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Abstract
Commercial games can be an excellent testbed to artificial intelligence (AI) research, being a
middle ground between synthetic, highly abstracted academic benchmarks, and more intricate
problems from real life. Among the many AI techniques and problems relevant to games, such
as learning, planning, and natural language processing, pathfinding stands out as one of the
most common applications of AI research to games. In this document we survey recent work in
pathfinding in games. Then we identify some challenges and potential directions for future work.
This chapter summarizes the discussions held in the pathfinding workgroup.
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1 Introduction

Pathfinding is an important application of artificial intelligence to commercial games. Des-
pite a significant progress seen in recent years, the problem continues to constantly attract
researchers’ attention, which is explained in part by the high performance demands that
pathfinding implementations have to satisfy in a game. Pathfinding engines are allocated
limited CPU and memory resources. Moves have to be computed in real time, and often
there are many mobile units to compute paths for. Paths have to look sufficiently real-
istic to a user. Besides a more standard, single-agent pathfinding search on a fully known,
static map, games feature more complicated variations of the problem, such as multi-agent
pathfinding, adversarial pathfinding, dynamic changes in the environment, heterogeneous
terrains and mobile units, incomplete information, and combinations of these.

This chapter looks at games pathfinding research, with an emphasis towards the future.
It summarizes the discussions held in the Pathfinding Workgroup at the Dagstuhl Seminar
on Computational and Artificial Intelligence in Games. A shorter summary of the group’s
findings is available as part of a report on the entire seminar [24]. The first half of this
document overviews recent progress in the area. Then, current challenges and future work
directions are discussed.
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2 Survey of Pathfinding Methods

We start by indicating a popular, baseline approach to pathfinding. The three key elements
of the baseline approach are a graph representation of a map, a search algorithm, and a
heuristic function to guide the search. Grid maps are a popular way of discretizing a game
map into a search graph. As part of the process, a map is partitioned into atomic square
cells, sometimes called tiles. Depending on the map initial topology, a tile is marked as either
traversable or blocked. A mobile unit can occupy one traversable tile at a time. Traversable
tiles become nodes in the search graph. Graph edges connect adjacent traversable tiles.
Depending on the grid type, adjacencies are defined in the 4 cardinal directions (4-connected
grid maps), or in the 4 cardinal + 4 diagonal directions (8-connected grid maps).

According to Björnsson et al. [1], the A* [16] algorithm used to be the de facto standard
in pathfinding search. A* is a well known best-first search method, used in many other
search problems, including AI planning and puzzle solving, to name just a few. To speed up
a search, A* uses a heuristic function h(n), which estimates the distance from a given node
n to a goal node. Heuristics that do not overestimate the true distance to a goal are said to
be admissible. A* with an admissible heuristic returns optimal solutions. On 4-connected
maps, the Manhattan distance is a well known admissible heuristic. Given two nodes with
coordinates (x1, y1) and (x2, y2), the Manhattan distance is defined as ∆x + ∆y, where
∆x = |x1 − x2| and ∆y = |y1 − y2|. On a map with no obstacles, the Manhattan distance
coincides with the true distance. The Octile distance is a variant of the Manhattan distance
adapted to 8-connected maps. It is defined as

√
2×m+ (M −m), where m = min(∆x,∆y)

and M = max(∆x,∆y).
Part of the work overviewed in the rest of this section presents extensions of the baseline

approach, being based on online search. Extensions include using more informative heur-
istic methods, replacing a low-level grid map with a hierarchy of smaller search graphs,
exploiting symmetries to prune the search space in A* search, and using triangulation map
decomposition instead of grid maps.

Other contributions eliminate graph search at runtime. For example, compressed path
databases rely on a database of pre-computed all-pairs shortest path (APSP) data. Moves
are retrieved from a compressed APSP table. This is suitable to games where all potential
paths are precomputed, to largely free the CPU from the burden of path computation
during game play. The data compression helps reducing the memory overhead associated
with caching the precomputed paths.

2.1 Beyond Manhattan: Modern Pathfinding Heuristics on Grid Maps
The Manhattan and the Octile heuristics have the advantage of being simple, fast to com-
pute, and reasonably accurate on many map topologies. However, more informed heuristics
can reduce the number of states expanded (or visited) in a search. In this section we over-
view other heuristics in pathfinding, which can achieve a better accurracy, depending on
factors such as the map topology. They use pre-processing and additional memory to cache
the results of the pre-processing.

