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Abstract
Compared to traditional speech, music, or sound processing, the computational analysis of general
audio data has a relatively young research history. In particular, the extraction of affective
information (i. e., information that does not deal with the ‘immediate’ nature of the content
such as the spoken words or note events) from audio signals has become an important research
strand with a huge increase of interest in academia and industry. At an early stage of this
novel research direction, many analysis techniques and representations were simply transferred
from the speech domain to other audio domains. However, general audio signals (including their
affective aspects) typically possess acoustic and structural characteristics that distinguish them
from spoken language or isolated ‘controlled’ music or sound events. In the Dagstuhl Seminar
13451 titled “Computational Audio Analysis” we discussed the development of novel machine
learning as well as signal processing techniques that are applicable for a wide range of audio
signals and analysis tasks. In particular, we looked at a variety of sounds besides speech such
as music recordings, animal sounds, environmental sounds, and mixtures thereof. In this report,
we give an overview of the various contributions and results of the seminar. We start with an
executive summary, which describes the main topics, goals, and group activities. Then, one finds
a list of abstracts giving a more detailed overview of the participants’ contributions as well as of
the ideas and results discussed in the group meetings of our seminar. To conclude, an attempt
is made to define the field as given by the views of the participants.
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With the rapid growth and omnipresence of digitized multimedia data, the processing,
analysis, and understanding of such data by means of automated methods has become a
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central issue in computer science and associated areas of research. As for the acoustic domain,
audio analysis has traditionally been focused on data related to speech with the goal to
recognize and transcribe the spoken words. In this seminar, we considered current and
future audio analysis tasks that go beyond the classical speech recognition scenario. For
example, we looked at the computational analysis of speech with regard to the speakers’
traits (e. g., gender, age, height, cultural and social background), physical conditions (e. g.,
sleepiness, alcohol intoxication, health state), or emotion-related and affective states (e. g.,
stress, interest, confidence, frustration). So, rather then recognizing what is being said, the
goal is to find out how and by whom it is being said. Besides speech, there is a rich variety
of sounds such as music recordings, animal sounds, environmental sounds, and combinations
thereof. Just as for the speech domain, we discussed how to decompose and classify the
content of complex sound mixtures with the objective to infer semantically meaningful
information.

When dealing with specific audio domains such as speech or music, it is crucial to properly
understand and apply the appropriate domain-specific properties, be they acoustic, linguistic,
or musical. Furthermore, data-driven learning techniques that exploit the availability of
carefully annotated audio material have successfully been used for recognition and clas-
sification tasks. In this seminar, we discussed issues that arise when dealing with rather
vague categories as in emotion recognition or when considering general audio sources such as
environmental sounds. In such scenarios, model assumptions are often violated, or it becomes
impossible to define explicit representations or models. Furthermore, for non-standard audio
material, annotated datasets are hardly available. Also, data-driven methods that are used in
speech recognition are (often) not directly applicable in this context; instead semi-supervised
or unsupervised learning techniques can be a promising approach to remedy these issues.
Another central topic of this seminar was concerned with the problem of source separation.
In the real world, acoustic data is very complex typically consisting of a superposition of
overlapping speech, music, and general sound sources. Therefore, efficient source separation
techniques are required that allow for splitting up, re-synthesizing, analyzing, and classifying
the individual sources—a problem that, for general audio signals, is yet not well understood.

In this executive summary, we give a short overview of the main topics addressed in this
seminar. We start by briefly describing the background of the participants and the overall
organization. We then give an overview of the presentations of the participants and the
results obtained from the different working groups. Finally, we reflect on the most important
aspects of this seminar and conclude with future implications.

Participants, Interaction, Activities
In our seminar, we had 41 participants, who came from various countries around the world
including North America (10 participants), Japan (1 participant), and Europe (Austria,
Belgium, Finland, France, Germany, Greece, Italy, Netherlands, Spain, United Kingdom).
Most of the participants came to Dagstuhl for the first time and expressed enthusiasm about
the open and retreat-like atmosphere. Besides its international character, the seminar was
also highly interdisciplinary. While most of the participating researchers are working in the
fields of signal processing and machine learning, we have had participants with a background
in cognition, human computer interaction, music, linguistics, and other fields. This made the
seminar very special in having many cross-disciplinary intersections and provoking discussions
as well as numerous social activities including common music making.
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Overall Organization and Schedule
Dagstuhl seminars are known for having a high degree of flexibility and interactivity, which
allow participants to discuss ideas and to raise questions rather than to present research results.
Following this tradition, we fixed the schedule during the seminar asking for spontaneous
contributions with future-oriented content, thus avoiding a conference-like atmosphere, where
the focus is on past research achievements. The first two days were used to let people
introduce themselves, present scientific problems they are particularly interested in and
express their expectations and wishes for the seminar. In addition, we have had six initial
stimulus talks, where specific participants were asked to address some burning questions
on speech, music, and sound processing from a more meta point of view, see also Section 3.
Rather than being usual presentations, most of these stimulus talks seamlessly moved towards
an open discussion of the plenum. Based on this input, the second day concluded with a
brainstorming session, where we identified central topics covering the participants’ interests
and discussed the schedule and format of the subsequent days. To discuss these topics, we
split up into five groups, each group discussing one of the topics in greater depth in parallel
sessions on Wednesday morning. The results and conclusions of these group meetings were
then presented to the plenum on Thursday morning, which resulted in vivid discussions.
Continuing the previous activities, further parallel group meetings were held on Thursday
afternoon, the results of which being presented on Friday morning. Finally, asking each
participant to give a short (written) statement of what he or she understands by the seminar’s
overall topic “Computational Audio Analysis,” we had a very entertaining and stimulating
session by going through and discussing all these statements one by one. The result of this
session can be found in Section 6. In summary, having a mixture of different presentation
styles and group meetings gave all participants the opportunity for presenting and discussing
their ideas, while avoiding a monotonous conference-like atmosphere.

Main Topics
We discussed various topics that addressed the challenges when dealing with mixtures of
general and non-standard acoustic data. A particular focus was put on data representations
and analysis techniques including audio signal processing, machine learning, and probabilistic
models. After a joint brainstorming session, we agreed on discussing five central topics which
fitted in the overall theme of the seminar and reflected the participants’ interests. We now
give a brief summary of these topics, which were addressed in the parallel group meetings
and resulting panel discussions. A more detailed summary of the outcome of the group
sessions can be found in Section 4.

1. The “Small Data” group looked at audio analysis and classification scenarios where
only few labeled examples or small amounts of (training) data are available. In such
scenarios, machine learning techniques that depend on large amounts of (training) data
(“Big Data”) are not applicable. Various strategies including model-based as well as semi-
and unsupervised approaches were discussed.

2. The “Source Separation” group addressed the task of decomposing a given sound mixture
into elementary sources, which is not only a fundamental problem in audio processing,
but also constitutes an intellectual and interdisciplinary challenge. Besides questioning
the way the source separation problem is often posed, the need of concrete application
scenarios as well as the objective of suitable evaluation metrics were discussed.
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3. The “Interaction and Affect” group discussed the question on how to generate and
interpret signals that express interactions between different agents. One main conclusion
was that one requires more flexible models that better adapts to the temporal and
situational context as well as to the agents’ roles, behaviors and traits.

4. The “Knowledge Representation” group addressed the issue of how knowledge can be
used to define and derive sound units that can be used as elementary building blocks
for a wide range of applications. Based on deep neural network techniques, the group
discussed how database information and other meta-data can be better exploited and
integrated using feed-forward as well as recurrent architectures.

5. The “Unsupervised Learning” group looked at the problem on how to learn the structure
of data without reference to external objectives. Besides issues on learning meaningful
elementary units, the need of considering hierarchies of abstractions and multi-layer
characterizations was discussed.

