Conference on Theory of Quantum Computation, Communication and Cryptography.
Editors: Simone Severini and Fernando Brandao; pp. 126–145

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TQC.2013.126
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

K.C. Zatloukal 127

Group isomorphism has drawn particular interest from the quantum computing community
due to its placement in the hierarchy of complexity classes. In particular, due to the work
of [3], we know that the isomorphism problem for solvable groups is almost in the class
NP ∩ coNP. This is the class that includes factoring and other problems for which quantum
computers appear to give super-polynomial speedups. Hence, there is strong interest in
determining whether the same is true of solvable group isomorphism. To date, however, no
such quantum speedup is known even for the smaller class of 2-nilpotent groups.

Given the relationship between the conjectured hard cases of group isomorphism (2-
nilpotent groups) and the problem of extension equivalence, it is natural to wonder whether
the latter problem also could lead to a super-polynomial speedup of quantum algorithms over
classical ones. As noted above, there is an efficient classical algorithm for testing equivalence.
However, its efficiency depends on the fact that the given groups are small, in particular,
small enough to write down their complete multiplication tables.

The usual setting for the group isomorphism problem has the input groups given by their
multiplication tables. If one cannot solve the problem in this model, then other models are
out of the question. However, it would be both interesting and useful to be able to test
equivalence of larger groups, for which this model is inappropriate. In particular, for groups of
matrices over finite fields (which includes, for example, simple groups of Lie type), individual
matrices are small enough to multiply and invert efficiently, but writing out a multiplication
table between all matrices in the group would often be infeasible. Yet, computational group
theorists would still like to answer questions about such groups.

Matrix groups are often studied in the “black box group” model. (Indeed, this was the
original motivation for the model.) Hence, it is natural for us to consider whether there
exists an efficient algorithms for testing equivalence of group extensions in this model.

One case we will consider is extending a group given by a multiplication table by a black
box group. In practical terms, this means extensions of a small group by a large one. Such
extensions can already introduce substantial complexity. For example, the dihedral group
D2N is an extension of the tiny group Z2 by a potentially large cyclic group ZN . Considering
that the hidden subgroup problem can be solved in quantum polynomial time for ZN but not
(currently) for D2N , we can see that extensions of even constant-sized groups can introduce
substantial computational difficulty.

In this paper, we show that there is an efficient quantum algorithm for testing equivalence
of extensions of a small group by large abelian group or extensions of one large abelian group
by another large abelian group. Furthermore, we will show that the existence of an efficient
classical algorithm for either of these cases would break an existing cryptosystem.2 Hence,
under the hardness assumption of that cryptosystem, no efficient classical algorithm exists.

The quantum algorithm we present depends crucially on the ability to solve the hidden
subgroup problem (HSP) for arbitrary abelian groups. (This is the essential quantum
subroutine in our algorithm.) Interestingly, while some other problems in computational
group theory that can be solved efficiently on a quantum computer can also be solved
classically assuming the existence of oracles for factoring and/or discrete logarithm, our
construction does not easily translate to that setting because there is no apparent way to solve
abelian HSP classically, even with the help of such oracles. Hence, our work demonstrates a
new and interesting application of efficient quantum algorithms for abelian HSP.

2 Note that this cryptosystem depends on the hardness of factoring, so it is already known that quantum
computers could break it. What was not known is the relationship of this to testing equivalence of
extensions.

TQC’13

128 Classical and Quantum Algorithms for Testing Equivalence of Group Extensions

Related Work While we are aware of no prior work on the complexity of determining
extension equivalence in these models, our motivation for this problem comes from the status
of the group isomorphism problem for simple group extensions, and there, it is known that
isomorphism can be determined efficiently on a quantum computer in certain special cases
[4]. Interestingly, the groups to which this result applies have trivial equivalence classes3, so
the extension equivalence problem is trivial for such groups. (The answer is always “yes”.)
The fact that the one class of nonabelian solvable groups for which we have made progress on
group isomorphism is one for which equivalence is trivial suggests that studying the extension
equivalence problem may teach us something about the hard cases of group isomorphism.

2 Background

2.1 Computational Group Theory

The study of algorithms and complexity for problems in group theory is called computational
group theory. In order to discuss these issues, we must first specify how the group will be
given as input. Multiple approaches have been defined (see [5] for a nice review). We will
need to use three of these in our later discussion.

The first approach is to describe a group G by its multiplication table (sometimes called
the “Cayley table”). Multiplication of group elements can be performed by table lookup,
inverses can be computed by scanning one row of the table, and so on. This is perhaps the
most natural model. However, in order to use this approach, the group must be small enough
that it is reasonable to write down a |G| × |G| table. This turns out to be too limiting for
many computations that practitioners want to perform.

Another approach is the “black box group” model of Babai and Szemerédi [6]. In this
model, group elements are identified by opaque strings (which need not be unique) and an
oracle is provided that can perform the following group operations:
1. Given g, h ∈ G, compute gh.
2. Given g ∈ G, compute g−1.
3. Given g ∈ G, determine whether g = e, the group identity 4.
Finally, we have to specify how the algorithm obtains the strings for some group elements in
the first place. It is usual to assume that the input to algorithm will be a list of generators
of the group (i.e., a list of strings identifying the generators).

While the black box model is restricted in terms of how it can work with the group, it is
even more restricted in terms of what is considered efficient. Since a multiplication table
has size Õ(|G|2),5 any running time of poly(|G|) is efficient in the first model. On the other
hand, a non-redundant6 list of generators only has length O(log |G|),7 so the input has size
O(log2 |G|). Hence, an algorithm is efficient in the second model only if it has running time
poly(log |G|), which is exponentially faster.

3 This follows from the fact that the second cohomology groups (defined below) are trivial for semi-direct
products.

4 This also allows us to determine whether g = h since this is equivalent to checking gh−1 = e.
5 As is usual, Õ(.) is the same as O(.) but with suppressed terms that are logarithmically smaller than
those included.

6 This simply means that no proper subset of the generators still generates the group.
7 This follows from the fact that each additional generator increase the size of the generated group by a

factor equal to the index of the old group in the new one, and this index (an integer), since it is not 1,
must be at least 2.

K.C. Zatloukal 129

It should not be surprising then to find a large difference between which problems can
be solved in the two models. In the first model, almost every natural group problem can
be solved efficiently, the notable exception being the group isomorphism problem. In the
second model, on the other hand, very few problems can be solved, at least classically. The
main example of a problem that can be solved in this model is computing a derived series
for a solvable group (that is, generators for each group in the series) or a central series for a
nilpotent group.

Interestingly, it is known that quantum algorithms can do more in the black box model.
In particular, for abelian or even solvable groups [7], a large number of problems can be
solved, the most important example being computing the size of the group, |G|. We will
show later on that the extension equivalence problem is another example.

The other approaches for specifying groups use representations of particular types.
The most common of these, the third model we will need below, is to use a permutation
representation. Specifically, we assume that the group is explicitly a subgroup of the
symmetric group, G ≤ Sn. The input is a set of generators of G, each of which is a
permutation of the set [n] , {1, . . . , n}.

As in the black box model, G can be specified by at most O(log |G|) generators. Each gen-
erator in the input has size O(n logn), so the input as a whole will have size O(n logn log |G|).
For an algorithm to be efficient then, its running time must be polynomial both in n and
log |G|. Furthermore, for this model to be useful, the size n of the set, called the “degree” of
the representation, must be small. The fact that many groups have small-degree represen-
tations is one factor leading to the great success of this third approach. The other factor
leading to its success is that many problems can be solved efficiently in this model. In fact,
nearly all of the problems that are solvable with multiplication tables are efficiently solvable
here as well. (See [5] for a long list of these problems.)

2.2 Group Extensions
A group E is said to be an extension of G by A if A C E and E/A ∼= G. This is called a
central extension if A ≤ Z(E). In particular, this means that A is abelian.