Goldberg and Harrelson [9] describe an admissible heuristic as part of their ALT search
method. Consider a given node l, called a landmark, on the graph. A pre-computation step
provides a look-up table with true distances d(n, l) from every node n to l. For simplicity,
assume an undirected graph. Given two arbitrary nodes n1 and n2, |d(n1, l) − d(n2, l)| is
an admissible estimation of the true distance from n1 to n2. The ALT admissible heuristic
takes the maximum maxl |d(n1, l)−d(n2, l)| over a subset of landmarks. Goldberg and Har-
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relson applied their ideas to graphs such as roadmaps and grids with non-uniform costs. The
heuristic has independently been developped by other researchers, including Sturtevant et
al. [32], who call it the differential heuristic. Goldenbert et al. [11] show how the differential
heuristic can be compressed. As an example of when the ALT heuristic is more informat-
ive than the Manhattan heuristic, we note that ALT can potentially identify unreachable
locations (∞ heuristic value), whereas Manhattan might return a finite value.

ALTBestP [6] is a variant of the ALT heuristic that uses one single landmark, from a
pre-defined subset of P landmarks. Specifically, at the beginning of a search, a landmark
is selected that gives the highest heuristic distance for the initial state: arg maxl |d(s, l) −
d(g, l)|, where s and g are the start and the goal. Furthermore, at each evaluated node, the
heuristic given by the selected landmark is compared with the Manhattan heuristic, and
their maximum is used as a heuristic evaluation.

Björnsson and Halldórsson [2] introduce the dead-end heuristic and the gateway heuristic,
two methods that use an automated decomposition of the map into disjoint areas. The
dead-end heuristic identifies areas that are irrelevant when solving a given instance, and
assign a heuristic value of ∞ to all locations contained in such areas. The gateway heuristic
identifies gateway points between adjacent areas in the partitioning, and pre-computes a
table with optimal distances between pairs of entrances. Thus, additional memory, with
a size quadratic to the number of gateways, is traded for an improved heuristic accuracy.
A similar trade-off is taken by Sturtevant et al. [32], with their canonical heuristic, and
Goldenberg et al. [10], with the portal heuristic. Sturtevant et al. [32] use the generic name
of true distance heuristics for the family of heuristics that store exact distances between
pairs of selected nodes.

2.2 Hierarchical Abstraction on Grid Maps
Hierarchical abstraction can potentially speed up a search by replacing it with a series of
smaller searches. Abstract solutions computed in a higher-level state space representation
are gradually refined, possibly through several hierarchical levels, down to the ground level
of the original search space.

Pathfinding is an application where hierarchical abstraction has been successful. Hier-
archical pathfinding methods, such as work mentioned in this section, can ensure that an
initial abstract solution can be refined into a low-level solution. This eliminates the need
to backtrack across hierarchical levels, thus eliminating a source of a potentially great slow
down.

HPA* [3] decomposes a map into disjoint square sectors. Entrance points between ad-
jacent sectors are identified and added as nodes into an abstracted search space. Abstract
edges connect pairs of entrance points placed on the border of the same sector. In effect, in
the abstracted space, a move traverses one sector in one step. Additional abstracted edges
connect the start node (and the target) to the entrance points of its sector. An abstract
solution contains macro moves such as sector-traversing moves. In a refinement step, a
search restricted to the area of one sector converts a macro step into a sequence of actual
moves. The method can have more than 2 hierarchical levels.

Partial Refinement A* (PRA* [34]) combines hierarchical abstraction with fast partial
path refinement to effectively interleave path planning with path execution, which is relevant
to robotics and video games. PRA* first builds a hierarchical map respresentation bottom-
up by mapping small connected regions (e.g., traversable 2x2 tile squares) to tiles on the next
level of abstraction while preserving connectivity. This greedy abstraction process creates
pyramids of coarser and coarser map representations up to the point in which only single
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tiles remain that represent the original connected components. For finding paths subject
to given time and path quality constraints, we choose an abstraction layer and find nodes
representing the start and endpoints on the original map. Starting at this level, PRA*(k)
uses A* to compute the shortest path and then projects the first k steps down to the next
map abstraction level, where the shortest path is determined by only considering a small
corridor around the projected path, etc. This process quickly finds high-quality initial paths
on the original map which allows objects to start moving in the right direction quickly.
Later, Sturtevant [33] described a hybrid approach that combines ideas of HPA* and PRA*
to decrease memory used for abstraction.