Besides an extensive discussion of these five main topics, we have had many further
contributions and smaller discussions on issues that concern natural human machine commu-
nication, human centered audio processing, computational paralinguistics, sound processing in
everyday environments, acoustic monitoring, informed source separation, and audio structure
analysis.

Conclusions
In our seminar, we addressed central issues on how to process audio material of various types
and degrees of complexity. In view of the richness and multitude of acoustic data, one requires
representations and machine learning techniques that allow for capturing and coupling various
sources of information. Therefore, unsupervised and semi-supervised learning procedures are
needed in scenarios where only very few examples and poor training resources are available.
Also, source separation techniques are needed, which yield meaningful audio decomposition
results even when having only limited knowledge on the type of audio. Another central issue
of this seminar was how to bring in the human into the audio processing pipeline. On the
one hand, we discussed how we can learn from the way human process and perceive sounds.
On the other hand, we addressed the issue on extracting human-related parameters such
as affective and paralinguistic information from sound sources. These discussions showed
that understanding and processing complex sound mixtures using computational tools poses
many challenging research problems yet to be solved.

The Dagstuhl seminar gave us the opportunity for discussing such issues in an inspiring and
retreat-like atmosphere. The generation of novel, technically oriented scientific contributions
was not the focus of the seminar. Naturally, many of the contributions and discussions were
on a rather abstract level, laying the foundations for future projects and collaborations.
Thus, the main impact of the seminar is likely to take place in the medium to long term.
Some more immediate results, such as plans to share research data and software, also arose
from the discussions. As measurable outputs from the seminar, we expect to see several
joint papers and applications for funding. Beside the scientific aspect, the social aspect of
our seminar was just as important. We had an interdisciplinary, international, and very
interactive group of researchers, consisting of leaders and future leaders in our field. Most of
our participants visited Dagstuhl for the first time and enthusiastically praised the open and
inspiring atmosphere. The group dynamics were excellent with many personal exchanges and
common activities. Some scientists mentioned their appreciation of having the opportunity
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for prolonged discussions with researchers from neighboring research fields—something which
is often impossible during conference-like events.

In conclusion, our expectations of the seminar were not only met but exceeded, in
particular with respect to networking and community building. Last but not least, we
heartily thank the Dagstuhl board for allowing us to organize this seminar, the Dagstuhl
office for their great support in the organization process, and the entire Dagstuhl staff for
their excellent services during the seminar.

13451



6 13451 – Computational Audio Analysis

2 Table of Contents

Executive Summary
Meinard Müller, Shrikanth S. Narayanan, and Björn Schuller . . . . . . . . . . . . 1

Stimulus Talks
Multimedia Analysis for the Poor
Xavier Anguera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Interpreting ‘Intentional’ Behaviour in Audio Scenes
Roger K. Moore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Semantic-Affective Models for Multimodal Signal Processing
Alexandros Potamianos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Exploitation of Human Perception Principles in Audio Processing Systems
Gaël Richard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Stop Listening to Speech, Language, and Vision Research!
Paris Smaragdis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Sound Event Detection and Recognition in Everyday Environments
Tuomas Virtanen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Group Sessions
Small Data (Learning from Few Examples)
Bryan Pardo, Xavier Anguera, Jonathan Driedger, Bernd Edler, Jort Gemmeke,
Franz Graf, Gernot Kubin, Frank Kurth, Meinard Müller, and Christian Uhle . . . 11

Interaction and Affect
Martin Heckmann, Murtaza Bulut, Carlos Busso, Nick Campbell, Laurence Devillers,
Anna Esposito, Sungbok Lee, Roger Moore, Mark Sandler, Khiet Truong, and Rita
Singh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Learning of Units and Knowledge Representation
Florian Metze, Xavier Anguera, Sebastian Ewert, Jort Gemmeke, Dorothea Kolossa,
Emily Mower Provost, Björn Schuller, and Joan Serrà . . . . . . . . . . . . . . . . 13

Unsupervised Learning for Audio
Tuomas Virtanen, Jon Barker, Shrikanth Narayanan, Alexandros Potamianos,
Bhiksha Raj, Gaël Richard, Rita Singh, Paris Smaragdis, Stefano Squartini, and
Shiva Sundaram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Source Separation
Christian Uhle, Jonathan Driedger, Bernd Edler, Sebastian Ewert, Franz Graf,
Gernot Kubin, Meinard Müller, Nobutaka Ono, Bryan Pardo, and Joan Serrà . . . 15

Further Topics
Engineering Selective Attention into Acoustic Scene Analysis Systems.
Jon Barker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Compensate Lexical/Speaker/Environment Variability for Speech Emotion Recog-
nition
Carlos Busso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



Meinard Müller, Shrikanth S. Narayanan, and Björn Schuller 7

Interpretation and Computational Audio Analysis
Laurence Devillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Perceptually Appealing Reconstruction of Spectrally Modified Signals
Jonathan Driedger and Meinard Müller . . . . . . . . . . . . . . . . . . . . . . . . 17

The Situated Multimodal Facets of Human Communication
Anna Esposito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Bayes and Beyond Bayes: The Integration of Prior Knowledge
Sebastian Ewert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

NMF meet Dynamics
Cédric Févotte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Features beyond Machine Learning
Martin Heckmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Detection of Repeated Signal Components and Applications to Audio Analysis
Frank Kurth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Informed Source Separation for Music Signals
Meinard Müller and Jonathan Driedger . . . . . . . . . . . . . . . . . . . . . . . . 21

Approaching Cross-Audio Computer Audition
Björn Schuller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

What can we Learn from Massive Music Archives?
Joan Serrà . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Acoustic Monitoring in Smart Home Environments: A Holistic Perspective
Stefano Squartini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Sound Processing in Everyday Environments
Emmanuel Vincent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Towards a Definition of Computational Audio Analysis (CAA) . . . . . . . . 24

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

13451



8 13451 – Computational Audio Analysis

3 Stimulus Talks

3.1 Multimedia Analysis for the Poor
Xavier Anguera (Telefónica Research – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Xavier Anguera

In many areas of multimedia analysis (i. e., when extracting knowledge from multimedia
or multimodal data) one usually fist derives models from corpora of annotated training
data, which are then applied to some unknown data. Highly performing systems have
been built using this methodology in the past. However, it must not be overlooked that
producing high-quality annotated data for training takes time and resources, which are not
always available. Examples of high-quality labeling scarcity can be seen when trying to
analyze highly diverse data like what is found on online media sources such as YouTube or
SoundCloud, or with rare languages in speech (i. e. those languages for which the number of
speakers is to small to attract commercial interest). For this reason it becomes very relevant
to explore new avenues to be able to extract knowledge with no (or very limited) labeled
examples. There are already many efforts in this direction within the research community
such as:

Speech: Audio summarization through the analysis of repetitions in the audio stream;
query-by-example spoken term detection; training systems (e. g., large vocabulary speech
recognition) on little transcribed data, or on low quality transcripts (e.g. close captions)
data.
Music: Structural analysis of songs.
Image processing: Unsupervised concept extraction (e. g., the system developed by Google
and G. Hinton to automatically learn how to recognize cats in Youtube videos).
Text: Unsupervised document clustering and topic detection.
Bioinformatics: Unsupervised repetitions/structure detection and finding mutations.

In this inspirational talk, I first motivated the need to do research on unsupervised and
semi-supervised algorithms to tackle problems like those mentioned above. Then, after
presenting some examples of technologies that are able to perform well with these constraints,
I described the task of (query-by-example) spoken term detection. The objective of this task
is to find all lexical instances of a spoken term within an audio database of spoken words.
Within the Mediaeval 2013 Spoken Web Search evaluation (which I helped organize), we have
considered the scenario where nothing is known a-priori about the query or the database
(only the fact that the database contains data from nine different languages was known).