Central extensions are in some ways similar to semidirect products in that the elements can
be thought of as pairs (a, x) ∈ A×G with a strange multiplication. Whereas multiplication in a
semidirect product depends on a group homomorphism G→ AutA, multiplication in a central
extension depends on a function f : G×G→ A, where we have (a, x)(b, y) = (abf(x, y), xy).
The function f is called a “factor set.” We will describe some of its properties below. In
particular, we will show how to find f for a given extension E.

Central extensions are in some sense the other natural way to combine groups, aside from
semidirect products. In particular, any group extension of G by A, where A is abelian but
not necessarily central, is essentially a combination of a semidirect product and a central
extension.8 Hence, these two types represent the two extremes of extensions of abelian
groups.

Finally, we can define the problem we are trying to solve. Two extensions, E1 and E2, of
G by A are said to be equivalent if there exists an isomorphism γ : E1 → E2 such that γ is
the identity on A, γ|A = id, and gives rise to the identity on G, that is, π2 ◦ γ = π1, where
πi : Ei → G is the canonical projection. This is the natural sense in which two extensions
should be considered “the same”.

8 Any extension is identified, up to isomorphism, by a homomorphism from G to Aut A (the semi-direct
product part) and a factor set (the central extension part). See [2] for details.

TQC’13

130 Classical and Quantum Algorithms for Testing Equivalence of Group Extensions

1-cochains C1(G, A) = {s : G→ A | s(e) = e}
2-cochains C2(G, A) = {f : G×G→ A | f normalized}
cocycles Z2(G, A) = {f : G×G→ A | f normalized, cocycle condition} ⊂ C2(G, A)
∂ : C1 → C2 homomorphism taking s ∈ C1(G, A) to ∂s ∈ Z2(G, A)
coboundaries B2(G, A) = Im ∂ ⊂ Z2(G, A)

Figure 1 The main objects in group cohomology.

On the other hand, it is possible for E1 and E2 to be isomorphic even if they are not
equivalent extensions. (Indeed, this is not even a simple matter of dealing with isomorphisms
of A andG: it is apparently possible for extensions of non-isomorphic groups to be isomorphic.)
For this reason, equivalence is a more natural question to consider when looking specifically
at group extensions: an equivalence is an isomorphism that respects the structure of the
group extension.

2.3 Low Degree Group Cohomology
Cohomology groups are often defined in an abstract manner (via Ext functors, projective
resolutions, etc.). However, in the case of group cohomology, the low degree cohomology
groups also have concrete definitions that are equivalent but more useful for us.9 (See [2] for
a more detailed discussion.)

In this section, we will consider cohomology only of central extensions. Cohomology can
be defined more generally, but this simpler case is all that we will need in later sections.

The key group for us is the second cohomology group, H2(G,A). In order to define this,
however, we first need to define cocycles and coboundaries.

The 1-cocycles, Z1(G,A), are functions f : G→ A that satisfy the identity f(x) + f(y)−
f(xy) = 0, for all x, y ∈ G. These are simply group homomorphisms. (Note that we are using
additive notation since A is abelian.) The 2-cocycles, Z2(G,A), are functions f : G×G→ A

that satisfy the (admittedly odd-looking) identity f(y, z)− f(xy, z) + f(x, yz)− f(x, y) = 0,
for all x, y, z ∈ G, and have f(x, e) = f(y, e) = e, for all x, y ∈ G.10 These are precisely the
factor sets mentioned earlier.

The 2-coboundaries, B2(G,A), are functions G×G→ A that arise by taking a function
s : G → A only satisfying s(e) = e (called a 1-cochain) by defining ∂s ∈ B2(G,A) by
∂s(x, y) = s(x) + s(y)− s(xy). Note that, since s is not necessarily a homomorphism, we
need not have ∂s 6≡ 0. It is not hard to show that any function defined in such manner is
also a 2-cocycle. In other words, we have B2(G,A) ≤ Z2(G,A). Furthermore, the function ∂
is in fact a (surjective) homomorphism C1(G,A)→ B2(G,A), where C1(G,A) denotes the
space of all cochains.

These definitions are summarized in Figure 1.
The sets Z2(G,A) and B2(G,A) are themselves groups with the group operation per-

formed pointwise (i.e., (f + g)(x, y) = f(x, y) + g(x, y)). In fact, they are abelian groups
since A is abelian. Hence, B2(G,A) is a normal subgroup of Z2(G,A), so we can consider
the quotient group H2(G,A) , Z2(G,A)/B2(G,A). This is the second cohomology group.

9 Historically, these were developed in the opposite order. The concrete definitions came first and the
abstract later.

10 Sometimes cocycles are defined only by the first condition. Then those that satisfy the second are called
“normalized”. We will assume throughout this paper that all cocycles, coboundaries, and cochains are
properly normalized.

K.C. Zatloukal 131

The most important fact for us is the relationship between H2(G,A) and group extensions.

I Lemma 1. Elements of H2(G,A) are in 1-to-1 correspondence with equivalence classes of
central extensions of G by A.

Proof Sketch. While we need not go through this proof in detail (see [2] for full details),
we do need describe how the correspondence works since our aim is to work in the group
H2(G,A), using the elements corresponding to the two given extensions.

For an extension E of G by A, choose a representative of each coset of A in E (i.e.,
each element of G ∼= E/A), where we require e to represent A itself. Encode these choices
into a function s : G → E. Then we can define a function f : G × G → A by f(x, y) ,
s(x)s(y)s(xy)−1. It is not hard to show that f(x, y) ∈ A and that f is a factor set, i.e.,
f ∈ Z2(G,A).

This construction depends on the choice of representatives. Choosing a different set of
representatives, we could get a different factor set g : G×G→ A. However, if we do this, it
will turn out f − g is a 2-coboundary. Furthermore, the only other factor sets differing from
f by a coboundary arise from other choices of representatives for the same extension. Hence,
f +B2(G,A) uniquely represents this extension. J

3 Results

3.1 General Approach
With this background, the basic idea for computing equivalence of central extensions is
simple. Given E1 and E2, two central extensions of G by A, we can compute the factor sets
f1, f2 ∈ Z2(G,A) for these two extensions using any set of representatives. As described in
Lemma 1, the factor sets correspond to the same extension iff f1 − f2 ∈ B2(G,A). Thus, the
general approach is to reduce extension equivalence to testing membership in B2(G,A).

To make this concrete, we must specify what approach we use for representing groups.
Below, we present two algorithms, one classical and one quantum, for implementing the
outline just described. These algorithms differ in the approach used to specify the input
groups, with the quantum algorithm using the more general approach of black box groups
for A and E. Specifically, we have the following results.

I Theorem 2. There exists a (classical) Monte Carlo algorithm for testing the equivalence
of E1 and E2, two extensions of G by A, when all groups specified by multiplication tables,
running in time Õ(|G|6 |A|3).

I Theorem 3. There exists a quantum algorithm for testing the equivalence of E1 and E2,
two extensions of G by A, where A, E1, and E2 are given as black box groups and G is given
by a multiplication table, running in time O(|G|6 log6 |A|).

I Theorem 4. There exists a quantum algorithm for testing the equivalence of E1 and E2,
two extensions of G by A, where G is abelian and all groups are presented as black box groups
running in time poly log |G|poly log |A|.

For simplicity, we first prove the first two theorems, in subsections 3.2 and 3.3, respectively,
assuming that E1 and E2 are central extensions. We discuss how to extend these two
algorithms to non-central extensions in subsection 3.4. Theorem 4 is more complex and is
treated in the appendix, in section A

In subsection 3.5, we show that the problem solved by the quantum algorithms are
classically hard under the assumption of the Goldwasser–Micali cryptosystem [8] (that
quadratic residuosity is classically hard).

TQC’13

132 Classical and Quantum Algorithms for Testing Equivalence of Group Extensions

I Theorem 5. There exists a randomized polynomial time reduction from quadratic residuosity
to testing equivalence of central extensions of G by A, where A is given as a black box group
and either G is given as a multiplication table or G is abelian and given as a black box group.
Hence, under the assumption that there is no efficient (classical) Monte Carlo algorithm
for testing quadratic residuosity, there is no efficient Monte Carlo algorithm for testing
equivalence of extensions of G by A in this model.