HAA* [12] extends HPA* in two directions. First off, in classical pathfinding, a map
is partinioned into traversable terrain and blocked areas. HAA* makes a finer distinction,
allowing to define several types of terrain, such as ground, water, and walls. Secondly, HAA*
handles mobile units with variable sizes and variable terrain traversal capabilities.

The idea of splitting a map into disjoint rectangular blocks is also exploited in Block
A* [39]. Given a pre-determined block size m × n, Block A* pre-computes a database of
all possible block topologies (i.e., all possible combinations of traversable and blocked grid
cells). For each block, optimal distances between pairs of boundary cells are stored. At
runtime, Block A* expands an entire block at a time, as opposed to one individual cell, as it
is the case in regular A*. Block A* is adapted to perform any-angle pathfinding [8], which,
unlike standard grid-based pathfinding, is not limited to the 8 major compass directions.

While the map decomposition used in HPA*, HAA* and Block A* explicitly assumes
a gridmap encoding of the underlying topology, it seems that they could in principle be
extended to other graphs with an (almost) planar structure. One possible approach would
be to slice the bounding rectangle of the graph with square or rectangular blocks, obtaining
the map decomposition. At the same time, PRA* appears to be more straightforward to
apply to non-gridmap graphs, as its core abstraction method relies on identifying cliques.

2.3 Symmetry Elimination
The frequently used assumption that traversable areas on a map have a uniform traversal
cost leads to a considerable degree of symmetry in a pathfinding problem. Consider a path
encoding where each move is represented as a direction. For example, on a 4-connected
gridmap, a path from A to B that goes three steps to the left and three steps upwards
would be encoded as llluuu. Assumming there are no obstacles in the grid-aligned rectangle
having A and B as opposite corners, there are many equivalent paths from A to B, obtained
by interleaving the moves: lluluu, lluulu and so on. This can lead to an excessive, useless
exploration of some parts of a map.

Symmetry reduction can be based on empty rectangles identified on a map [13, 14].
Given two nodes A and B on the border of an empty rectangle, all optimal paths connecting
these are symmetrical to each other, and considering only one such a path is sufficient. Thus,
search can be sped up by defining macro-operators to cross rectangles without visiting any
interior nodes. Jump point search [15] takes a different approach to symmetry elimination.
It allows pruning part of the successors of a node, ensuring that optimality and completeness
are preserved.

2.4 Triangulation-Based Pathfinding
Grid-based map representations are common in pathfinding applications such as video
games, because of their conceptual simplicity that leads to straight-forward and fast im-
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plementations. However, there are several drawbacks that may render grid-based represent-
ations less useful in applications in which world objects don’t have uniform sizes or shapes,
they are not axis-aligned, or they can move in arbitrary directions. Another problem is that
basic grid-based representations waste space in case large map regions are empty. To address
these problems Demyen and Buro [7] present two pathfinding algorithms TA* (Triangula-
tion A*) and TRA* (Triangulation Reduction A*). TA* uses dynamic constrained Delaunay
triangulation (DCDT [18]) to represent maps in which obstacles are defined by polygons,
and finds optimal any-angle paths for circular objects by running an A* like algorithm on
graphs induced by the triangulation.

TRA* improves on TA* by applying a topological map abstraction that contracts each
corridor in the triangulation graph to a single edge and tree components in which pathfinding
is trivial are removed and handled separately. What is left is a graph only containing degree-
3 nodes. Its size is proportional to the number of obstacles on the map, which can be
considerably smaller than the triangulation graph. Because of this size reduction, TRA*
runs faster than TA* and much faster than A* on common game maps while generating
high-quality paths. With the geometric map represenation the mentioned restrictions of
grid-based approaches are lifted. A TA* variant is being used in the StarCraft 2 game
engine.

2.5 Real-Time Search

Real-time search [20] works under the assumption that an agent has a limited amount of time
before having to make a move. Many researchers have addressed the problem since Korf’s
original work [20]. The general solving framework includes a planning step, a learning step
and an acting step. The cycle repeats until the agent reaches the target. In the planning
step, the agent explores the area around its current location. Learning uses the results of
the exploration to update knowledge such as heuristic estimations of the current state or
other states. Acting refers to making one or several moves, changing the current state of
the agent. The many real-time algorithms available differ in the exploration strategy (e.g.,
A* search vs breadth first search), how to perform the heuristic update, and what state to
select as the next current state.

