
On Static Timing Analysis of GPU Kernels
Vesa Hirvisalo

Aalto University
Espoo, Finland
vesa.hirvisalo@aalto.fi

Abstract
We study static timing analysis of programs running on GPU accelerators. Such programs follow
a data parallel programming model that allows massive parallelism on manycore processors. Data
parallel programming and GPUs as accelerators have received wide use during the recent years.

The timing analysis of programs running on single core machines is well known and applied
also in practice. However for multicore and manycore machines, timing analysis presents a
significant but yet not properly solved problem.

In this paper, we present static timing analysis of GPU kernels based on a method that we call
abstract CTA simulation. Cooperative Thread Arrays (CTA) are the basic execution structure
that GPU devices use in their operation that proceeds in thread groups called warps. Abstract
CTA simulation is based on static analysis of thread divergence in warps and their abstract
scheduling.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases Parallelism, WCET

Digital Object Identifier 10.4230/OASIcs.WCET.2014.43

1 Introduction

In this paper, we study the timing of data parallel kernels executed on SIMT machines. The
SIMT execution model (Single Instruction Multiple Threads) is typical for the abundant
GPUs (Graphics Processing Units) that have become the main platform for massively parallel
computing. In addition to their original purpose, graphics, GPUs are used as general purpose
computing devices for applications covering a wide range from super computing to ordinary
desktop computing.

GPUs are used also in some real-time applications, but their wider application for such
purposes is limited by the lack of solid timing analysis methods. Especially considering
safety critical applications, methods giving run-time guarantees are a must. Many embedded
systems found in cars, airplanes, medical instruments, etc. are safety critical. As traditional
single-core processors have ceased to scale effectively in their performance, multicore and
manycore processors are needed in order to cope with the increasing computational demands
of novel applications.

In this paper, we consider the timing of kernels executed on SIMT machines and focus
on worst-case execution time (WCET) analysis. We make the following contributions:

we present an abstract model of SIMT execution that is suitable for WCET analysis,
a static WCET analysis method for SIMT executed data parallel kernels, and
a WCET analysis of an example kernel that captures typical GPU computation.

We have structured our presentation in the following way. We start with a background
section that describes GPU computation. In our background description, we use a short
example kernel that we use also as a running example through the paper. We continue

© Vesa Hirvisalo;
licensed under Creative Commons License CC-BY

14th International Workshop on Worst-Case Execution Time Analysis (WCET 2014).
Editor: Heiko Falk; pp. 43–52

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2014.43
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

44 On Static Timing Analysis of GPU Kernels

by describing our method in a section that is divided into subsections according to the
main phases of our method: static divergence analysis, abstract warp construction, and the
abstract CTA simulation itself. After that, we present an abstract GPU machine that we
call mini-SIMT and present how our example program can be executed on the machine. This
is followed by our WCET analysis applied to the program. We end our paper with a short
review of related work and our conclusions.

2 Background

Graphics Processing Units (GPU) can be used as accelerators for general purpose computing
in a setting that is is called GPGPU computing. GPUs are not stand-alone devices. They
need a host computer to operate.

The basic operation in GPGPU computing consists of normal thread execution on the
CPU of the host computer. Computationally heavy operations are launched to the GPU
to be executed. Launches follow the abstract architecture of GPU devices, which forms the
basis of GPGPU programming as exemplified by CUDA and OpenCL. The programs in such
languages include code for both the host CPU and the accelerator GPU [7, 6].

Abstractly, GPUs consist of several processors with several cores each. Each of the
processors has a fast local memory that its cores share. The processors communicate with
each other by using a slow and large global memory.

GPU launches consist of a massive number of threads that are explicitly partitioned
into blocks by the programmer. The processors on a GPU execute the blocks in any order
and without synchronization until no blocks remain unexecuted. We will ignore the block
structure of GPGPU programs in the rest of this paper. A broader view can be found, e.g.,
in [1].

2.1 Kernels
The GPU side code of GPGPU programs consist of kernels. A kernel defines the computation
done by a single thread during a launch. The kernels belonging to the same block operate
in a shared memory. For simplicity, we assume a launch to consist of a single block in the
following and the GPU to consist of a single processor.

TriangleSum (Listing 1) is an example of a kernel. It is somewhat artificial, but it
contains in a compact form many of the properties that are typical for GPGPU programming.
The kernel is written in a language resembling the C language variant used in OpenCL.