Next, I discussed about how low/zero resource techniques can complement high resource
systems. For this I hypothesized how babies learn about their surrounding world by re-
gistering similar repeating patterns that occur many times. I proposed the discovery of
repeating information (e. g., repeating acoustic patterns in speech) to be used as an informed
initialization to transcription systems to automatically retrieve sizable training corpora from
high-quality seed transcriptions.

Finally, the following set of open questions were posed to the audience to trigger some
discussion:

How to incorporate acoustic modeling into dynamic programming techniques?
How to describe the acoustic space (or whatever space) in an unsupervised (but robust)
manner?
How do we discriminate between “interesting/relevant” and “filler” events?

http://creativecommons.org/licenses/by/3.0/
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Does it all make any sense? Or will there be a point where we always have enough
training data for a given task?

3.2 Interpreting ‘Intentional’ Behaviour in Audio Scenes
Roger K. Moore (University of Sheffield, GB)

License Creative Commons BY 3.0 Unported license
© Roger K. Moore

Whilst there is no doubt about the immense practical benefits that could be derived from
the automated analysis of audio scenes, it is not clear that the research community has yet
developed a sufficiently sophisticated theoretical framework to realise its full potential. Recent
years have seen measurable progress in computational approaches to information extraction
by applying the latest machine learning techniques to annotated (or even unannotated)
data, but most of the focus has been on classifying the surface phenomena associated with
acoustic events. Little attention has been given to interpreting the underlying ‘intentional’
states that are unique to living organisms and which drive the physical actions that are
performed (particularly communicative behaviour such as speech). Of course, if there was a
simple one-to-one relationship between internal intentional states and the consequent surface
behaviour, then interpretation would be relatively straightforward. However, in reality there
is significant ‘coupling’ (i. e., dependencies) between objects, agents and their environment,
and this means that interpreting what is happening in an acoustic scene requires a yet-to-be-
defined unified computational modelling approach which is capable of integrating the relevant
contingencies. This stimulus talk illuminated these issues and raised the following issues for
discussion: How important is it that we acknowledge that the world contains intentional
agents? Can we envisage a unified computational modelling approach which is capable of
integrating the relevant contingencies? What are the implications of modelling self (recursion,
context dependency, embodiment)? And can an agent ever understand a natural scene if it
is not (or has never been) part of it? The final question is thus: what does an automated
agent need to know about the world and the entities it contains in order to make sense of a
general audio scene?

3.3 Semantic-Affective Models for Multimodal Signal Processing
Alexandros Potamianos (National TU – Athens, GR)

License Creative Commons BY 3.0 Unported license
© Alexandros Potamianos

In this stimulus talk, I reviewed multimodal aspects of audio processing focusing mainly on
three areas. First, I considered the area of affective analysis and recognition of audio and
multimedia streams. I presented recent results of emotion recognition from audio signals
as well as movies, and the interplay between audio events, music and spoken language was
outlined. Second, I discussed aspects of saliency and attention for audio and multimedia
streams. Recent progress on selectional attention models for speech and audio were reviewed.
Furthermore, the role of saliency/attention for audio/speech processing was discussed and
future research directions outlined. Third, I addressed the topic of associative and represent-
ational models of audio and multimodal semantics. Motivated by cognitive considerations,
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associative lexical semantic models have been recently proposed. These models have been
extended to include also multimodal or crossmodal information such as images. I discussed
how such models can be extended for audio, music, and speech content to create multimodal
similarity networks as well as how such networks are relevant for inference and classification
tasks.

3.4 Exploitation of Human Perception Principles in Audio Processing
Systems

Gaël Richard (Telecom ParisTech, FR)

License Creative Commons BY 3.0 Unported license
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The integration of auditory perception in most audio processing systems remains limited. A
number of perceptually-relevant concepts have been exploited in audio processing research.
But, for example for audio indexing/classification, it still seems that it is difficult to build a
fully perceptually-relevant system that outperforms efficient machine-learning based methods
that use only some rudimentary principles of perception. This remains surprising because
from a pure acoustical point of view it intuitively appears that it may be unnecessary to
capture similarity or dissimilarity information that is not perceived by humans. Should
we look for better perceptual features or better perceptual representations such as cortical
representations? Should we better model feature dynamics? Should we better model the
complex and hierarchical processing information in the brain? In this stimulus talk, I
discussed some of these issues. One may draw the conclusion that even though human
perception principles are in general seen as important, mimicking the human perception
or the functioning of the brain does not seem to be a prerequisite for computational audio
analysis systems.

3.5 Stop Listening to Speech, Language, and Vision Research!
Paris Smaragdis (University of Illinois at Urbana Champaign / Adobe, US)

License Creative Commons BY 3.0 Unported license
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Artificial intelligence, and more recently machine learning, has always been guided by the
dream of making machines that can understand the world around them. Unfortunately the
lion’s share of this activity has been on domains that exhibit few insights on how to make
machines that can listen, and this has resulted in an ongoing derailment of how machine
learning should be applied on audio problems. A big chunk of machine learning is dealing
with problems that stem from vision, language, and speech, which are all domains where
we make hard decisions. A pixel either belongs to one object of another, a word is either
“cat” or “dog”, and a spoken language belongs to one of many different families. As a result,
the vast majority of machine learning approaches operate with a winner-takes-all philosophy,
where the objective is to find that one solution that is the only correct value. Sound however
is different. In real-life we never hear one sound or another. Instead, we hear mixtures of
sounds. Such problems cannot be properly treated with tools such as discriminative learning
and even many of the common generative models, and we see a need for some fundamental
rethinking of how learning algorithms should be applied on sound.

http://creativecommons.org/licenses/by/3.0/
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3.6 Sound Event Detection and Recognition in Everyday Environments
Tuomas Virtanen (Tampere University of Technology, FI)

License Creative Commons BY 3.0 Unported license
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For humans, the most important functionality of auditory scene analysis is to acquire
information about our everyday environments: a car approaching from behind, warning
beeps, door knocking, door opening and closing and so on. Until now, most of the research
on computational audio analysis has been done in the context of speech and music processing.
Research on automatic detection and recognition of sound events has mostly been limited to
isolated sound events, specific environments (such as meeting rooms), and small number of
specific types of events.

Computational audio analysis in everyday environments has applications in areas such
as multimedia content analysis, context-aware devices, assistive technologies, and acoustic
monitoring. The research in the field has so far approached the task by studying two problems.
The first one is context recognition, where a recording is classified into one of predefined
contexts. Such contexts may be characterized by locations such as home, office, street, or
grocery store or by physical and social activities. Second, sound event or acoustic event
detection aims at estimating the start and end times of individual events in a recording as
well as estimating a class label for each detected event.

Automatic detection and recognition of events in realistic environments requires addressing
many problems (e. g., robustness) that have already been faced in the context of speech and
music recognition. Additionally, operating with realistic sounds in everyday environments
raises many new questions. Sound events can originate from very different sources and have
therefore diverse acoustic characteristics, which may force us to rethink our conventional
pattern recognition approaches. The identity of an event can be encoded in many different
ways, e. g., by the rough shape of the spectrum, modulations over time, relationships between
atomic sound units, or parts of a signal. This affects not only the feature extraction front-end
used by an event detection system, but also the architecture of the whole system.

Finally, a single sound can have multiple different interpretations, and it is not at all
clear how the event classes to be detected should be defined. Possibilities include definitions
about the physical source, semantics, or acoustic similarity. Since it may not be possible to
manually define classes for all sounds present in a signal, the use of unsupervised learning
techniques needs to be taken into account.