For a long time, real-time search has not been considered as a viable approach to be
implemented in a game. A main cause is the phenomenon of scrubbing: when real-time
search reaches a plateau, an agent has to slowly learn more accurate heuristic values for
the states in the plateau, before being able to escape. This results in an irrational-looking
moving pattern of the agent, moving around within a local area for a long time. Solution
paths can be very long, and so can be the total time to reach the target.

Recently, a line of research on real-time search has focused on eliminating, either com-
pletely or to a great extent, the learning step and thus the scrubbing behaviour [5, 23]. A
key insight that contributes to the success of such methods is the idea of using hill-climbing
moves. These are moves that look the most promising after searching forward only one
step ahead, i.e., evaluating only the successors of a current state. Often, two nodes can be
connected by performing solely hill-climbing moves. For example, consider two nodes within
an area with no obstacles. When a path can be decomposed into subgoals such that the
next sub-goal can be reached with hill-climbing moves, moves are computed fast, with no
learning and scrubbing necessary.
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2.6 Compressed Path Databases
Most pathfinding methods search at the path query time to compute a path on demand. An
alternative approach is to perform path precomputation and lookup [36], returning paths
orders of magnitude faster than online search. Straightforward ways of storing precom-
puted paths have prohibitive memory requirements, which has been a major impediment
to adopting path lookup on a larger scale. Recently, a structure called a compressed path
database [4] has been shown to achieve a massive lossless compression, bringing memory
needs down to reasonable values for many grid maps. Compressed path databases exploit
an idea previously observed and used in [27], with no application to games. In many cases,
the first move on an optimal path, from a start location s to any target t in a contiguous
remote area, is the same. The original authors call this property path coherence. For a
start–target pair (s, t), let the first-move label of t identify an optimal move to take in s

towards t. Compression involves finding, for a given s, a contiguous area A where all the
targets t ∈ A have the same first move label. This allows to replace many identical first-move
labels, one for each (s, t) pair, with one single record for the pair (s,A).

Advantages of compressed path databases include the speed of path retrieval and the
optimality of solutions. The first-move lag (i.e., the time to wait until the first move is
performed) is very low, since each move is retrieved independently from the subsequent moves
on the path. At the same time, compressed path databases pose a number of challenges to
be addressed in the future, as we discuss later in this report.

2.7 Multi-Agent Pathfinding
Multi-agent pathfinding addresses the problem of finding paths for a set of agents going to
their goals. Each agent may have its own goal or all the agents may have a global goal. At
each timestep, all agents move according to their plans. The set of agents has to find the
minimal cost for reaching the set of goals, or to maximize some quantity. The cost can be
the elapsed time. Compared to mono-agent pathfinding, two obstacles appear clearly. The
first one is the size of the set of (joint) actions which is exponential in the number of agents,
which lead to difficulty for a global planning method. And when considering the elementary
solutions to each mono-agent problem in order to find a global solution, the second one is
managing collisions between agents.

Furthermore, multi-agent pathfinding can be cooperative, when all the agents help each
other and try to optimize in the same direction. But it can be adversarial when an army
tries to reach a point and another one prevents this from happening.

Starting points for cooperative pathfindind (CPF) are optimal methods like centralized
A*. They work well on small problems. To avoid the exponential number of actions in the
number of agents, Standley proposes the mechanism of operator decomposition (OD) [30].
Instead of considering that the set of agents decides its joint action (operator), the agents
decide their elementary action in turn, one after each other. With some care to special cases,
A* associated with OD and a perfect heuristic is admissible and complete [30]. Another idea
for optimal solutions is independence detection (ID) [31]. Each agent plans its optimal path
to the goal with A*. Then conflicts are detected, and resolved if possible. When a conflict
between two agents is not solvable, the two agents are gathered into a group, and an optimal
solution is found for this group. Conflict between groups are detected and so forth. When
few conflicts occur this method avoids the exponential size of the set of actions, but in the
worst case, this method is inferior to any centralized method.