To use the kernel, it must be launched. Consider, for example, a 16x16 matrix m to be
processed by the kernel into a triangle column sum vector v of length 16. On the CPU side
we would execute the code in Listing 2 to make a launch.

The launch causes 16 threads to be started on the GPU accelerator as indicated by size
between the angle brackets that mark the call as an accelerator call. The 16x16 matrix m is
in the row major layout.

Inside the kernel, we have a special variable Tid that is defined by the system as the
number of the thread executing (e.g., if thread 0 evaluates Tid, it gets the value 0). As i is
initialized to value Tid and incremented by c (i.e., 16), the reference m[i] will cause each
thread to access the element (Tid, j) of the matrix, where j is the iteration number.

As can be seen from the code, different threads execute different number of iterations of
the for loop. Only the upper right triangle of the matrix gets accessed. Further, only every
second row will be summed because of the condition d % 2 and an adjustment will be added
to some elements because of the condition d % (Tid + 1) == 0.

V. Hirvisalo 45

Listing 1 An example kernel.
__kernel TriangleSum (float* m, float* v, int c) {

int d = 0; /* each thread has its own variables */
float s = 0; /* s is the sum to be collected */
int L = (Tid + 1) * c;
for (int i = Tid; i < L; i += c) {

if ((d % (Tid + 1) == 0)
s += 1;

if (d % 2)
s += m[i];

__syncthreads (); /* assuming compiler support for this */
d += 1;

}
v[d -1] = s;

}

Listing 2 A launch of the example kernel.
size = 16;
float m[size] = {0, .., 255};
float v[size];
TriangeSum <size >(m, v, size);

By default, the threads are free to proceed at their own pace. However, to synchronize
the threads the programmer has added a barrier. All active threads will wait each other at
__syncthreads() and proceed only after all of them have reached the barrier. After the
loop, each thread writes the adjusted sum of one triangle column to the result vector v.

2.2 SIMT execution model
GPU devices use the Single Instruction Multiple Threads (SIMT) execution model. In the
model, threads are grouped into warps of constant size. For example, with the warp size
8, our example launch would consist of two warps: one for threads 0...7 and the other for
threads 8...15.

In the SIMT model, each warp is processed by executing the same instruction for all
of its threads. In this respect, the SIMT model resembles typical vector computing (the
SIMD model). For example, the addition s += m[i] is a single instruction but does eight
operations in parallel.

However, all threads have their own program counter. Thus, the processing of threads can
differ if there is branching. In the SIMT execution model, the different progress of threads is
called thread divergence.

Simple if statements can be handled by predicated execution. For example, the value
of the if statement condition d % (Tid + 1) == 0 can be computed in parallel for all the
threads in a warp and a corresponding execution mask can be formed. The following addition
statement has effect only for the threads marked active by the mask.

Nested branching, such as nested if statements, is more complicated to handle. For
example, the code in Listing 3 has two nested divergences. Because of p1, some threads are
executing s3. The others are split by p2 to execute the different subbranches.

To handle such structures, stack-based reconvergence mechanisms are typically used by
GPU hardware. Let the condition p1 to evaluate to the vector (1, 1, 0, 0, 0, 0, 1, 1). Thus,

WCET 2014

46 On Static Timing Analysis of GPU Kernels

Listing 3 Nested branching
if (p1) /* A */

if (p2) s1 /* B */
else s2

else s3 /* C */
... /* D */

A = 11111111

C = 00111100B = 11000011

D = 11111111

R−pc

− 11111111

MaskNext−pc

A

R−pc

− 11111111

MaskNext−pc

D C 00111100

D

D B 11000011

R−pc

− 11111111

MaskNext−pc

D C 00111100

D

A B C D

R−pc

− 11111111

MaskNext−pc

D

stack top

Program flow Active threads

Initial stack contents

Stack after divergence

After branch completion

After reconvergence

Time

Figure 1 Thread divergence handling.

threads 3. . . 6 should evaluate the else branch labelled C. The GPU hardware pushes the
mask 00111100 onto a reconvergence stack together with the PC value C and reconvergence
PC value D. The reconvergence PC value is needed to mark the instruction at which the
divergent threads meet. The processing sequence is illustrated in Figure 1.