4 Group Sessions

4.1 Small Data (Learning from Few Examples)
Bryan Pardo, Xavier Anguera, Jonathan Driedger, Bernd Edler, Jort Gemmeke, Franz Graf,
Gernot Kubin, Frank Kurth, Meinard Müller, and Christian Uhle

License Creative Commons BY 3.0 Unported license
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Gernot Kubin, Frank Kurth, Meinard Müller, and Christian Uhle

We define “small data” in opposition to the current buzzword “big data”. These are cases
where there are few labeled examples to learn from. This may be because the labeling requires
intense analysis by an expert (e. g., structural analysis of a Beethoven symphony). This
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may be because there are only a few examples in existence (there are only nine Beethoven
symphonies), yet we wish to learn something useful and meaningful for some task. One
concrete example of a “small data” situation is that of building an acoustic car crash detector
for a particular tunnel. Collecting real data (crashing cars) is expensive. Car crash events are
relatively rare in the tunnel (once or twice a year). Yet we want the detector to start working
as soon as possible and with as few examples as possible. Another example is voice-controlled
home automation for people with unique speech impairments. Here, again, data is hard to
collect and each speaker is very different from the rest of the population.

There is an intellectual appeal to learning from small numbers of examples. Humans
often learn generalizations from as few as three examples of a class. It would be interesting to
learn how to duplicate this kind of performance. The practical appeal of being able to learn
in an online manner, before collecting a lot of data (e. g. the car crash example) is also great.
Further, when working with systems on small data sets, the researchers themselves can have
a much better understanding of the data. Rather than millions of unexamined examples,
there are dozens of well-understood ones. Current approaches to “small data” typically use
statistical learners that require lots of data to work properly. Therefore approaches tend
to look for ways to bridge the gap between learners that need lots of data and tasks that
provide small numbers of examples. Approaches fall in the following categories:

Data Synthesis: Create synthetic data by adding noise (of some expected variety) to the
small number of known examples. Alternately synthesize data by using a simulation that
can be done more cheaply than collecting real data (e. g., replace cars with garbage cans
and crash garbage cans together in the tunnel).
General to Specific: Start with a generic model, learned from a lot of data. Tweak that
model slightly to conform to the particular “small data” case.
Model Selection: Build several generic models for known generic cases, then collect a
small number of data points from the current case to select which generic model best
suits the current case. This can then be used in combination with the previous strategy
to make it more specific.
Think Smarter: Offload the learning to the human, who figures out a smarter way of
preprocessing data to put it in a format that is very easy to learn from, by using extremely
salient features.

The question we had was if there are other approaches we have not encountered. Can we do
better than these four approaches?

4.2 Interaction and Affect
Martin Heckmann, Murtaza Bulut, Carlos Busso, Nick Campbell, Laurence Devillers, Anna
Esposito, Sungbok Lee, Roger Moore, Mark Sandler, Khiet Truong, and Rita Singh
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Esposito, Sungbok Lee, Roger Moore, Mark Sandler, Khiet Truong, and Rita Singh

Interaction is driven by intentional agents. Agents accommodate to the role and capabilities
of other agents. The success of the interaction depends on the generation and interpretation
of appropriate signals, often across multiple modalities (e. g., bio-signals, image, speech).
However, the effective processing of these signals also depends on “rich” information and
not just “big” data. This includes the temporal and situational context as well as the role,
characteristics, behaviors and traits of the agents. Current systems depend on theory-laden
annotations (not capturing the true nature of the interaction), which unnecessarily constrain
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the learning outcome. We believe that a viable first step is to develop and continuously adapt
the model for the agent’s world from observed data. One possible means to achieve this is to
implement algorithms for detecting changes and deviations from the learned normal/stable
points.

4.3 Learning of Units and Knowledge Representation
Florian Metze, Xavier Anguera, Sebastian Ewert, Jort Gemmeke, Dorothea Kolossa, Emily
Mower Provost, Björn Schuller, and Joan Serrà

License Creative Commons BY 3.0 Unported license
© Florian Metze, Xavier Anguera, Sebastian Ewert, Jort Gemmeke, Dorothea Kolossa, Emily
Mower Provost, Björn Schuller, and Joan Serrà

Our group came together to discuss how knowledge could be used to define and infer units
of sound that could be used in a portable way for a number of tasks. Participants felt
that a top-down approach would be needed, which is complementary to purely data-driven
bottom-up clustering approaches, as are currently prevalent in classification experiments.
Members wanted to specifically investigate how an attempt to solve multiple problems at the
same time (“holistic” approach) could benefit each individual task by exposing and exploiting
correlations and complementarity, which would otherwise stay hidden. Members also felt that
a sound statistical framework was needed and that a careful modeling of uncertainty and a
mechanism to feed back confidences was needed. This would also be beneficial in the presence
of multiple, possibly overlapping signals as is typically the case for sounds Finally, members
were interested in working on meta-data of speech. First ideas were discussed on how to
learn from data units representing emotions that would be both acoustically discriminative
and useful in the context of a certain application, or discernible by humans.

Most members had some background in low-level feature extraction and in deep learning.
Against this background, members developed an experiment, which they intend to execute
in a distributed collaboration over the next couple of weeks. The experiment will be
performed on the IEMOCAP database using various existing tools available to the group
members. Collaboration tools will be set up at CMU. To establish a baseline, members will
investigate the suitability of multi-task learning by training a single deep neural network
(DNN) to predict both binary and continuous valued emotion targets on the IEMOCAP
benchmark database. The network will be adapted to other databases (most likely AVEC
and CreativeIT) to investigate the portability of the learner and to investigate the utility
of multi-task learning. These experiments can be performed with feed-forward as well as
recurrent architectures. Next, prior knowledge will be incorporated into the classification
by adding database information, speaker information, or other meta-data (automatically
extracted or manually labeled) as additional inputs to the network training. Finally, the
recurrence loop will be optimized by investigating which information should be fed back.
This information may comprise the utility of certain features or classes in a certain task,
the saliency of some features, or the classification accuracy (posterior probabilities) of some
classes on a held-out dataset. Members discussed an uncertainty weighted combination
approach that should be able to update the structure and parameters of the classifier so as
to improve classification accuracy. The goal will be to optimize the allocation of parameters
towards modeling useful target units rather than attempting to accurately model distinctions
that will eventually not be used in an application. Results will be published in peer-reviewed
literature, and will hopefully lead to follow-up collaborations including organizing future
workshops and joint proposals.
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4.4 Unsupervised Learning for Audio
Tuomas Virtanen, Jon Barker, Shrikanth Narayanan, Alexandros Potamianos, Bhiksha Raj,
Gaël Richard, Rita Singh, Paris Smaragdis, Stefano Squartini, and Shiva Sundaram
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After a more fundamental discussion on unsupervised learning for audio, our group decided
to focus on the use of unsupervised learning in a concrete application scenario. Even though
unsupervised learning could be used in many processing stages of a computational audio
analysis system (e. g., to develop the feature extraction front-end), in practical scenarios one
often takes advantage of some prior information. In particular, defining a specific application
and ways to evaluate the performance of the audio processing system already imposes some
prior information.

We considered an application where the goal is to detect car crash sounds from continuous
audio recordings. In the unsupervised learning scenario, one has audio recordings that can
be used as a training data, but no reference times of crashes are actually annotated. There
are several kinds of prior information that can be used in the given application. First, one
may assume that the events one is looking for can be characterizing by a specific set of audio
features such as MFCCs. Second, one may assume to have a metric that is appropriate
for describing distances between acoustic features. Third, we know that events are rare,
i. e., only a small number of target events are present in the training data. Finally, we
assume that each event is localized in time and the duration of events is approximately
known (e. g. one or two seconds). The above prior information can be used for novelty-based
audio segmentation using the calculated features and the distance metric. Alternatively,
unsupervised learning can be used to learn features and a distance metric. The resulting
segments can be assumed to be homogeneous. Segments can then be clustered so that each
cluster contains a specific kind of sound. Subsequently, the developer of the system can
manually examine each cluster to see whether a cluster contains a sound relevant for the
development of the detector. Assuming that the events of interest are rare, the cluster
with the largest number of segments need not be examined (containing sounds that do not
correspond to a car crash). The system could also work in an incremental fashion, where the
clustering may change as new data becomes available. This results in a system that achieves
a more knowledgeable perspective on the problem to be solved.