The Increasing Cost Tree Search (ICTS) [28] is a two-level search: a global level and a
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low level. At the global level, the search proceeds on an Incremental Cost Tree (ICT) in
which one node corresponds to a vector of costs. The global cost is the sum of individual cost
heuristic (SIC). At the root of the ICT the costs are the optimal costs of agents considered
alone, and the global cost cannot be smaller. At depth δ, the sum of the costs of a node
is the optimal cost plus δ. A node is a goal for ICT iff there is an effective combination of
individual paths without conflict and with costs corresponding to the costs of the node. ICT
search is a breadth-first search for a goal node that progressively increases the best possible
optimal cost.

In video games, optimal complete methods are not always searched because they are
not scalable. Instead, suboptimal, incomplete but tractable methods exist. Cooperative A*
[29] decomposes the whole task into a series of single agent searches in a three-dimensional
space including time. A wait move is added to the set of actions of the agents. The
computed routes are stored in a reservation table that forbids to use its entries in future
searches. Hierarchical cooperative A* (HCA*) uses the idea of Hierarchical A* [17] with
the simplest possible hierarchy: the domain with all agents removed. An issue of HCA*
is how to terminate: sometimes an agent sitting on its destination must move to give the
way to another agent. Another issue is the ordering of agents, and the most important
one is computing complete routes in the 3-dimensional space. Therefore, Windowed HCA*
(WHCA*) simply limits the lookahead in each search it performs to a fixed-horizon time
window [29].

Multi-agent pathfinding can be solved suboptimally in low-polynomial time [21, 26].
However, the practical performance of the available complete method is an open question.
Recent research has lead to the creation of multiple suboptimal methods that are complete
on well-specified subclasses of instances. Push-and-Swap [25] works on problems with at
least two free nodes (i.e., problems where the number of nodes in the graph representing the
map exceeds the number of mobile units by at least two). MAPP [38] works on problems of
the Slidable class. TASS [19] works on problems with at least four free nodes. The TASS
method is a tree-based agent swapping strategy. There are other sub-optimal methods that
work well in practice, but whose completeness range has not been characterized [29, 35, 37].

3 Looking at the Future

In this section we discuss a number of current challenges and directions for the future.

3.1 Bridging the Industry–Academia Gap

As discussed earlier in the report, recently there has been a significant progress in academic
research in multi-agent path finding. Computer games are often mentioned as an application
domain in research papers, and game maps have been used as benchmark data. However, it
appears that there is a need for a better alignment between problems addressed in academic
research and problems that are truly relevant to game developers. Recent academic research
has focused on objectives such as computing optimal solutions, or scaling sub-optimal meth-
ods to hundreds or even thousands of mobile units. Such objectives are important on their
own but, in many real-time strategy games, solution optimality is not strictly needed, and
there can be relatively few units interacting on a portion of a map. In such games, the ability
to encircle and attack a moving enemy unit, which combines elements of multi-agent col-
laborative pathfinding, multi-agent adversarial pathfinding, and multi-agent moving-target
search, could be quite important.
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We believe that a better industry–academia integration in multi-agent pathfinding could
benefit if game developers make available precise definitions of some of their problems and
interest, and possibly data to experiment with. They could be made available on their
own, or be part of a competition open to academic researchers. Recently, Sturtevant has
organized a Grid-Based Path Planning Competition1. This first edition focused on single-
agent pathfinding on fully known, static maps. This could pave the way towards more
diverse types of competition problems, such as multi-agent path planning.

In multi-agent pathfinding, non-interfering paths that bring each agent from its current
state to its goal state must be planned. The agents are considered as friendly, and one agent
may give the way to another one. For example, workers mining and transporting ore is such
a problem. The complexity of a problem depends on the connectivity of the grid, the rules
governing agent movements, the size of the grid, the number of obstacles, the number of
agents. The challenge is to find solutions that avoid collisions and deadlocks in the context
of fast computations. Future work consist in filling the gap between optimal algorithms
solving relatively simple problems and tractable algorithms solving very complex problems
but not optimally.

In adversarial multi-agent pathfinding, encircling behaviors, pursuit behaviors and/or
escaping behaviors must be planned. For example, encircling an enemy unit to attack it,
guarding one or several chokepoints, catching up a prey. Some agents are inimical and their
meetings lead to fight whose outcomes can be the partial weakening or the complete destruc-
tion of some of the agents. However, some other agents are friendly and must coordinate
their movements to reach a goal needing cooperation, such as circling a prey. The terminal
conditions of the plan can be fuzzy and hard to determine, and planning can be continual.
Future work include the integration of the adversarial multi-agent pathfinding solutions with
game tree solutions to video games considered as two-player games.