Finally, in subsection 4, we use the machinery developed for these algorithms to show
that we can also efficiently count the number of inequivalent extensions in the two models.
Specifically, we have the following:

I Theorem 6. There exists an efficient (classical) Monte Carlo algorithm for counting
the number of equivalence classes of extensions of G by A when both groups are given by
multiplication tables.

I Theorem 7. There exists an efficient quantum algorithm for counting the number of
equivalence classes of extensions of G by A when A is given as a black box group and G is
given by a multiplication table.

3.2 Classical Algorithm
For the classical algorithm, we take the inputs A, G, and E1 and E2 as multiplication
tables. This is the usual setup for the group isomorphism problem, and it is natural to
consider extension equivalence in the same manner. However, we must also require that the
isomorphism Ei/A ∼= G be provided explicitly so that we are not required to solve a group
isomorphism problem in order to understand the relationship between Ei and G. This will
be specified as a table of pairs (x, g), where each x ∈ Ei appears exactly once along with the
g ∈ G such that x+A

∼−→ g.

Proof of Theorem 2. As described above, we will reduce to membership testing in B2(G,A).
Since the group B2(G,A) has size ∼ |A||G|, we cannot reduce to a membership test using
a multiplication table because the time to write such a table is exponentially large in the
input size. We also cannot reduce to a membership test using a black box model simply
because there is no efficient classical algorithm known for membership testing in this model.
Fortunately, we will see that we can reduce to a membership test using the third approach, a
permutation representation. We can then perform the membership testing efficiently using
the algorithm from [9].

First, note that we can represent A using the regular representation, that is, each a ∈ A
is represented as a permutation σ(a) of the set A itself. The degree of this representation is
|A|, which is small. And it is easy to see that this representation of A is faithful. (This is
Cayley’s theorem.)

Define C2(G,A) to be all maps G×G→ A. These are simply vectors of |G|2 elements of A.
(Since B2(G,A) ≤ Z2(G,A) ≤ C2(G,A), we can think of elements of B2(G,A) and Z2(G,A)
in the same way.) Put another way, C2(G,A) is a direct sum of |G|2 copies of A. Hence,
we can represent f ∈ C2(G,A) as the direct sum (as vector spaces) of σ(f(g, h)) for each
g, h ∈ G. It is again clear that this representation is faithful: σ(f) is the identity iff σ(f(g, h))
is identity for each g, h ∈ G iff f(g, h) = e for each g, h ∈ G (since our representation of A is
faithful) iff f is the identity in C2(G,A) (by definition).

In other words, our representation space is the set {ag,h | a ∈ A, g, h ∈ G} — elements
of A labelled by pairs (g, h) ∈ G×G. We can see that the degree of this representation is
n , |A| |G|2.

K.C. Zatloukal 133

It is possible that A may have a permutation representation with smaller degree in special
cases, but in the worst case, it must be |A|. In particular, any simple cyclic group requires
this degree. It is also easy to see that any faithful representation of C2(G,A) must contain
all |G|2 copies of this representation. Hence, our degree of |A| |G|2 cannot in general be
improved.

In order to invoke a membership test for B2(G,A), we also need to provide a generating set.
The easiest way to do this is to take a generating set for C1(G,A) and then push it forward
to B2(G,A) by applying ∂. Any f ∈ B2(G,A) satisfies f = ∂s for some s ∈ C1(G,A). So if
s1, . . . , sk is a generating set for C1(G,A), then we have s = sj1

1 . . . sjk

k for some {ji} ⊂ Z+.
And since ∂ is a homomorphism, we have f = ∂(sj1

1 . . . sjk

k) = ∂(s1)j1 . . . ∂(sk)jk . Thus,
∂s1, . . . , ∂sk is a generating set for B2(G,A).11

It is easy to find a minimal generating set for C1(G,A). Since this group is simply a direct
sum of |G| copies of A, a minimal generating set for C1(G,A) is given by |G| copies of a
minimal generating set for A. We can find a generating set for A with high probability simply
by choosing O(log |A|) random elements [5]. And it is easy to see that we can choose random
elements from A since we have an explicit list of its elements. Hence, we can construct a
generating set for C1(G,A) of size O(|G| log |A|).

Finally, note that, since we have a simple formula for ∂, taking constant time to evaluate
for each (g, h) ∈ G×G, we can construct the generating set for B2(G,A) in O(|G|2) time
for each element in the set. Since this set contains O(|G| log |A|) elements, we can construct
the generating set in O(|G|3 log |A|) time.

The other input to the membership test is the element f1 − f2 ∈ Z2(G,A). We can
compute this easily in linear time once we construct a factor set fi for each extension. To do
this, we simply need to choose (arbitrarily) a representative si(g) ∈ Ei for each g ∈ G, which
we can do in one pass over the table providing the isomorphism Ei/A ∼= G. (Also note that
we must choose e ∈ E to represent e ∈ G.) This takes O(|E|) = O(|A| |G|) time. Next, we
compute fi for each g, h ∈ G by fi(g, y) = s(g) + s(h) − s(gh). Finally, we subtract them
pointwise to compute f1 − f2. All of the above can be done in O(|A| |G|+ |G|2) time.

It remains to invoke a membership test for a permutation group. The fastest algorithms
[5] apply to so-called “small-base groups”, but unfortunately, this representation is not one.12
For the general case, the fastest known algorithm is from [9] and runs in time Õ(n3).

All of the membership test algorithms for permutation groups work by first computing
what is called a strong generating set. As noted in [9], Gaussian elimination is a special case
of this construction, so the running time of Õ(n3) is in fact optimal for all algorithms that
work in this manner.

We note that the time to run this membership test dominates the time required to prepare
its inputs, so the overall running time will be Õ(n3) = Õ(|A|3 |G|6). J

3.3 Quantum Algorithms
For classical algorithms, we excluded the possibility of using a membership test for black
box groups because no efficient algorithm is known to exist. However, in the quantum case,
we have such an algorithm [10]. As a result, it is natural to consider whether extension
equivalence can also be solved in the black box model.

11 Since ∂ is not an isomorphism, this generating set may be redundant. However, since its kernel is very
small compared to

∣∣C1(G, A)
∣∣, this increases the size of the generating set by a 1− o(1) factor.

12The group B2(G, A) would be small-base if log
∣∣B2(G, A)

∣∣ = O(poly log n) = O(poly(log |G|+ log |A|)),
but we can see that B2(G, A) is much bigger than this.

TQC’13

134 Classical and Quantum Algorithms for Testing Equivalence of Group Extensions

Our quantum algorithm will take the inputs A and E as black box groups. That is, we
are given a generating set for each and an oracle for performing the three operations listed
earlier in the group E.13

For the group G, on the other hand, we first consider the case when G is given by a
multiplication table. In this case, we can efficiently work with the group B2(G,A) since it
has a generating set of size O(|G|2 log |A|) and we only need a running time polynomial in |G|
in this model. Practically speaking, this means that we will be able to compute equivalence
of extensions of a small group G by a large group A using this algorithm. Such extensions
can still be quite complicated groups.

Finally, the isomorphism Ei/A ∼= G will be provided as an oracle since we cannot
reasonably take a table with |E| rows as input. Given an element x ∈ Ei, the oracle return
the g ∈ G corresponds to x+A ∈ Ei/A.

Proof of Theorem 3. As in the classical algorithm, we will apply the correspondence in
Lemma 1 and reduce to a membership test in B2(G,A).

In order to use a membership test for B2(G,A), we must show how to construct an
oracle for this group or a larger group containing it. We will work with C2(G,A). Since
each element of C2(G,A) is a vector (or direct sum) of |G|2 elements of A, we can identify
elements of this group by strings containing |G|2 strings for elements of A. We can perform
multiplication and inverses pointwise, each using |G|2 calls to the oracle for A. Similarly, the
identity in C2(G,A) is simply |G|2 copies of the identity in A, so we can also check for the
identity with |G|2 calls to the oracle for A.