The main benefits of the use of unsupervised learning in this application is the reduction
of amount of manual work: the events of interest can be found from the recordings simply
by examining a single sample from a cluster. In our discussions, it was also pointed out that
the use of unsupervised learning removes a user bias and allows for finding phenomena or
concepts that cannot be precisely defined.
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4.5 Source Separation
Christian Uhle, Jonathan Driedger, Bernd Edler, Sebastian Ewert, Franz Graf, Gernot Kubin,
Meinard Müller, Nobutaka Ono, Bryan Pardo, and Joan Serrà
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Our group attracted participants from various research areas to discuss aspects of source
separation for audio signals, performed either in a blind way or by using additional knowledge
about the underlying sources or the mixing process. In many source separation approaches,
one assumes that sources are independent, uncorrelated, and do not overlap with regard to
a given representation. Also one often presupposes that the mixing process is linear and
time-invariant. However, in practice these assumption are often violated. In addition, sound
sources may influence or interact with each other, so that the separated source signals may
sound unnatural or different to situation where they occur in an isolated fashion. Examples
are the coupling between piano strings and the Lombard effect that describes the adaption
of a speaker to noisy environments. Further fundamental problems in source separation are
the unmasking of undesired sounds (e. g., FM noise or audio coding artifacts), shortcomings
of objective evaluation metrics, or the sound quality (e. g., due to the phase reconstruction
problem). Last but not least, even the definition of what to understand by a source is
ambiguous: a source can be a physical entity that emits sound, an object or event that is
perceived by a human listener (stream), or a musical voice in a polyphonic sound mixture.

There are various applications that motivate ongoing research in source separation
including remixing and upmixing, Karaoke applications, speech enhancement for hearing
aids and communication, dialogue enhancement, audio editing, and audio content analysis.
Besides these applications, source separation is a fascinating, intellectual, and interdisciplinary
research area that requires and provides a deep understanding of the underlying audio material
with regard to various aspects ranging from physical processes to cognitive aspects.

5 Further Topics

5.1 Engineering Selective Attention into Acoustic Scene Analysis
Systems.

Jon Barker (University of Sheffield, GB)

License Creative Commons BY 3.0 Unported license
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A general goal of acoustic scene analysis is to recover abstract high-level descriptions of the
individual sound sources given the raw acoustic mixtures. It is often assumed that a machine
scene analysis system should extract some sort of ‘complete’ description in which all sources
are described with equal detail. In certain contrived scenes, for example ‘cocktail parties’
composed of speakers uttering sentences from fixed grammars, computational systems are
able to generate complete descriptions by composing individual source models and performing
exact or approximate inference. In such cases machines can outperform human (e. g., [4]).
However, it is unclear how such approaches can be usefully applied to handle complex everyday
scenes containing unknown numbers of dynamically changing sources with unpredictable
onsets and offsets.

13451

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


16 13451 – Computational Audio Analysis

In contrast to the above, ‘complete description’ problem, we can consider machine listening
that adopts a more human version of scene analysis where there are favoured ‘attended
sources’ (i. e., a ‘foreground’) and unattended sources that are allowed to remain unresolved
in the background. Such systems would not form complete scene descriptions, but would
instead try to mimic the human ability to fluidly switch attention between alternative
‘foregrounds’, driven by high-level goals or by the saliency of the competing sources (see
[3]). A simple version of the approach is exemplified in the fragment decoding technique for
robust speech recognition ([1, 2]): simple source-independent models are used to perform
a local decomposition into acoustic ‘fragments’ and then, at a higher level, fragments are
integrated over time by composing detailed models of the target speaker mixed with much
simpler models of the background. However, within any attention-driven framework, where
foreground and background are treated asymmetrically, there exist many unresolved questions.
How can the complexity of the foreground and background models be balanced so as to
maximise performance at a fixed computational cost? What are the dimensions of auditory
salience that drive attention? How to model ‘top-down’ selective attention? How to model
‘bottom-up’ reflexive attention? In particular how much processing of the background is
required in order to be aware of the salient qualities (particularly with respect to ‘top-down
salience’?
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2 N. Ma and J. Barker. A fragment-decoding plus missing-data imputation system evalu-

ated on the 2nd CHiME challenge. Proceedings of the 2nd CHiME Workshop on Machine
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5.2 Compensate Lexical/Speaker/Environment Variability for Speech
Emotion Recognition

Carlos Busso (The University of Texas at Dallas, US)
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Affect recognition is a crucial requirement for future human machine interfaces to effectively
respond to nonverbal behaviors of the user. Speech emotion recognition systems analyze
acoustic features to deduce the speaker’s emotional state. However, human voice conveys
a mixture of information including speaker, lexical, cultural, physiological and emotional
traits. The presence of these communication aspects introduces variabilities that affect the
performance of an emotion recognition system. Therefore, building robust emotional models
requires careful considerations to compensate for the effect of these variabilities. Important
research issues are concerned with normalization schemes that compensate the variability
introduced by multiple communication aspects not related to emotions. These approaches
include environment, speaker, and lexical normalization.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Meinard Müller, Shrikanth S. Narayanan, and Björn Schuller 17

5.3 Interpretation and Computational Audio Analysis
Laurence Devillers (LIMSI – CNRS, FR)

License Creative Commons BY 3.0 Unported license
© Laurence Devillers

URL http://www.limsi.fr/Scientifique/emotions/

Most of the research on Computational Audio Analysis has been on classifying the surface
phenomena associated with acoustic signals and with speech events. The meaning of these
events usually depends on the context in which they occur. The analysis of audio (and video)
scenes can help machines to interpret speech of humans or of human-machine interactions.
One of the important issues is how to decide which contextual information to acquire and how
to incorporate it into machine learning. Machines should be able to deal with interactions
with multi-speakers and interpret the relationship between speakers. To give to the machines
the capabilities to interpret and generate appropriate signals taking into account the context
of the interaction (with multi-sources analysis) is a real challenge.

5.4 Perceptually Appealing Reconstruction of Spectrally Modified
Signals

Jonathan Driedger, Meinard Müller (Universität Erlangen-Nürnberg, DE)
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In many audio processing tasks such as source separation or time-scale modification, the audio
signal is modified in the spectral domain and then resynthesized by applying some inverse
transform. Examples are binary or relative masking in source separation procedures or phase
propagation techniques as used in the phase vocoder. However, appyling such modifcations
typically ignore the complex relationships between phases and magnitudes of superimposed
sound components. As a result, besides the intended effects, the reconstructed signals often
contain unwanted artifacts. In this seminar, we have raised the question of how to evaluate
the quality of reconstructed sigals. Further issues were how artifacts may be reduced using
phase adaption strategies or perceptually masked using suitable post-processing techniques.
A fundamental observation was that a listener’s expectation of how a modified signal should
sound often diffes to what is actually contained in the data. This has shown that tasks such
as time scale modification or source separation (without any further applications) are highly
subjective and ill-posed problems.

5.5 The Situated Multimodal Facets of Human Communication
Anna Esposito (International Institute for Advanced Scientific Studies, IT)

License Creative Commons BY 3.0 Unported license
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Main reference M. Rojc, N. Campbell, (eds), “Coverbal Synchrony in Human-Machine Interaction,” 434 pp., ISBN:
9781466598256, CRC Press, 2013.