2.3 Avoiding memory latencies
Execution can be stalled by an instruction reading memory. GPU hardware hides such
latencies by allowing multiple warps to be run concurrently. All the warps from a single
block are collected into a Cooperative Thread Array (CTA). The scheduling hardware of
the GPU keeps track of ready warps of a CTA, i.e., warps that are not stalled because of
memory accesses (or other reasons). Typically round-robin scheduling policy is used and the
scheduler is able to keep in pace with instruction issuing.

Considering our example program, the benefit of round-robin scheduling can be easily
seen. By default, the warps get the same amount of execution cycles from the processor. The
warps executing TriangleSum will progress almost with the same speed through the code
and will also reach the synchronization barrier __syncthreads() almost simultaneously at
each iteration. Thus, the barrier wait time is not very large.

We define occupancy as the number of ready warps. The memory latency hiding is
dependent on the occupancy of the processor. As the warps may be partially filled, occupancy
may differ from thread utilization.1

1 Occupancy is usually defined as the percentage actual_warps/max_warps (but we will use the warp
count) and current hardware can support 64 warps of 32 threads (but we will use modest numbers).

V. Hirvisalo 47

3 WCET estimation method

In describing our WCET estimation method, we concentrate on features related to the SIMT
execution model and omit the other features (e.g., pipelines and caches). We define the total
time spent in execution as

Texec = Tinstr + Tstall

where Tinstr is the number of cycles spent executing instructions and Tstall is the number of
cycles spent in instruction execution stalls because of local memory waits.

Even assuming a simplistic hardware model, Tinstr cannot be directly counted from the
code, because the SIMT execution model allows divergence. Considering an if-else structure,
the execution time is

Tif_else =

Ttrue_branch if all threads converge to true
Tfalse_branch if all threads converge to false
Tfalse_branch + Ttrue_branch if threads diverge

Considering loops, the execution time of a warp is the time of the longest thread in
the warp. Thus, for control structures, the execution time is dependent on divergence. To
estimate the WCET statically, we need static divergence analysis.

Warp scheduling hides the memory latencies. In the worst case, all warps execute a
memory read on consecutive cycles and the stall is

Tstall = max(0, Tmemory −Nwarps)

where Tmemory is the memory access latency and Nwarps is the warp occupancy. Note that
Tstall is directly added to the total execution time, not to individual warps.

To get tight timing estimates for SIMT executed programs, we must be able to statically
estimate occupancy. We base the estimation on a method that we call abstract CTA
simulation. Abstract CTA simulation needs abstract warps to be constructed.

In the following, we will first describe divergence analysis, then abstract warp construction,
and finally abstract CTA simulation.

3.1 Static divergence analysis
We base our static divergence analysis on GSA (Gated Single Assignment). It augments
programs with value chaining information and resembles SSA (Static Single Assignment).
Instead of the φ-function of SSA it uses three special functions to build the chains:

γ function is a join for branches. γ(p, v1, v2) is v1 if the p is true (or else v2).
µ function is a join for loop headers. µ(v1, v2) is v1 for the 1st iteration and v2 otherwise.
η is the loop exit function η(p, v). It chains a loop dependent value v to loop predicate p.

GSA allows control dependencies to be transformed into data dependencies whose chains
we can follow. We say that a definition of a variable is divergent if the value is dependent on
the thread. If there are no divergent definitions for a branch predicate, we know the branch
to be non-divergent. The details of the method can be found in [3].

3.2 Abstract warp construction
For static WCET estimation, we need timing information of the warps to be executed. We
do this by constructing abstract warps. Abstract warps resemble the traditional control flow
graphs. An abstract warp A = (V,E) is directed graph. The nodes V have three node types:

WCET 2014

48 On Static Timing Analysis of GPU Kernels

Time nodes describe code regions with two values. Tinstr is the upper bound of the
instruction execution time consumed. Tshift is the upper bound of the variation of the
instruction execution time caused by thread divergence.
Memory access nodes that mark places where memory access stalls may happen.
Barrier nodes that mark places where barrier synchronization must happen.2

An abstract warp is constructed from the code in a recursive bottom-up way by applying:

procedure construct(program element P)
case P
is compound statement S1, S2: R = Join(construct(S1), construct(S2))
is if statement for S1, S2: R = LUB(construct(S1), construct(S2))
is loop statement with body S: R = Cons_loop_edge(construct(S))
is memory read statement S: R = Cons_flow_edge(Time(S), Memory())
is memory barrier statement S: R = Cons_flow_edge(Time(S), Barrier())
is some other S: R = Time(S)

where R is the return value. The constructor Join merges S1 and S2 by summing the Tinstr
and Tshift values, if they are statically resolvable. The constructor LUB merges S1 and S2
by selecting the worst-case Tinstr and the Tshift values, if they are statically resolvable. The
constructors Time, Memory, and Barrier construct simple nodes.