One input to the membership test is a generating set for B2(G,A). We saw in the
previous section that this can be constructed simply by making |G|2 labelled copies of a
generating set for A. In this case, we are given a generating set for A as input, and we can
turn this into |G|2 labelled copies in O(|G|2 log |A|) time.14

The other input to the membership test is the element f1 − f2. As before, in order to
compute these factor sets, we need to be able to choose a representative of each coset of A in
E. However, note that our classical algorithm ran in O(|E|) time, which is no longer efficient
in this model. So we will need a slightly different approach.

Instead of enumerating E, we will select random elements from E and invoke the oracle
we are given to find the projection in G. If x ∈ E projects onto g ∈ G, then this gives us
our representative s(g) = x for g. We continue to select random elements until we have a
representative for each g ∈ G (aside from e ∈ G, which we set to s(e) = e).

Now, since we are only given a generating set for E, it is not possible to select uniformly
random elements. However, we can compute nearly uniformly random elements as described
in [11] in time linear in the size of the generating set for E (plus an Õ(log5 |A|) additive term).
The generated elements are nearly uniform in the sense that the probability of generating
x ∈ E is off by a 1− o(1) factor, which we can choose to be arbitrarily small.

With this, the probability of producing any particular g ∈ G will be (1±ε)/ |G|. Hence, by
standard calculations, we will produce a representative for each g ∈ G with high probability
after O(|G| log |G|) random choices. The overall time to compute these representatives if
Õ(|G| log |A|+ log5 |A|).

13This also works for A since A ≤ E.
14This is assuming that we are given a generating set for A of size O(log |A|). We can easily reduce to a

generating set of this size, if this is not what we are given, by using random subproducts as described in
[5].

K.C. Zatloukal 135

With choices of representatives si for each Ei, we can compute the factor sets fi and their
difference f1 − f2 in the same manner as in the classical algorithm. This takes time O(|G|2).

To perform the membership test, we apply the algorithm from [10], which can be used
to compute the size of a subgroup. We call this once with the generating set for B2(G,A)
and once with this generating set plus f1 − f2. If the latter subgroup is larger, then
f1 − f2 /∈ B2(G,A), and the extensions are not equivalent. Otherwise, they are equivalent.

As described in [12], the running time of the algorithm for computing group size depends
on the size of the generating set, k, and the maximum order of any element in the group,
q. As mentioned above, we have k = O(|G|2 log |A|) for the first. For the second, the best
bound we have in general is q = |A|.

The algorithm first performs O(k log q) group operations. Each of these translates into
|G|2 calls to the oracle for A. Thus, all together, it will perform O(|G|4 log2 |A|) calls to the
oracle for A. The algorithm also performs O(k3 log2 q) = O(|G|6 log5 |A|) other elementary
operations as part of its post-processing, which dominates the running time.

There are a few other details about the running time of this algorithm that need to be
considered. However, to keep this presentation simpler, we discuss those in the appendix, in
section B. Here, it suffices here to say that the other necessary processing adds at most a
log |A| factor to the running time, giving us a running time of O(|G|6 log6 |A|). J

As in the classical case, it turns out that the quantum algorithm needs to perform
something like Gaussian elimination on a matrix.15 This occurs within the post-processing
steps of the algorithm for computing the size of the subgroup. The matrix in question has
rows and columns indexed by generators, and since we have O(|G|2 log |A|) generators, we
get an O(|G|6) factor in the running time of the algorithm.

The dependence on |A|, on the other hand, is exponentially improved compared to
the classical algorithm. Hence, if the group G is fairly small (i.e., |G| = O(log |A|)) then
the quantum algorithm is exponentially faster overall. As we will see in the next section,
extensions of small groups (even constant sized) are complicated and interesting objects.

For the case where G is also presented as a black box group, the above approach does not
work since we cannot efficiently write down a generating set for B2(G,A) or even a factor
set f ∈ Z2(G,A). However, it is still possible to test equivalence provided that G is abelian.
As this requires substantially more work, which is specific to this special case, we leave the
proof of Theorem 4 to the appendix, in section A.

3.4 Algorithms for Non-Central Extensions
It is not hard to extend our algorithms to general extensions, i.e., without the assumption
that A is central in E1 and E2.

The core fact needed by both algorithms is the correspondence between equivalence
classes of extensions and elements of H2(G,A) given in Lemma 1. This relationship indeed
holds for general extensions (i.e., under the assumption that A is abelian but not necessarily
central). However, in the general setting, the definition of H2(G,A) is more complex.

If E is an extension of G by A and t ∈ E is a representative of g ∈ G, then it does not
hold that t−1at = a for all a ∈ A if A is not central. It is easy to check that t−1at ∈ A,
however, and that any two representatives of g ∈ G define the same action a 7→ at , t−1at.
In fact, this defines a homomorphism ϕ : G→ AutA, as occurs in a semi-direct product.

15 Specifically, computing the Smith normal form of a matrix. See [10] for details.

TQC’13

136 Classical and Quantum Algorithms for Testing Equivalence of Group Extensions

In the general case, extensions are identified not only by the groups G and A but also
by ϕ : G → AutA. Two extensions of G by A with action ϕ are equivalent if there exists
a structure preserving isomorphism, as before. Lemma 1 then holds using a definition of
H2(G,A) that changes the formula for ∂ to include ϕ.

In our algorithms, the only change is that we must use the new formula when constructing
a generating set for B2(G,A). This new formula is (∂f)(x, y) , f(x)y + f(y)− f(xy), where
the action ay of G on A is given by ϕ. Since this action is just conjugation by a representative
and we have a representative for each y ∈ G, it is clear that we can compute this formula
just as well. Hence, we can efficiently test equivalence of non-central group extensions of G
by A, in both models, with the same running times.

3.5 Impossibility for Classical Algorithms in the Black Box Model

In this subsection, we show that the problem solved by our quantum algorithm is classically
hard under the assumption of the Goldwasser–Micali cryptosystem that quadratic residuosity
is classically hard. Our proof is a reduction from quadratic residuosity to testing equivalence
of central extensions. Hence, this argues that the problem for black box groups is hard even
for the simpler case of central extensions.

Proof of Theorem 5. The inputs to quadratic residuosity are a large number N and a
y ∈ Z∗N , the group of multiplicative units modulo N . (We are also assured that the Jacobi
symbol of y is +1, though that will play no part in the construction.) Both of these inputs
are encoded in O(logN) bits, so an algorithm is only efficient if it runs in O(poly logN)
time.

The objective for this problem is to determine whether y has a square root in Z∗N , that is,
whether there exists an x ∈ Z∗N such that y = x2 (mod N). If such an x exists, y is called a
“quadratic residue”. Our reduction will construct two central extensions of Z2 by Z∗N that are
equivalent iff y is a quadratic residue. Since Z2 is both small and abelian, this is a special
case of both models we considered for quantum algorithms. Hence, this one reduction will
show that both problems are as hard as quadratic residuosity.

As mentioned above, we can create a group extension from any factor set f : Z2 ×
Z2 → Z∗N . If we know the values of this function, then we can perform multiplication by
(x, a)(y, b) = (xyf(a, b), a+b).16 It is well-known that we can perform group operations in Z∗N
in O(poly logN) time, and group operations in Z2 take constant time, so this computation
can be performed efficiently. Likewise, the inverse of (x, a), given by (x−1f(a,−a)−1,−a),
can also be computed efficiently. Finally, we can easily check for the identity element, which
is (1, 0). This shows that we can efficiently provide an oracle for these extensions, once we
have chosen their factor sets.

Each factor set provides only four outputs since |Z2 × Z2| = 4. Furthermore, as noted in
the definition, any factor set must also satisfy f(a, e) = f(e, b) = e for all a, b ∈ G. In this
case, that means that f(0, 0) = f(0, 1) = f(1, 0) = 1. Thus, each factor set is defined by the
single value f(1, 1). We will choose one extension to have f(1, 1) = 1 and the other to have
f(1, 1) = y. Since y is provided in the input, it is clear that we can efficiently compute the
value f(a, b) for either of these extensions.