Humans interact with each other through a gestalt of emotionally cognitive actions which
involve much more than the speech production system. In particular, in human interaction,
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the verbal and nonverbal communication modes seem to cooperate jointly in assigning
semantic and pragmatic contents to the conveyed message by unraveling the participants
cognitive and emotional states and allowing the exploitation of this information to tailor the
interactional process. These multimodal signals consist of visual and audio information that
singularly or combined may characterize relevant actions for collaborative learning, shared
understanding, decision making and problem solving. This work will focus on the visual and
audio information including contextual instances, hand gestures, body movements, facial
expressions, and paralinguistic information such as speech pauses, all grouped under the
name of nonverbal data, and on the role they are supposed to play, assisting humans in
building meanings from them.

5.6 Bayes and Beyond Bayes: The Integration of Prior Knowledge
Sebastian Ewert (Queen Mary University of London, GB)
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To analyse audio recordings using automated methods, one typically makes assumptions
about characteristics and properties of the recorded content. Such assumptions can be explicit
or implicit, and can exist on various semantic levels. For example, in music processing,
methods often exploit that most musical instruments produce harmonic sounds to analyse
the musical content or to identify individual sound sources. Similarly, in speech recognition,
methods rely on the fact that different utterances of a specific phoneme are in a common
manifold of a feature space, which can be described using probabilistic models. Even in
methods, which are generally considered as unsupervised, one can find various implicit
assumptions. For example, in methods such as NMF, one exploits that many sounds can be
approximated by a convex combination of a few fixed spectral templates which would not be
true for highly non-stationary sounds or noise. Also the number of templates used in NMF
is typically based on some kind of assumption.

All these different assumptions can be considered as a form of prior knowledge and, in
this sense, prior knowledge is an essential component in every signal analysis method. Still,
it is not always clear how prior knowledge is integrated best. Some types of prior knowledge
only loosely correlate with specific signal properties, and it might not be clear whether the
integration of such prior knowledge is useful at all. It is also not always clear how the prior
knowledge can be integrated. In particular, while prior distributions in Bayesian probabilistic
models have been used successfully in recent years in this context, whether they can or
should be used to represent a specific type of knowledge. Furthermore, prior knowledge can
be available on various semantic levels. For example, a musical score provides high-level
information about pitch and timing of note events, which can be used to simplify extremely
complex problems such as source separation.

In this seminar, I asked and discussed with other participants the following questions.
What kind of implicit and explicit prior knowledge are you facing in your work? How are you
using prior knowledge in your methods? What kind of general strategies exist to integrate
prior knowledge in front end transformations, in signal and acoustic models, in backend and
machine learning components? What is your experience with prior knowledge on various
semantic levels? What strategies do you employ to integrate knowledge beyond Bayesian
modelling?
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5.7 NMF meet Dynamics
Cédric Févotte (JL Lagrange Laboratory – Nice, FR)
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Over the last ten years nonnegative matrix factorisation (NMF) has become a popular
unsupervised dictionary learning and adaptive data decomposition technique with applications
in many fields. In particular, much research about this topic has been driven by applications
in audio, where NMF has been applied with success to automatic music transcription and
single channel source source separation. In this setting, the nonnegative data is formed by the
magnitude or power spectrogram of the sound signal and is decomposed as the product of a
dictionary matrix containing elementary spectra representative of the data times an activation
matrix which contains the expansion coefficients of the data frames in the dictionary.

In my own research, I have worked on model selection issues in the audio setting,
pertaining to the choice of time-frequency representation (essentially, magnitude or power
spectrogram), and to the measure of fit used for the computation of the factorisation. Driven
by a probabilistic modelling approach, I came up with arguments in support of factorizing of
the power spectrogram with the Itakura-Saito (IS) divergence [1]. Indeed, IS-NMF is shown
to be connected to maximum likelihood estimation of variance parameters in a well-defined
statistical model of superimposed Gaussian components and this model is in turn shown
to be well-suited to audio. In my work, I have also addressed variants of IS-NMF, namely
IS-NMF with temporal regularisation of the activation coefficients [2], automatic relevance
determination for model order selection [3] and multichannel IS-NMF [4].

Recently, I have started to look into dynamical variants of NMF [5], in which structured
transitions occur from spectral patterns to others. This is a desirable property for example
for speech signals, for which some temporal correlation (or anti-correlation) is expected to
occur between subset of speech patterns. Introducing dynamics into NMF is a challenging
task at the modelling and estimation levels. To put it simply, one might say that NMF has
superseded the traditional GMM. If HMM is the natural dynamical extension to GMM, what
is the natural dynamical extension to NMF?
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5.8 Features beyond Machine Learning
Martin Heckmann (Honda Research Europe, DE)

License Creative Commons BY 3.0 Unported license
© Martin Heckmann

A large part of my research concentrates on the extraction of features from speech signals:
on the one hand for recognizing what was said and on the other hand how it was said. In
the development of these features I try to combine three ingredients: first, the usage of
domain knowledge; second, taking inspirations from what is known of the processing in the
human brain (e.g. high dimensional sparse representations); and, third, machine learning
approaches. One example is a set of hierarchical spectro-temporal features, which build on
a perceptual representation and form sparse and high-dimensional features learned from
unlabeled speech data [1]. Currently, I am particularly interested in the extraction of more
subtle prosodic variations which play a very important role in human communication. This
includes back-channels which indicate how the listener is following the conversation as well as
the prominence different words receive which is related to the importance a speaker attributes
to a word [2, 3]. Here, the domain knowledge is one of the key ingredients so far. However, in
recent years I experience a trend away from extensive domain knowledge and psychophysical
inspirations more towards approaches based on machine learning. The different paralinguistic
challenges at INTERSPEECH by Schuller et al. are a prime example as how the same set of
features can successfully be applied to many different tasks with the right machine learning
backend [4]. Related but a bit different is the tremendous success of Deep Neural Networks
in the last two years. Currently they are used as a powerful and versatile tool of machine
learning which is particularly suited to exploit the rich information provided by very large
datasets. Furthermore, researchers have also started trying to integrate inspirations from
the processing of the human brain in this approach such as convolutional networks. In this
seminar, I have discussed ideas for methodologies to fruitfully integrate the rapid advances
in machine learning with processing principles in the brain and domain knowledge to come
up with better features.
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5.9 Detection of Repeated Signal Components and Applications to
Audio Analysis

Frank Kurth (Fraunhofer FKIE – Wachtberg, DE)
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Our work in the last two years was mainly concerned with the detection of structured audio
components within source signals. In this, an important type of structure are repetitions such
as repeating bird calls or percussive elements in music. A few months ago, we have proposed
a novel technique for detecting multiply (i. e., more than once) repeated signal components
within a target signal. For such cases, we were able to improve classical autocorrelation
techniques. In our experiments, we up to now have successfully considered applications
in bioacoustics and in speech processing. It was interesting to discuss the topic within an
interdisciplinary community as it was present at the Dagstuhl seminar and to learn about
further possible applications—and existing solutions—from other domains, especially when
dealing with noisy or distorted signals. For me, related interesting questions are both how to
automatically separate, or even extract, all structured signal parts from the residual signal
and how to do this efficiently for large scale signal scenarios.

As a first follow-up activity to the Dagstuhl seminar, I am organizing a special session on
“Audio Signal Detection and Classification” covering topics such as audio monitoring, signal
detection, segmentation and classification, audio fingerprinting, matching techniques, and
audio information retrieval. The special session, which will be held at the IEEE Workshop
on Cloud Computing for Signal Processing, Coding and Networking (IWCCSP) on March
11, 2014, aims at bringing together experts from the audio signal processing area with the
cloud computing community.