3.2 From Smart Agents to Smart Maps
While single-agent path planning can naturally be modelled with an agent-centered ap-
proach, other problems may require a decision-making entity that is different from individual
mobile units. For example, in multi-agent path planning, both views could be considered. A
distributed approach would be agent-centered, allowing each agent to make decisions based
on its (possibly incomplete) knowledge about the rest of the problem. Many multi-agent
pathfinding algorithms, however, including most methods discussed in this report, assume
the existence of a centralized decision maker.

Taking the idea further, we argue that part of the intelligence built in a path-finding
module could be associated with parts of the environment in a distributed manner. For
example, a notion of a smart chokepoint could be used to schedule incoming units through a
narrow area of a map. The idea is similar to a traffic light system controlling an individual
intersection on a road map. More generally, local portions of a map, not restricted to certain
types of topologies could be responsible for a smooth navigation inside their own areas.

A dynamic environment offers an additional scope for developing intelligent map func-
tionality. As pointed out earlier in the report, advanced pathfinding algorithms can use
pre-computed datastructures for a faster path computation. Dynamic changes can inval-
idate underlying datastructures. A smart map should be able to know when to trigger a
repair, what area of the map should be affected, how to perform a repair, and how to handle
ongoing navigation while a local datastructure is still under repair.

1 http://movingai.com/GPPC/index.html

http://movingai.com/GPPC/index.html
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3.3 Time and Memory Constraints
While common formulations of pathfinding problems, such as single-agent pathfinding on
a static graph, have a low polynomial complexity, the challenge is to satisfy the ambitious
CPU and memory limits set in actual games. There tends to be a speed–memory trade-off,
exhibited, for example, by methods that perform pre-processing and use the cached results of
pre-processing for a faster online pathfinding. Path quality is a third performance measure
that must be considered. The challenge is to improve the performance on one or more such
criteria, without paying a price on the remaining criteria.

Compressed path databases (CPDs) illustrate the speed–memory tradeoff well, being a
fast but memory-consuming method. Compressed path databases are more memory intens-
ive than other pathfinding methods, such as techniques that involve A* search. Thus, we
use CPDs as a case study, discussing how its memory footprint could be improved.

Future efforts on reducing their size could aim at preserving path optimality, or could
relax this requirement, as a tradeoff to a better size reduction. In games, the optimality of
solutions is not seen as a must-have feature. Suboptimal paths that look reasonable to a user
are acceptable. A promising idea that involves suboptimal paths is combining compressed
path databases with hierarchical abstraction. Recently, Kring et al. [22] have extended the
HPA* algorithm to cache (uncompressed) all-pairs shortest paths for small rectangular sub-
parts of a map. The idea could be taken further to store such local all-pairs shortest paths
in a compressed form, in the style of CPDs. Furthermore, at the global level, a compressed
path database could be computed for the abstract graph that HPA* uses. This approach
would result in a hierarchical, two-level compressed path database.

Finally, we advocate a closer interaction with communities working on related problems,
such as robot navigation, journey planning on a road map, and multi-modal journey planning
in a city. Similarities between such domains and pathfinding in games have encouraged, to
some extent, the transfer of ideas across domains. Clearly, future common events, such as
workshops at big conferences, would help tighten the connections.

4 Conclusion

Summarizing discussions held in the Pathfinding Workgroup at the Dagstuhl Seminar 12191,
this chapter focused on recent advances, current limitations and possible future directions
in pathfinding research. A comprehensive literature survey was beyond the purpose of our
work. Instead, our survey was meant to set the grounds for identifying challenges and future
work ideas.

It seems that research in pathfinding is not in a danger of fading. The recent first edition
of the pathfinding competition suggests that the interest remains high even for the standard,
well studied single-agent pathfinding on a fully known grid map. Yet, some diversification
to the focus of future research might be desirable. For example, in problems such as multi-
agent pathfinding, there seems to be a gap between academic research and commercial
game development. The two communities could mutually benefit from each other if game
developers make available descriptions of problem variants that are particularly relevant to a
game, together with performance specs (speed, memory) expected from a solving algorithm.
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