3.3 Abstract CTA simulation
We use abstract CTA simulation to get execution time estimates for the kernels whose
structure we can statically resolve. Instead of exhaustively executing all warps with thread
masks, convergence mechanisms, and all possible scheduling interleaving choices, abstract
CTA simulation considers a single abstract warp. It uses static estimation to understand the
effects of multiple warps, thread divergence, memory latencies and scheduling choices.

Our abstract CTA simulation assumes the hardware to use round-robin scheduling for
warps. This means that without divergence between the warps, the warps will be executed
as convoys. A convoy is the execution of the same instruction by all warps in a single
round-robin cycle. We define divergence from this scheduling as convoying shift TSHIFT ,
which is the program counter distance among threads within a single round-robin cycle.

The WCET calculation is based on cumulative sum of instruction execution and memory
stall times during the abstract CTA simulation. In the simulation, we use bounds for
occupancy: Nlow is the lower bound and Nhigh is the upper bound.

procedure simulate(abstract warp A, warp count WC)
TWCET = 0
Nlow = Nhigh = WC

proceed through A = (V, E) until termination
let v ∈ V be the current node
case v
is time node:
TWCET += Nhigh ∗ Tinstr
TSHIFT += Tshift

2 Note that barriers can cause deadlocks in actual programs. We assume programs to be deadlock-free.

V. Hirvisalo 49

is barrier node:
reset TSHIFT and update Nlow and Nhigh

is memory access node:
add the access to LOG
increment TSHIFT according to Nlow
update Nlow and Nhigh

flush accesses from the LOG

The simulation of memory access interleavings is done by keeping a LOG, whose length
is limited by TSHIFT and the branching encountered during the simulation. When we flush
an access from LOG, we increment TWCET by Tstall . In computing Tstall , we pessimistically
consider the interleavings that can happen within the LOG. Thus, instead of considering
whole programs (see, e.g., [5]), we consider interleavings within a small window.

In actual hardware, warps can execute a kernel without synchronization. Our interleaving
mechanisms can handle only modest convoying shifts. We can accurately simulate some loop
types. Most importantly, these include the loops for which the loop branch is non-divergent.

4 The mini-SIMT machine

We will use a simple machine language (inspired by [3]):

Labels (L) ::= l ∈ N
Variables (V) ::= Tid ∪ {v1,v2,...}
Instructions ::=
- (jump if zero/not zero) | bz/bnz v, l

- (unconditional jump) | jump l

- (store into shared memory) | store vx = v

- (load from shared memory) | load v = vx

- (arithmetic operation) | binop v1 = v2 op v3
- (immediate copy) | const v = n

- (re-convergence) | sync
- (synchronization barrier) | barrier v1, v2

A mini-SIMT program executes kernels with SIMT execution model with multiple cores
and uses round-robin scheduling to schedule ready warps. For each warp, the machine
keeps a synchronization stack holding frames (lid ,Θdone, lnext ,Θtodo), where lid is the con-
ditional branch that caused the divergence, Θdone is the set of cores that have reached
the synchronization point, lnext is the instruction where the set of cores Θtodo will resume
execution.

The machine pushes frames at branches (bz or bnz) and pops them at reconvergence
points, but uses a separate reconvergence instruction sync to mark the reconvergence points
(instead of pushing reconvergence PC onto a stack). Only load can cause memory stalls. The
barrier instruction unschedules the warps that have reached the barrier until v2 threads
are the same barrier (identified by v1).