16Note that the group operation in Z∗
N , while abelian, is usually written as multiplication, while that of

Z2 is written as addition. We will follow those conventions in this section. Note, however, that we used
the opposite conventions for A and G in earlier sections.

K.C. Zatloukal 137

We should also note that, for an f so defined to be a 2-cocycle, it must satisfy the
additional (odd-looking) condition provided in the definition. This condition ranges over
three variables a, b, c ∈ G, and since |G| = 2 in this case, this provides 8 equations that must
be satisfied. It is a simple matter to write these out for the two factor sets described above
and verify that these always hold, regardless of the value of f(1, 1), so we have the freedom
to choose f(1, 1) = y as above.

In addition to the oracle just described, our extension equivalence test requires descriptions
of the groups A, G, and E. For G = Z2, we can be compute a multiplication table in constant
time (for the first quantum model) or we can easily construct an oracle that computes group
operations in Z2 in constant time (for the second quantum model). For A = Z∗N , we can
produce a generating set (with high probability) by choosing O(logN) random elements.
To do this, we simply choose random elements of ZN and then check that they are in Z∗N
by computing the GCD with N . It is well-known that this can be done efficiently, and
since there is only a o(1) chance that this test fails, we can produce a generating set in
O(poly logN) time. Finally, for the group E, we can again choose O(logN) random elements
(since |E| = 2 |A|), and since E as a set is simply Z∗N ×Z2, we can choose a uniformly random
element of E by choosing x ∈ Z∗N and a ∈ Z2 uniformly, then forming (x, a).

The last input we must provide for extension equivalence is the isomorphism Ei/Z∗N ∼= Z2.
This is simply the function that maps (x, a) 7→ a. Obviously, this can be performed efficiently.

Let E1 be the extension with factor set f1 having f1(1, 1) = y and E2 be the extension
with f2 having f2(1, 1) = 1. Then we can see that f1f

−1
2 = f1. Thus, these extensions

are equivalent iff there exists a cochain s : Z2 → Z∗N such that ∂s = f . By construction,
any s will ensure that ∂s(0, 0) = ∂s(0, 1) = ∂s(1, 0) = 1 (otherwise, they would not
be valid factor sets), so we only need ∂s(1, 1) = f1(1, 1) = y. Let x = s(1).17 Then
∂s(1, 1) = s(1)s(1)s(1 + 1)−1 = x · x · 1−1 = x2. Thus, we can see that the extensions are
equivalent iff there exists an x ∈ Z∗N such that x2 = y, i.e., iff y is a quadratic residue. J

Note that this example shows that extending even a constant-sized group (in this case,
|G| = 2) by a large group can introduce substantial difficulty.

4 Counting Equivalence Classes of Extensions

In this section, we show that it is possible to compute
∣∣H2(G,A)

∣∣, the number of inequivalent
extensions of G by A, using the machinery developed earlier for testing equivalence. The
size

∣∣H2(G,A)
∣∣ is another quantity that is sometimes computed by hand for extensions of

small groups and would be interesting to compute for larger groups.
We start first with the quantum algorithm, which takes A as a black box group and G

given by a multiplication table.

Proof of Theorem 7. Since H2(G,A) ∼= Z2(G,A)/B2(G,A), we can compute the size of
the former group from the sizes of the latter two. In fact, we computed

∣∣B2(G,A)
∣∣ as part

of our quantum algorithm for testing equivalence, so we know how this can be done.
To compute

∣∣Z2(G,A)
∣∣, we use the fact that Z2(G,A) = Ker ∂2, where ∂2 : C2(G,A)→

B3(G,A) is similar to the map ∂ (= ∂1) we used above. This map is a surjection, so the
first isomorphism theorem tells us that B3(G,A) ∼= C2(G,A)/Z2(G,A), which means that∣∣Z2(G,A)

∣∣ =
∣∣C2(G,A)

∣∣ / ∣∣B3(G,A)
∣∣. From the definition, we have

∣∣C2(G,A)
∣∣ = |A||G|

2
.

17 Any (normalized) 1-cochain s must have s(0) = 1, so 1-cochains in this case are in 1-to-1 correspondence
with the element of Z∗

N by the mapping s 7→ s(1).

TQC’13

138 Classical and Quantum Algorithms for Testing Equivalence of Group Extensions

To compute
∣∣B3(G,A)

∣∣, we can use the same approach as for B2(G,A): we take a
generating set for C2(G,A), which is simply |G|2 copies of the generating set for A and has
size O(|G|2 log |A|); push this forward into B3(G,A) by applying the map ∂2, which has a
simple formula; and then invoke the algorithm for computing the size of an abelian black
box group. With

∣∣B3(G,A)
∣∣ in hand, we can compute

∣∣Z2(G,A)
∣∣ and then

∣∣H2(G,A)
∣∣ by

arithmetic. All of these steps can be done in O(poly |G|poly log |A|) time, so this gives an
efficient algorithm. J

Finally, we have a classical algorithm when A and G are given by multiplication tables.

Proof of Theorem 6. We repeat the same approach as just described for the quantum
algorithm of computing

∣∣B2(G,A)
∣∣ and ∣∣B3(G,A)

∣∣. Now, our classical algorithm for testing
equivalence did not compute

∣∣B2(G,A)
∣∣ as part of its operation. However, we did show how

to efficiently construct a permutation representation for B2(G,A), and it is well-known that
we can compute the size of a permutation group efficiently [5], so we can compute the size of
this group classically as well.

We can also efficiently construct a generating set for B3(G,A), just as we did above,
by taking a generating set for C3(G,A) (in the same manner as we did for C2(G,A) in
the classical case) and pushing it forward using ∂2. We can compute the size of this group
efficiently as well, using the algorithm mentioned above, and then perform the same arithmetic
as above. J

5 Conclusion

In this paper, we considered the problem of testing whether two extensions of a group G
by an abelian group A are the same or “equivalent.” If both |A| and |G| are small, then we
showed that there exists an efficient (classical) Monte Carlo algorithm for testing equivalence.
On the other hand, if |A| is so large that A can only be provided as a black box and either
|G| is small or |G| is large and abelian, then there is still an efficient quantum algorithm for
testing equivalence, whereas no efficient classical algorithm exists, under the assumption that
there is no efficient classical algorithm for testing quadratic residuosity.

As mentioned in the introduction, one of the motivations for studying this problem is its
relationship to the group isomorphism problem, an important open problem in computer
science. Hence, it is worth considering what light these results shed on the group isomorphism
problem.

While the isomorphism problem applies to arbitrary groups, it is widely believed that the
case of 2-nilpotent groups contains the essential hard cases. Any such groups are central
extensions, and hence, we can apply our classical algorithm above to test their equivalence.
If the two extensions are equivalent, then they are isomorphic. However, the opposite does
not hold.

We can conclude from this that, if it is the case that testing isomorphism of 2-nilpotent
groups is hard, then the hardness must come from extensions that are isomorphic but
inequivalent. Hence, it behooves us to understand further the computational complexity of
distinguishing such extensions.

Acknowledgements. The author would like to thank Aram Harrow for many useful discus-
sions, much encouragement, and careful feedback on earlier drafts of this paper. Funding
was from NSF grants CCF-0916400 and CCF-1111382.

K.C. Zatloukal 139

References
1 L. Babai, P. Codenotti, J. A. Grochow, and Y. Qiao. Code equivalence and group isomor-

phism. In Proceedings of the Twenty-Second Annual Symposium on Discrete Algorithms,
pages 1395–1408, 2011.

2 J. Rotman. An Introduction to the Theory of Groups. Springer, 1994.
3 V. Arvind and J. Torán. Solvable group isomorphism is (almost) in NP ∩ coNP. ACM

Transactions on Computation Theory, 2(2):4:1–4:22, March 2011.
4 F. Le Gall. An efficient quantum algorithm for some instances of the group isomorphism

problem. In Proceedings of the 27th International Symposium on Theoretical Aspects of
Computer Science, pages 549–560, 2010. arXiv:1001.0608.