5.10 Informed Source Separation for Music Signals
Meinard Müller, Jonathan Driedger (Universität Erlangen-Nürnberg, DE)

Joint work of Sebastian Ewert
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One central problem in music processing is the decomposition of a given audio recording of
polyphonic music into components that correspond to the various musical voices or instrument
tracks. The main challenge arises from the fact that musical sources are highly correlated,
share the same harmonies, follow the same rhythmic patterns, and so on. Musicians play
together, follow the same lines, and interact with each other. As a consequence, different
musical voices often do not differ statistically from each other, which makes the separation
of musical sources or voices infeasible and and even ill-defined problem. Therefore, when
processing music data, music-specific techniques are needed that exploit musical knowledge
or music-specific constraints. For example, to support the separation of musical voices, one
strategy is to use additional cues such as the musical score or user input [1]. In this seminar,
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we have discussed questions such as: Is source separation of music signals a meaningful
problem? What is it good for? What are possible applications? How can one measure the
success and the complexity of the task? How can one integrate additional knowledge? Where
does one obtain such knowledge from? How can this knowledge be learned from example
data? What can be learned from the field of speech processing?
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5.11 Approaching Cross-Audio Computer Audition
Björn Schuller (TU München, DE)

License Creative Commons BY 3.0 Unported license
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Main reference B. Schuller, “Intelligent Audio Analysis,” 345 pp., Signals and Communication Technology Series,
Springer, 2013.

URL http://www.springer.com/engineering/signals/book/978-3-642-36805-9

Substantial progress has been made over the last years in a number of intelligent audio
analysis sub-disciplines that lead closer to the realisation of genuine cross-audio computer
audition. This includes in particular advances in blind audio source separation such as by Non-
negative Matrix Factorisation variants, but also in the feature extraction and computational
intelligence parts, e. g., by feature brute-forcing, or context-sensitive deep neural networks and
tandem architectures with graphical model topologies, or recent transfer learning approaches.
By these and further means, the community is at a point where we are able to shift more
into handling complex compounds of speech, music, and sound simultaneously as this is how
they appear in the real world [1]. In this seminar, we have discussed important tools and
inspirations on how to proceed on this avenue.
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5.12 What can we Learn from Massive Music Archives?
Joan Serrà (IIIA – CSIC – Barcelona, ES)
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Music is an extremely powerful means of communication that shapes our brain in intricate
ways, unique to mankind, and transversal to all societies. As a scientific community we are
slowly but steadily progressing towards the availability of massive amounts of music and
music-related data for research purposes. The Million Song Dataset, Peachnote, the Yahoo!
Music Dataset, the Last.fm API, Musicbrainz, or Wikipedia are just but some examples.
Certainly, such big data availability will shift the perspective in which we approach many (if
not all) of the traditional music information retrieval tasks. From genre or mood classification
to audio or cover song identification, practically all tasks will experience a change of paradigm
that frame them under more realistic, large-scale scenarios. In this seminar, we discussed new
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avenues for research that are awaiting for us. In particular, future work will be concerned
about extracting and using knowledge that can be distilled from such massive amounts
of data—not only knowledge about music itself (rules, patterns, anti-patterns, and their
evolution), but also knowledge about ourselves, as music listeners, users, or creators.

5.13 Acoustic Monitoring in Smart Home Environments: A Holistic
Perspective

Stefano Squartini (Polytechnic University of Marche, IT)

License Creative Commons BY 3.0 Unported license
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Main reference E. Principi, S. Squartini, F. Piazza, D. Fuselli, M. Bonifazi, “A distributed system for recognizing

home automation commands and distress calls in the Italian language,” in Proc. of the 14th
Annual Conf. of the Int’l Speech Communication Asssociation (INTERSPEECH’13),
pp. 2049–2053, ISCA, 2013.

URL http://www.isca-speech.org/archive/interspeech_2013/i13_2049.html

In recent years, there has been significant interest around the “Smart Home” paradigm, a
scenario where several research fields seem to naturally converge. One of the most relevant
objectives consists in monitoring the activity of inhabitants for different purposes: emergency
state recognition and fall detection (especially for elderly people), intrusion or theft detection,
people localization, usage of appliances, or power consumption besides the more common
home automation commands, which have been already implemented in many commercial
entertainment-oriented devices. In this context, acoustic monitoring techniques play an
important role. Even though many scientific studies have been conducted so far, the results
do not yet seem to match the market expectations.

Our research group is developing distributed system for recognizing home automation
commands and distress calls in Italian language. The system integrates the automatic
recognition of emergency states and home automation commands with remote assistance
and hands-free communication. The ITAAL database has been developed for this purpose
and a preliminary prototype is already available. Nevertheless, many issues still need to be
addressed in order to make the system more appealing, reliable and useful for exploitation in
real domestic environments. This typically requires dealing with heterogeneous acoustic data,
which must be treated by looking at them from a holistic perspective, also taking other types
of sensing activity into account. Some of these issues are reported here as open challenges to
be addressed in future research:

How to integrate speech and sound analysis for activity monitoring? Utterances spoken
by a user, even if not really related to specific commands devoted to activate certain
smart functionalities, can be useful to understand what the user is doing and in which
part of the house he is located, specially if adequately integrated with no-speech sounds
related to his activity.
How to integrate information coming from infra- and ultra-sound sensors? Spanning the
frequency range beyond the audible range can be very useful (e. g., subsonic sounds for
fall detection and ultrasonic sounds for localization), especially in an integrated fashion
with the “real” acoustic information. Therefore, unsupervised learning techniques can be
implemented to find out and efficiently use cross-domain relationships.
What is the role of paralinguistic features? In emergency state recognition, for instance,
the capability of detecting the presence of paralinguistic features in the vocal activity,
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and likely understanding their meaning, can have a substantial impact in the overall
performance and asks for consideration in smart home environments.
How to deal with minimum a-priori knowledge? In several practical smart home scenarios,
the adaptation of automatic recognition systems to a speaker’s characteristics is not
allowed, since the provided technology should be as transparent as possible to the final
user.
How to deal with the “novelty” issue? One of the objectives of acoustic monitoring
consists in automatically recognizing a novel event with respect to the “usual” ones, in
order to take adequate actions (e. g. in case of thefts).

5.14 Sound Processing in Everyday Environments
Emmanuel Vincent (INRIA – Nancy – Grand Est, FR)

License Creative Commons BY 3.0 Unported license
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I am interested in an efficient integrated approach to sound processing in everyday environ-
ments. The various relevant tasks are often treated one after another: source localization,
source separation, speaker/event identification, speech recognition. This “pipeline” approach
yields suboptimal results due to the propagation of errors from one step to the next. Our
approach is to propagate not only deterministic signals and values but a full posterior distri-
bution (which is approximated as a Gaussian) from one step to the next. Some techniques
exist to estimate this distribution but they are not very accurate yet. Burning questions in
this context are: How to accurately estimate and propagate uncertainty? How to use it in
combination with state-of-the-art ASR and speaker/event identification systems?
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6 Towards a Definition of Computational Audio Analysis (CAA)

Towards the end of the seminar, each participant was asked to give some kind of definition
for a research field we coined “Computational Audio Analysis” (CAA). The following list
gives an overview of the various statements which, as a whole, also give a good impression
about the range of topics we have discussed at our Dagstuhl seminar.