The mini-SIMT machine code for our example kernel and its control flow graph is given
in Figure 2, whose right side lists excerpts of the kernel executed with 4 threads in a single
warp, instruction execution time of 1 cycle, and memory latency of 10 cycles

WCET 2014

50 On Static Timing Analysis of GPU Kernels

l00: const d = 0

l02: const i = Tid
l03: binop L = c + 1
l04: binop L = Tid * L
l05: binop L = L + c
l06: binop Tp = Tid + 1

l01: const s = 0

l07: binop p = i − L
l08: bz p, l23

l09: binop p = d & Tp
l10: bz p, l12

l12: sync

l13: binop p = d % 2
l14: bnz p, l17

l15: load x = i
l16: binop s = s + x

l11: binop s = s + 1

l23: sync
l24: binop x = d − 1
l25: binop x = x + v
l26: store x = sum

l17: sync
l18: barrier 0, b
l19: binop b = b − 1
l20: binop d = d + 1
l21: binop i = i + c
l22: jmp l07

Cycle PC: instruction mask
00 l00: const 1111

...
25 l15: load 1111
26 l15: stall
27 l15: stall

...
33 l08: bz 1111
34 l23: sync 1000
35 l09: binop 0111

...
86 l08: bz 0001
87 l23: sync 0001
88 l24: binop 1111
89 l25: binop 1111
90 l26: store 1111

Figure 2 The control flow graph of our translated example program (left) and parts its execution
with 4 threads (right), 1 = active thread, 0 = passive thread. Note the pushes and pops by sync.

5 An example of analysis

To clarify our method, we consider the program in Listing 1 to be executed on a mini-SIMT
machine with 16 threads in 4 warps. In the following, we will first do divergence analysis for
the kernel, then we will construct an abstract warp that describes the kernel, and finally, do
abstract CTA simulation for it.

5.1 Static divergence analysis

We use GSA in the divergence analysis. Consider the branch at l08. GSA places a µ function
at l07 that chains the branch predicate to the definition (l02: const i = Tid). As Tid is
a divergent value, the loop is divergent. Similarly, the branch at l10 is divergent because its
predicate is chained to the definition (l06: const i = Tid + 1).

The branch at l14 is not divergent. GSA places a µ function at l07 that chains
the branch predicate to the definitions (l00: const d = 0) and (l20: const d = d + 1).
Both definitions are non-divergent. Thus, the branch itself and also the memory access
controlled by the branch are non-divergent.

5.2 Abstract warp construction

Our abstract warp construction basically follows the CFG given in Figure 2. The number of
instructions in the basic blocks give us the related Tinstr values, because of the execution
time of 1 cycle for all instructions. The construction algorithm splits the block of l15 in two
and places a memory access node in between, because the block contains a memory read.
Similar splitting happens for the block of l18, into which a barrier node is added.

Some nodes can be merged together. Especially, the path (l09, l10, l11, l12, l13, l14,
l15) is interesting. It is a worst-case path with divergence at l11. The corresponding time
node gets the values Tinstr = 7 and Tshift = 1. The resulting abstract warp is in Figure 3.

V. Hirvisalo 51

shift
T = 0

instr
T = 7

instr

shift
T = 0

T = 2
instr

T = 7

shift
T = 1

instr

shift
T = 0

T = 3
instr

shift
T = 0

T = 4

instr

shift
T = 0

T = 4

Figure 3 Abstract warp of the example kernel, where boxes are time nodes, the circle is a memory
access node, and the bar is a barrier node.

5.3 Abstract CTA simulation
The abstract CTA simulation begins from the leftmost node in Figure 3. As the warp width is
4, we have 4 warps. Thus, the first node adds 7 ∗ 4 = 28 cycles to TWCET and sets Tshift = 0.
The simulation processes similarly for the next time node.

After that we encounter a divergent branch. Because of the static loop branching predicate
we are able to resolve that the iteration counts for the warps are (4, 8, 12, 16). Thus, we
proceed with Nlow = Nhigh = 4.

TSHIFT = 1 when we encounter the memory access node. The memory access will set
TSHIFT = 3. Such increasing shift would cause problems later in the simulation, but the
barrier node will reset TSHIFT to 0 and flush the read from LOG by increasing TWCET by
10−Nlow = 6 stall cycles.

After four iterations, one warp will diverge from the loop and the simulation continues
in the loop with Nlow = Nhigh = 3. After exiting the loop, the simulation continues with
Nlow = 1 and Nhigh = 4 for the remaining block yielding a final estimate TWCET = 804. By
using a cycle accurate simulator we obtain 688 as the true execution time.