5 Á. Seress. Permutation Group Algorithms. Cambridge University Press, 2003.
6 L. Babai and E. Szemerédi. On the complexity of matrix group problems, i. In Proceedings

of the 25th IEEE Symposium on Foundations of Computer Science, pages 229–240, 1984.
7 J. Watrous. Quantum algorithms for solvable groups. In Proceedings of the 33rd ACM

Symposium on Theory of Computing, pages 60–67, 2001. arXiv:quant-ph/0011023.
8 S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System

Sciences, 28(2):270–299, April 1984.
9 L. Babai, G. Cooperman, L Finkelstein, E. Luks, and A. Seress. Fast Monte Carlo algo-

rithms for permutation groups. Journal of Computer and System Sciences, 50(2):296–308,
April 1995.

10 K. Cheung and M. Mosca. Decomposing finite abelian groups. Quantum Information &
Computation, 1(3):26–32, October 2001. arXiv:cs/0101004.

11 L. Babai. Local expansion of vertex-transitive graphs and random generation in finite
groups. In Proceedings of the 23rd ACM Symposium on Theory of Computing, pages 164–
174, 1991.

12 M. Mosca. Quantum Computer Algorithms. PhD thesis, University of Oxford, 1999.
13 P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on

a quantum computer. SIAM Journal on Scientific and Statistical Computing, 26(5):1484–
1509, October 1997. arXiv:quant-ph/9508027.

A Quantum Algorithm for Large, Abelian G

As mentioned in subsection 3.3, when G is a black box group, we have little hope of working
with the group B2(G,A) since we cannot efficiently write down a generating set. Worse,
we cannot even write down an f ∈ Z2(G,A) corresponding to our extension because this
requires |G| numbers in the general case. Hence, it is clear that we will need to put some
restrictions on the form of f if we are to work with it efficiently. Below, we will see that this
can be done without loss of generality in the case where G is abelian.

By the structure theorem for abelian groups, we know that G ∼= Zd1 × · · · ×Zdm for some
integers d1 | d2 | · · · | dm, which means m = O(log |G|). We can use the algorithm of [10]
to efficiently decompose G into a product of this form on a quantum computer, so we can
assume that we have G in this form.

As usual, we will have f = ∂s for some s : G → E. In particular, for {xi ∈ Zdi
}i∈[m],

we will choose s(x1, . . . , xm) = sx1
1 . . . sxm

m for some {si ∈ E} such that si is a representative
of ei , (0, . . . , 0, 1, 0, . . . , 0) ∈ G (where the 1 is in the i-th place). We can check that this
s is a valid set of representatives for G. Since π : E → G is a homomorphism, we can see
that π(s(x1, . . . , xm)) = (πs1)x1 . . . (πsm)xm = ex1

1 . . . exm
m = (x1, 0, . . . , 0) . . . (0, . . . , 0, xm) =

(x1, . . . , xm).

TQC’13

http://arxiv.org/abs/1001.0608
http://arxiv.org/abs/quant-ph/0011023
http://arxiv.org/abs/cs/0101004
http://arxiv.org/abs/quant-ph/9508027

140 Classical and Quantum Algorithms for Testing Equivalence of Group Extensions

Most importantly, it is clear that we can write down the numbers s1, . . . , sm efficiently in
terms of our generators for A, so this gives us an efficient way to represent s and f = ∂s.

Let us define F(G,E) to be the set of functions G→ E of the above form, i.e., s ∈ F(G,E)
iff s(x1, . . . , xm) = sx1

1 · · · sxm
m for some s1, . . . , sm ∈ E. Note that we have s(0, . . . , 0) =

0, so these functions are normalized. Since s(x1, . . . , xm) is always a representative of
(x1, . . . , xm) ∈ G, as we saw in the proof of Lemma 1, we then always have ∂s ∈ Z2(G,A),
that is, ∂F(G,E) ⊂ Z2(G,A). Likewise, if we consider the functions F(G,A) (with codomain
A rather than E), we see that these are a subset of C1(G,A) — every s ∈ F(G,A) is a
1-cochain, but not every 1-cochain is in this concise form (defined in terms of some s1, . . . , sm)
— so we define B2

F (G,A) , ∂F(G,A) ⊂ ∂C1(G,A) = B2(G,A). (It may be helpful to refer
back to Figure 1 for the definitions of C2, B2, Z2, etc.)

The following lemma shows that it will be sufficient to work with B2
F (G,A).

I Lemma 8. Suppose that f ∈ ∂F(G,E1) and g ∈ ∂F(G,E2), then f − g ∈ B2(G,A) iff
f − g ∈ B2

F (G,A).

Proof. Since B2
F (G,A) ⊂ B2(G,A), the reverse direction is immediate.

For the forward direction, suppose that f − g ∈ B2(G,A). We know that f = ∂s for some
s ∈ F(G,E1). Since g differs from f by a coboundary, E1 and E2 are equivalent extensions.
This means, in particular, that there exists an isomorphism τ : E2 → E1 respecting A and G.
Now, let u ∈ F(G,E2) be such that g = ∂u. Then we can see that

τ(g(x, y)) = τ(∂u(x, y)) = τ(u(x)u(y)u(x+ y)−1) = τu(x)τu(y)(τu(x+ y))−1.

Since g(x, y) ∈ A and τ restricts to identity on A, we see that g(x, y) = τg(x, y) = (∂τu)(x, y).
Thus, g can be realized as ∂t for some t : G → E1, namely, t = τu. Futhermore, since u
is of the form u(x1, . . . , xm) = ux1

1 . . . uxm
m , we see that t(x1, . . . , xm) = τu(x1, . . . , xm) =

(τu1)x1 . . . (τum)xm , which shows that t ∈ F(G,E1) with ti , τui the representative of ei
for each i ∈ [m].

The above shows that we can restrict our attention to considering f − g = ∂s− ∂t, where
s, t ∈ F(G,E1). In this case, we can compute

f(x)− g(y) = s(x)s(y)s(x+ y)−1(t(x)t(y)t(x+ y)−1)−1

= s(x)s(y)s(x+ y)−1t(x+ y)t(y)−1t(x)−1.

Now, note that s(x+ y)−1t(x+ y) ∈ A since

π(s(x+ y)−1t(x+ y)) = (πs(x+ y))−1πt(x+ y) = −(x+ y) + (x+ y) = 0

in G. Since A is central in E, we can move s(x + y)−1t(x + y) to the end. This leaves
s(y)t(y)−1 adjacent. Since this is in A for the same reason, we can rearrange this as well.
Thus, we have f(x)− g(y) = s(x)t(x)−1s(y)t(y)−1s(x+ y)−1t(x+ y). This is close, but not
identical, to

∂(st−1)(x, y) = s(x)t(x)−1s(y)t(y)−1(s(x+ y)t(x+ y)−1)−1,

the only difference being the order of the last two factors.
We can show, however, that these two terms commute. In particular, let x = (x1, . . . , xm).

Then we have s(x1, . . . , xm) = sx1
1 . . . sxm

m and t(x1, . . . , xm) = tx1
1 . . . txm

m so that s(x)t(x)−1 =
sx1

1 . . . sxm
m t−xm

m . . . t−x1
1 . Since sm and tm are both representatives of em ∈ G, we know that

sxm
m t−xm

m ∈ A, which means we can move this term to the end. Repeating this as above,
we have s(x)t(x)−1 = sx1

1 t−x1
1 . . . sxm

m t−xm
m . Now, since sm and tm are both representatives

K.C. Zatloukal 141

of em, they must differ by a factor of some am ∈ A, so we have tm = smam, which means
that sxm

m t−xm
m = sxm

m s−xm
m a−xm

m , and more generally, s(x)t(x)−1 = a−x1
1 . . . a−xm

m . Now, if we
compute the product in the other order, we have t(x)−1s(x) = t−xm

m . . . t−x1
1 sx1

1 . . . sxm
m =

t−x1
1 sx1

1 . . . t−xm
m sxm

m by the same rearranging as before, and since t−x1
1 sx1

1 = s−x1
1 a−x1

1 sx1
1 =

a−x1
1 (using the fact that A is central in E1), we can see that t(x)−1s(x) = a−xm

m . . . a−x1
1 .