Computational audio analysis provides quantitative methodologies that enable detailed
analyses of human behavior and interaction.
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The goal of computational audio analysis (CAA) is to understand the underlying structure
of a given audio recording using computational methods in order to extract information
and higher level semantics. CAA is a highly multidisciplinary field bringing together
researchers in computer science, digital signal processing, machine learning with domain
experts in, for example, speech and music processing, human computer interaction,
biology, medicine, and acoustics.
In the field of artificial intelligence (AI), people have tried to realize machines that
simulate the role of a human. Examples are the Deep Blue system in chess or the Watson
system for answering questions posed in natural language. Computational audio analysis
aims at realizing machines that hear and understand sounds like a human. However, it
seems to be a long way to realize such system, so that CAA remains an exciting research
area.
Computational audio analysis aims at inferring meaningful structures from audio signals,
finding hidden relationships in heterogeneous collections of acoustic data from multiple
perspectives, as well as detecting and understanding the meaning of events as occurring
in natural environments
The objective of computational audio analysis is to give a generative explanation of a
sound complex, where a soundscape is decomposed with sufficient fidelity to meet the
needs of particular applications.
Computational audio analysis aims at extracting information from audio signals using
techniques from signal processing, machine learning, information retrieval, and related
fields. One central objective is to segment, structure, and decompose audio signals into
elementary units that have some semantic (e. g. linguistic, musical) meaning. These units
not only serve as basis for higher level analysis and classification tasks but also deepen
the understanding of the underlying acoustic material.
Computational audio analysis refers to the modeling and analysis of audio, in particular
the voice, with the goal to extract ‘meaningful information’ from audio. What ‘meaningful
information’ means, depends on the respective application. Inferring interactive events
or states from audio, classifying environmental sound events, or separating sources to
improve ASR are such examples tasks. Furthermore, CAA provides us with techniques
to automatically attribute labels or perceptual characteristics to sounds.
Computational audio analysis—in an utmost compact description—essentially focuses on
extracting information from audio using computational methods.
Computational audio analysis is the processing of audio signals in order to characterize
or decode them in a way humans can understand. It incorporates signal processing
techniques as well as models of perception and cognition. The main difficulty is that
it needs to model a highly complex system with large inter-subject variability: human
listeners.
Computational audio analysis means resolving audio into machine understandable con-
structs.
In computational audio analysis, annotation-flexible models that adapt to new conditions
are developed in order to achieve a more representative (machine) learning outcome.
Furthermore, the interplay between speech signals, other human-produced signals such as
physiological signals (heart rate, skin conductance, activity, gestures), and non-speech
audio signals (e.g. cough, snoring, sneezing) are explored. The understanding of how and
why audio influences the human mind using low-level features can open possibilities for
new application.
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Computational audio analysis means extracting knowledge from audio and making sense
of it.
Computational audio analysis provides computational methods for finding relevant struc-
ture (pertinent features and class labels as well as appropriate decompositions) in acoustic
data, where relevancy, pertinence and appropriateness are usually defined in a task-
dependent way. Methods are not limited to acoustic data, but can use multi-modal input,
as long as audio data is among the considered modalities.
Computational audio analysis aims at the detection, separation and description of acoustic
objects via computational means. Descriptions can be of a qualitative (e. g., “warm”)
and quantitative (e. g. “70 dB SPL”) nature. The source of these acoustic objects can be
a human speaking, real or virtual musical instruments being played, or other vibrating
physical objects such as loudspeakers. In addition to the analysis of separable acoustic
objects, CAA also targets at holistic descriptions of acoustic scenes or parts of a scene
(e. g., being at a train station).
Computational audio analysis is the automated analysis of acoustic signals (whether
natural or man-made) in order to perform some task that has utility to humans. There
are no restrictions on the task: the setting may be online/offline, unimodal/multimodal,
passive/interactive and may involve any form of acoustic signal including speech, music
or environmental audio. The analysis may use perceptually motivated features (e. g.,
MFCCs) or perceptually motivated processing. However, in contrast to computational
audition, the processing does not need to follow human audio processing, i. e., it does
not explicitly model human hearing and the field is not concerned with learning about
human hearing from human/machine comparisons.
Computational audio analysis is a way to describe the effect that audio (both naturally
occurring and artificially synthesized) has on humans, independent of language, linguistics,
or phonetics. Due to the difficulty of describing its “targets” with words, or measure its
physiological effects exactly, labels are very hard to get by. This makes CAA a challenging
combination of fields such as computer science, musicology, psychology, or physiology.
Computational audio analysis is the analysis and interpretation of an acoustic scene by a
machine. This analysis can be either obtained in a supervised way, which is guided by
human perception or sound production mechanism when known, or it can be unsupervised
with the aim, for example, to discover new concepts (such as sound objects or sound
primitives) not necessarily formally defined in advance by humans.
Computational audio analysis is about machine-assisted extraction of information from
sound. It can be either fully automatic (unsupervised) or user-guided (semi-supervised).
Speech conveys information beyond verbal message including intentions, emotions, and
personality traits that influence the way we communicate with others (people, robots,
computers, devices). Computational audio analysis offers the opportunity to develop
tools for learning and inferring these traits. The challenge in building such systems is to
capture the temporal dynamic and situational context of behaviors.
Computational audio analysis is the processing and modeling of the inherently hetero-
geneous general audio signal to uncover latent structures, to derive mappings to and
between representations of interest, and to empower target applications such as summar-
ization, retrieval, synthesis, and categorization. As a special case, the computational
representations and formalism of CAA can benefit from human audition principles.
Computational audio analysis is about processing audio data with respect to a specific
application scenario and domain knowledge in order to extract task-specific information.
Computational audio analysis is concerned with the extraction of a parametric description
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for an audio signal from its waveform (and possibly other additional representations). The
type of the description varies depending on the requirements of the desired application.
Computational audio analysis aims at understanding audio by means of computational
means. This could mean being able to build a model of the source (source modeling
and separation) extracting relevant messages (speech recognition), or understanding the
environment the sources are in (e. g., room ID through reverb). CAA is open to any and
all computational methods to do so (including semantic web, crowd sourcing).
Computational audio analysis involves the processing of audio signals by the help of
computers with the objective to obtain information from it. Such information can refer
different levels of abstraction ranging from basic signal measurements and low-level
features to semantically meaningful information such as words, emotions, or melodies.
Computational audio analysis is the intersection of audio analysis by digital means (i. e.,
digital signal processing) with computer science. It therefore might include any relevant
aspect of computer science, including but not limited to logic, inference, representation
(ontologies), HCI, information retrieval, machine learning, cryptography and encryption,
autonomous agents, communication (not telecommunication) theory, and so on. It should
develop computational means and mechanisms for transitioning from audio data, to audio
information, to (audio) knowledge and understanding for all forms of audio, i. e., speech,
music, environmental, making that information and knowledge useable in a wide variety
of application domains, including creative activity. It does not exist in isolation and has
close ties to other sensory and affective data/modalities. It embraces the representational
power of Semantic Web technologies which empowers many of the areas of computer
science above in the linked data world of the future.
By audio, we deal with mechanical waves, i. e., a complex series of changes in or oscillation
of pressure as compound of frequencies within the acoustic range available to humans
and at sufficiently intense level to be perceived, i. e., audible by them. The analysis
of audio aims at the extraction of information and, on a higher level, attachment of
semantic meaning to audio signals. Computational audio analysis typically includes
the involvement of computational intelligence algorithms as provided by the means and
methods of machine learning going beyond signal processing.
Computational audio analysis deals with rich (audio) data and a complex (audio) signals.
It encompasses a variety of aspects such as the analysis of spoken language, the mood of
a song, and the human interaction including feelings and emotion.
Computational audio analysis is the engineering approach to reproduce the human
capability of processing sounds to understand acoustic scenes and respond appropriately
to the environment.
Computational audio analysis deals with the analysis of audio in combination with other
sensor information such as video, body sensors, GPS, and so on. The analysis of such
data is generally statistical, deep, atheoretical, and hard for people to understand. CAA
should be time- and context-dependent. It may involve continuous adaptation and may
incorporate protension.
Computational audio analysis is the use of computers (from microprocessors over smart-
phones to supercomputers) for the analysis of audio signals (acquisition and storage,
feature extraction, model building and interpretation) with applications in telecommunic-
ations, multimedia, automotive, industry, biomedicine, performing arts, forensics, human
curiosity, and science.
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