6 Related work

The timing analysis of programs running on single core machines is rather well known. A
survey of the WCET methods applicable for such purposes can be found in [8]. The common
methods can be roughly divided into measurement-based methods and methods based on
static program analysis. The static program analysis methods typically divide the WCET
analysis problem into three sub-problems: flow analysis, processor behavior analysis, and
WCET estimate calculation. Some methods have applied model checking, e.g., [4].

Recently, there has been a rising interest on WCET analysis targeting multicore platforms.
For example, Gustavsson et. al. [5] present a timing analysis of multithreaded programs
on a multicore computer. Their approach applies abstract execution to rather unrestricted
programming model. Chattopadhyay et. al. [2] present a unified framework for WCET
analysis. The framework is to tackle the problems that have arisen, when the classical
approaches have been applied to multicore machines. There has been some work addressing
WCET analysis of GPU computing, such as [1].

7 Conclusion

In this paper, we present static timing analysis of GPU programs based on a method that
we call abstract CTA simulation. Abstract CTA simulation is based on static analysis of
thread divergence in warps and their abstract scheduling.

Our method has obvious limitations. The static divergence analysis can give false positives
that lead to over-estimation of execution time. Further, our handling of loops is simplistic.

WCET 2014

52 On Static Timing Analysis of GPU Kernels

For divergent loops it can give pessimistic timing, especially when there is complex branching
in a kernel.

However, according to our own experience in GPGPU programming, typical kernels are
simple in their structure. Many kernels do computation in a map-reduce style, where the
mapping phase is essentially non-divergent and the reduction phase is divergent. Often,
the actual occupancy is high for the mapping phase and low for the reduction phase. Our
approach fits the analysis of such kernels.

Despite its short comings, our methods is very scalable. It can be used to analyze the
WCET of very large numbers of parallel threads. This is caused by the fact that the abstract
CTA simulation captures efficiently the timing of parallel threads. Abstract CTA simulation
spends time in resolving iterations, but typical GPU kernels are short as they rely on massive
parallelism.

Currently, our method lacks formal proof of correctness. Further, its applicability is
limited by the fact that it has not been integrated with a traditional WCET estimation of
the CPU side. Thus only kernels can be analyzed instead of full programs. We see these
aspects as the most important topics for further research.

References
1 A. Betts and A. F. Donaldson. Estimating the WCET of GPU-Accelerated Applications

Using Hybrid Analysis. In Proceedings of the Euromicro Conference on Real-Time Systems
(ECTRS), pages 193–202, 2012.

2 S. Chattopadhyay, L.K. Chong, A. Roychoudhury, T. Kelter, P. Marwedel, and H. Falk.
A Unified WCET Analysis Framework for Multi-core Platforms. ACM Transactions on
Embedded Computing Systems (TECS), 13(4s), April 2014.

3 B. Coutinho, D. Sampaio, F.M.Q. Pereira, and W. Jr. Meira. Divergence Analysis and
Optimizations. In Proceedings of the International Conference on Parallel Architectures
and Compilation (PACT), pages 320–329, 2011.

4 A.E. Dalsgaard, M.C. Olesen, M. Toft, R.R. Hansen, and K.G. Larsen. METAMOC: Mod-
ular Execution Time Analysis using Model Checking. In Proceedings of the International
Workshop on Worst-Case Execution Time Analysis (WCET), pages 114–124, 2010.

5 A. Gustavsson, J. Gustafsson, and B. Lisper. Timing Analysis of Parallel Software Using
Abstract Execution. In Proceedings of International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI), pages 59–77, 2014.

6 Khronos. OpenCL documentation. http://www.khronos.org/opencl/.
7 NVIDIA. CUDA documentation. http://nvidia.com/.
8 R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,

C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,
and P. Stenström. The worst-case execution-time problem – overview of methods and
survey of tools. ACM Transactions on Embedded Computing Systems (TECS), 7(3):1–53,
April 2008.

http://www.khronos.org/opencl/
http://nvidia.com/

	Introduction
	Background
	Kernels
	SIMT execution model
	Avoiding memory latencies

	WCET estimation method
	Static divergence analysis
	Abstract warp construction
	Abstract CTA simulation

	The mini-SIMT machine
	An example of analysis
	Static divergence analysis
	Abstract warp construction
	Abstract CTA simulation

	Related work
	Conclusion