This is equal to what we computed for s(x)t(x)−1 since A is abelian, so we have shown that
f(x)− g(y) = ∂(st−1)(x, y).

If we let v : G → E1 be defined by v(x) = s(x)t(x)−1, then we have shown above that
f − g = ∂v. In particular, we showed v(x1, . . . , xm) = a−x1

1 . . . a−xm
m , which means that

v ∈ F(G,A) with vi = a−1
i . Thus, we have seen that f − g ∈ ∂F(G,A) = B2

F (G,A). J

The following two lemmas tell us more about what elements in these groups look like.

I Lemma 9. If h ∈ B2
F (G,A), then there exist α1, . . . , αm ∈ A such that h(x, y) =

∏m
i=1 α

δi
i ,

where δi = 1 if xi + yi ≥ di and 0 otherwise and αi = adi
i for some ai.

Proof. If h is as above, we know that h = ∂v for some v ∈ C1
F (G,A), where v is of the form

v(x1, . . . , xm) = ax1
1 . . . axm

m for some {ai ∈ A}. Since A is abelian, we can see that

h(x, y) = v(x1, . . . , xm)v(y1, . . . , ym)v(x1 +y1, . . . , xm+ym)−1 =
m∏
i=1

axi
i a

yi

i a
−(xi+yi) mod di

i

because xi + yi in G is computed mod di. If xi + yi < di, then the mod has no effect, and we
see that h(x, y) = e. On the other hand, if xi+yi ≥ di, then −(xi+yi) mod di = −xi−yi+di.
This means that axi

i a
yi

i a
−(xi+yi) mod di

i = adi
i , so we can see that h(x, y) =

∏m
i=1 a

diδi
i , where

each δi is defined as in the statement of the lemma. We get the form in the statement by
defining αi = adi

i . J

I Lemma 10. If f ∈ Z2
F (G,A), so that f = ∂s for some s ∈ F(G,E), then there exist

{αi ∈ A}1≤i≤m and {βi,j ∈ A}1≤i<j≤m such that f(x, y) =
∏

1≤i≤m α
δi
i

∏
1≤i<j≤m β

yixj

i,j ,
where δi is defined as in the previous lemma, αi = sdi

i , and bi,j = [si, s−1
j].

Proof. By definition, we have

f(x, y) = s(x)s(y)s(x+ y)−1 = sx1
1 · · · sxm

m sy1
1 · · · sym

m s−(xm+ym) mod dm
m · · · s−(x1+y1) mod d1

1 .

As in the previous lemma, we can rewrite this as

f(x, y) = sx1
1 · · · sxm

m sy1
1 · · · sym

m s−xm−ym+dmδm
m · · · s−x1−y1+d1δ1

1 .

We can begin by using the fact that sdi
i ∈ A for each i. This follows because π(sdi

i) =
π(s(ei)di) = (0, . . . , di, . . . , 0) = 0 since the i-th part of G is Zdi , meaning addition is modulo
di.

Thus, we can define αi , sdi
i . Since A is abelian, we can pull all of these factors to the

front. This puts f in the form

f(x, y) =
(

m∏
i=1

αδi
i

)
sx1

1 · · · sxm
m sy1

1 · · · sym
m s−xm−ym

m · · · s−x1−y1
1 .

In the middle of the latter product, we have sym−1
m−1 s

ym
m s−xm−ym

m s
−xm−1−ym−1
m−1 . We can

cancel sym
m and s−ym

m , leaving us with sym−1
m−1 s

−xm
m s

−xm−1−ym−1
m−1 . In order to cancel the sym−1

m−1 ,
we first have to move it past the s−xm

m . We can do this by introducing a commutator that

TQC’13

142 Classical and Quantum Algorithms for Testing Equivalence of Group Extensions

compensates for the order change. This allows the sym

m−1 factor to cancel, leaving us with
[sym−1
m−1 , s

xm
m]s−xm−1

m−1 .
More generally, we can consider [s(u), s(v)] for any u, v ∈ G. We can see that

π[s(u), s(v)] = π(s(u)s(v)s(u)−1s(v)−1) = πs(u)πs(v)πs(u)−1πs(v)−1 = u+v−u−v = 0,

which means that [s(u), s(v)] ∈ A. In particular, this means that we can move commutators
to the front.

Hence, we can simplify sx1
1 · · · sxm

m sy1
1 · · · sym

m s−xm−ym
m · · · s−x1−y1

1 by introducing commu-
tators to move each factor of s−xj

j in front of each remaining factor of syi

i . In the example
above, we saw that there was no moving required for i = m, while i = m− 1 only need to
move past j = m. In general, will need to swap each pair of this form with i < j. Each such
swap introduces a commutator, but since these are all in A, we can immediately move them
to the front and continue swapping these factors and canceling the matching factors until
nothing remains.

Finally, note that a swap of syi

i and s−xj

j can be thought of as a number of swaps between
si’s and s−1

j ’s. Since each of the yi copies of the first must move past each of the xj copies
of the second, we see that there are yixj swaps overall. Thus, we can write the commutator
as [si, s−1

j]yixj , giving us the form in the statement of the lemma. J

The following is the main result needed for our algorithm.

I Lemma 11. Let f, f ′ ∈ Z2
F (G,A). Write these in the form of the previous lemma with

{αi}, {βi,j} for f and {α′i} and {β′i,j} for f ′. Then f − f ′ ∈ B2
F (G,A) iff βi,j = β′i,j for all

1 ≤ i < j ≤ m and (αi)−1α′i has a di-th root in A.

Proof. We begin with the reverse direction. Let ai ∈ A be a di-th root of (αi)−1α′i.
Recall that αi = sdi

i . Replacing si with siai gives another valid set of representatives and,
hence, an extension equivalent to f ′. Defining f ′′ using this set of representatives gives an
α′′i = sdi

i a
di
i = αi(αi)−1α′i = α′i. Since f and f ′ agree on the βi,j ’s and since including extra

factors from A does not change the βi,j ’s (as A is central and βi,j is a commutator), we see
that f ′′ and f ′ agree on both the αi’s and βi,j ’s, so f ′′ = f ′. Next, since f and f ′′ arise by
choosing different representatives for the same extension, we know that f − f ′′ ∈ B2(G,A).
However, since f, f ′′ ∈ Z2

F (G,A), we have f − f ′′ ∈ B2
F (G,A) by Lemma 8. Thus, we can

see that f − f ′ = (f − f ′′) + (f ′′ − f ′) = f − f ′′ ∈ B2
F (G,A).

For the forward direction, we will separately prove the two implications, that f − f ′ ∈
B2
F (G,A) implies the condition on the βi,j ’s and that it implies the condition on the αi’s.
For the condition on the βi,j ’s, we will prove the contrapositive. First, suppose that

βi,j 6= β′i,j for some i < j. From the formula in Lemma 9, we can see that h(ei, ej) = 0
for any h ∈ B2

F (G,A). On the other hand, from the formula in Lemma 10, we see that
f(ei, ej) = βi,j 6= β′i,j = f ′(ei, ej). Since every coboundary is 0 on this pair, we conclude that
f − f ′ 6∈ B2

F (G,A).
Now, we prove the condition on the αi’s. Suppose that h , f ′ − f ∈ B2

F (G,A). From
the formula in Lemma 9, writing the constants for h as α′′i , we can see that h(ei, (di −
1)ei) = α′′i = adi

i . From the formula in Lemma 10, we see that f(ei, (di − 1)ei) = αi and
f ′(ei, (di − 1)ei) = α′i. Taking f ′ − f = h at the pair (ei, (di − 1)ei) and writing with
multiplicative notation, we see that α′i(αi)−1 = α′′i = adi

i . Since (αi)−1α′i = α′i(αi)−1 (both
are in A), we see that the di-th root exists.

Thus, we have seen that, if the condition on the βi,j ’s and αi’s does not hold (so either
the βi,j condition does not hold or the αi condition does not hold), it is impossible to have
f − f ′ ∈ B2

F (G,A). J

K.C. Zatloukal 143

We now have the necessary tools required to prove the theorem in this case.

Proof of Theorem 4. Assuming that we can compute a factor set in Z2
F (G,A) for each

extension, we only need to compute the αi’s and βi,j ’s from Lemma 11 for each factor set
and check whether they satisfy the conditions of the last lemma.

We saw in the proof of the lemma that these constants can be found simply by evaluating
the factor set at particular points. There are only O(m2) = O(log2 |G|) constants to compute.
Given the simple form of each f ∈ Z2

F (G,A), it is clear that we can perform these evaluations
efficiently. Thus, we can efficiently determine the αi’s and βi,j ’s.

For the βi,j ’s, the conditions of Lemma 11 require us simply to check equality, which we
can do for each (i, j) with one call to the oracle for A. For the αi’s, on the other hand, we
need to determine whether the quotient of two αi’s is a di-th root.

Recalling that A is an abelian group, we can switch back to additive notation. Our goal
is to determine whether there exists an a ∈ A such that dia = α′i−αi. Since A is isomorphic
to a product Zn1 × · · · × Znk

, this splits into k independent equations. For each 1 ≤ j ≤ k,
we want to find an aj such that diaj = (α′i −αi)j (mod nk) or, equivalently, if there exist aj
and bj such that ajdi + bjnk = (α′i − αi)j . Let d be the greatest common denominator of di
and nk. We can solve this equation iff d divides (α′i − αi)j .

Thus, for the αi’s, the conditions of Lemma 11 require us to compute the αi’s, split
them into the parts of the direct product, and then check whether the difference in each
component is divisible by the greatest common denominator of di and nk. We get di by
decomposing G into a direct product of cyclic groups using the algorithm of [10]. We apply
the same algorithm to A to find nk and the (·)j components of a′i − αi needed above.18 We
then simply need to check divisibility for O(log |G|)-bit numbers, which we can do efficiently
on a classical computer. Since the quantum algorithm of [10] is efficient, we have seen that
there is an efficient quantum algorithm for testing whether the difference of two factor sets is
a coboundary.

It remains to describe how to compute each factor set or, more specifically, the represen-
tatives s1, . . . , sm for each of the direct factors (since we can efficiently evaluate a factor set
given these numbers). As in our earlier quantum algorithm, we can produce nearly uniformly
random elements from E and then apply the oracle to find the corresponding elements of G.
This process gives us nearly uniformly random elements of G. As we have seen before, we
need only O(log |G|) random elements to get a set that generates all of G. The key fact is
that we have not only a generating set for G but rather a generating set for G with each
generator coming from an element in E.

Since these generate G, we know that, for each i ∈ [m], there exists a product that gives
ei ∈ G. The corresponding product of elements of E is thus a representative of ei. To find
this product, we apply the algorithm of [10] to express G as a direct product of cyclic groups
and get the relations for converting from the generators we have to the standard generators
for the direct factors. These relations come in the form of an O(log |G|)×O(log |G|) matrix.
For each i ∈ [m], one column of this matrix gives the relation for generating ei as a product
of powers of O(log |G|) of our random elements. Since we can compute powers efficiently and
this matrix is small, we can efficiently compute this product to get ei. More importantly, we

18The algorithm of [10] computes not only generators for the factors of the direct product but also formulas
(the vectors yi) for converting from the original generators to the new ones. The map taking ei 7→ yi is
invertible, so we can efficiently compute the reverse direction (from new generators to the original ones)
as well.

TQC’13

144 Classical and Quantum Algorithms for Testing Equivalence of Group Extensions

can compute the product of the elements of E corresponding to these generators to produce
a representative of ei. This is a valid choice for si.

In summary, we find a set of representatives {si} for each extension that allows us to
efficiently compute a factor set in Z2

F (G,A). Then, we can check whether their difference lies
in B2

F (G,A) by computing the αi’s and βi,j ’s for each extension and checking the conditions
of the lemma. As we saw above, both of these steps can be performed efficiently on a
quantum computer. J

B Quantum Algorithm for Computing Group Size

The quantum algorithm in subsection 3.3 requires a subroutine that computes the size of a
black box group. Earlier, we cited the algorithm and analysis of [10, 12] but skipped some of
the finer details of how the theorems from those papers translate into a running time for this
subroutine in our algorithm. In this section, we fill in those missing details.

The algorithm of [10] is not explicitly for computing the size of the group. Rather, it is
for decomposing the group into a direct product of cyclic groups. That is, it produces a set
of generators, one for each of the direct factors. However, it is easy to compute the size of
the group from this information.

In particular, the size of the group is simply the product of the sizes of the direct factors,
and since each of these is a cyclic group, the size of each direct factor is simply the order of
the generator. Hence, we can get the size of the group from the output of this algorithm by
invoking an order finding subroutine.

Finding order is a special case of the algorithm for computing the period of a function,
which is also described and analyzed in [12]. In our case, the function whose period we want
to find is the map n 7→ gn, where g ∈ A is the generator whose order we are computing.
Since the order of g is bounded by |A|, the method of repeated squaring allows us to compute
this map with O(log |A|) calls to the oracle for A.

The quantum period finding algorithm makes only one call to the function just described,
taking O(log |A|) time. However, it must also perform O(log2 |A|) post-processing, which
dominates the running time.

To compute the size of our group, we need to find the order of all O(|G|2 log |A|) generators,
which we can see takes O(|G|2 log3 |A|) time. This is adds only a lower order term to the
overall running time.

That completes the discussion of our own post-processing to compute the size of the
group. However, we will also need to perform some pre-processing.

The algorithm described in [12] requires that all of the given generators have order
that is pk for some fixed prime p. This is done in order to reduce the amount of quantum
computation that is needed because separation into different p-groups can be done classically,
as we will now describe.

We start by finding the order of each generator. As noted above, this takes O(|G|2 log3 |A|)
time. Next, we factor the order using Shor’s algorithm [13], which takes O(log3 |A|) time.
Now, suppose that the order of g is r = pj1

1 . . . pjk

k . Then, if we let q` =
∏
i6=` p

ji

i , then we can
see that the order of gq` is pj`

` . Furthermore, we know from the Chinese remainder theorem
that any x ∈ Zr is uniquely determined by the values x mod pj`

` for each `. Hence, any power
of g can be written uniquely as a product of powers of gq1 , . . . , gqk .

We now have a generating set for which we know the prime power order of each element.
Thus, we can separately pass the generators for each p-subgroup (those whose order is a
power of p) to the algorithm from [10]. The structure theorem for finite abelian groups tells

K.C. Zatloukal 145

us that our group is a direct product of the p-subgroups, so we can simply multiply their
sizes to get the size of the whole group.

We can see that this pre-processing adds only a lower order term to the running time of
the algorithm. While our generating set for the whole group may have grown, each generator
adds at most a single generator to the set for each p-subgroup, so the running time of the
group decomposition algorithm that we analyzed before is unchanged. The one difference is
that we may need to invoke that algorithm as many as log |A| times, so this adds a factor of
log |A| to our bound on the running time.

Finally, we should note that the decomposition algorithm described in [12] also mentions
O(k2 log q) classical group multiplications (meaning multiplication in the group Z|A|). This
is dominated by the O(k3 log q) part of the post-processing, which works in the same group,
so it does not add to the overall running time.

TQC’13

	Introduction
	Background
	Computational Group Theory
	Group Extensions
	Low Degree Group Cohomology

	Results
	General Approach
	Classical Algorithm
	Quantum Algorithms
	Algorithms for Non-Central Extensions
	Impossibility for Classical Algorithms in the Black Box Model

	Counting Equivalence Classes of Extensions
	Conclusion
	Quantum Algorithm for Large, Abelian G
	Quantum Algorithm for Computing Group Size

