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Abstract
A switching network of depth d is a layered graph with d layers and n vertices in each layer. The
edges of the switching network do not cross between layers and in each layer the edges form a
partial matching. A switching network defines a stochastic process over Sn that starts with the
identity permutation and goes through the layers of the network from first to last, where for each
layer and each pair (i, j) in the partial matching of the layer, it applies the transposition (ij)
with probability half. A switching network is good if the final distribution is close to the uniform
distribution over Sn.

A switching network is ε-almost q-permutation-wise independent if its action on any ordered
set of size q is almost uniform, and is ε-almost q-set-wise independent if its action on any set of size
q is almost uniform. Mixing of switching networks (even for q-permutation-wise and q-set-wise
independence) has found several applications, mostly in cryptography. Some applications further
require some additional properties from the network, e. g., the existence of an algorithm that
given a permutation can set the switches such that the network generates the given permutation,
a property that the Benes network has.

Morris, Rogaway and Stegers showed the Thorp shuffle (which corresponds to applying two
or more butterflies one after the other) is q-permutation-wise independent, for q = nγ for γ
that depends on the number of sequential applications of the butterfly network. The techniques
applied by Morris et al. do not seem to apply for the Benes network.

In this work we show the Benes network is almost q-set-wise independent for q up to about√
n. Our technique is simple and completely new, and we believe carries hope for getting even

better results in the future.
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1 Introduction

The subject of this paper is the generation of a random permutation through the composition
of (few) simple building blocks. The question is quite old and appears in many different
contexts, one prominent example is the application to CCA-security in cryptography. Gener-
ating an almost random permutation on logn-bit strings in such a way, ensures CCA-security
to almost 2n queries (see for example [14]). The problem comes in two main flavors:
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Mixing with simple permutations: Here, we have a small subset of (usually simple) per-
mutations, and we ask how fast the process of composing random elements from the
subset converges to the uniform distribution over Sn. Some typical examples are, e. g.,
when:

The subset that contains all transpositions,
The subset that contains all permutations whose cycle decomposition is 2n/2, i. .e.,
they are a product of n/2 disjoint transpositions, and,
The subset that contains all permutations in some conjugacy class of Sn.

A seminal result of Diaconis and Shahshahani [6] analyzes the case where the conjugacy
class is the set of all transpositions, and shows that the mixing time is about 1

2n logn+Θ(n)
steps. This result was later extended to the conjugacy class of r-cycles [11]. The technique
uses non-commutative Fourier transform and combinatorics of Young Tableaux, and has
been used with great success in many works.

Switching networks: A switching network of depth d is a layered graph with d layers and n
vertices in each layer. The edges of the switching network do not cross between layers and
in each layer the edges form a partial matching. A switching network defines a stochastic
process over Sn that starts with the identity permutation and goes through the layers
of the network from first to last, where for each layer and each pair (i, j) in the partial
matching of the layer, it applies the transposition (ij) with probability half. A switching
network is good if the final distribution is close to the uniform distribution over Sn.

One may view the switching network problem as a derandomized version of mixing
with simple permutations. For example, Diaconis and Shahshahani showed that composing
d = 1

2n logn + Θ(n) random transpositions is sufficient and necessary for getting a (close
to) uniform permutation. However, a switching network would show a specific sequence
σ1, . . . , σt, such that picking i1, . . . , it ∈ {0, 1} at random and applying σitt . . . σ

i1
1 would

generate a close to uniform distribution over Sn.
Similarly, the matching-exchange process goes as follows. A random perfect matching

on the n elements is chosen uniformly at random, and for each pair (i, j) in the matching,
the transposition (i, j) is applied with probability half. One way to analyze this process is
by choosing k (the number of transpositions) between 0 and n/2 according to the binomial
distribution, and then choosing a random permutation from the conjugacy class 2k1n−2k.
Using non-commutative Fourier analysis and character estimates [12] proved the process
converges to uniform in O(logn) time. Another proof of the same result, but with inferior
constants, was obtained using delayed path coupling [4].

Building a switching network would show a specific sequence of perfect matchings that
can be used in the matching-exchange process. Thus, constructing a switching network
essentially amounts to de-randomizing the matching-exchange process, thus limiting the use
of randomness to the bare minimum needed for generating a distribution close to uniform
over Sn.

Moreover, it turns out in some important applications (e. g., CCA security) it is crucial
to have the second variant (of a mixing network) rather than the first one (of mixing with
simple permutations). Another application is for the security of electronic voting and the
efficient zero knowledge proofs for the decryption of the encrypted votes (see for example:
[2, 1] and [10]). In this application both variants may be used.

However, the question whether good shallow switching networks exist is still wide open.
In 1981, David Chaum [3], suggested a cryptographic protocol that guarantees anonymous
communication, provided that shallow switching networks exist. In 1993, Rackoff and Simon
[15] claimed an explicit switching network of depth poly(logn) is good. Rackoff and Simon
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gave only a short sketch of the proof while the full proof of the theorem, which had been
delayed to the journal version of the paper, was never published. In 1999, Czumaj et
al. [4] claimed the existence of a good switching network of depth O(log2 n), however, the
correctness proof was deferred to the full version of the paper and has not appeared to date.
Finally, it has been proven in [5] using delayed path coupling that:

I Theorem 1 ([5]). There exists an explicit construction of a good switching network of
depth polylog(n).1

Morris [13] constructed, using totally different techniques, an explicit switching network
of depth O(log4 n) that builds upon Thorp shuffle. We expand on this shortly. Still, in our
current state of knowledge, it is not known whether good switching networks of logarithmic
depth exist.

1.1 q-wise independence

One way to visualize the action of a switching network is as follows. Assume we have a
switching network with n vertices and d layers. Put n numbered balls on the n vertices of
the first layer. Go through the layers from first to last, and for each layer, and each pair (i, j)
in the partial matching of the layer, with probability half switch the balls that are currently
at positions i and j. A network is good if the distribution of the n numbered balls at the
last layer is close to uniform.

One may weaken this definition by considering the action of the network on only q 6 n

numbered balls. Further weakening is considering the case where the balls are identical balls.
We say a network is ε-almost q-permutation-wise independent if for any possible way of
putting q numbered balls, the distribution of the balls at the last layer is ε-close to the
uniform distribution on all the n!

(n−q)! possible end configurations.
We say a network is ε-almost q-set-wise independent if for any possible way of putting
q identical balls, the distribution of the balls at the last layer is ε-close to the uniform
distribution on all the

(
n
q

)
possible end configurations.

A network that is q permutation–wise independent is in particular q set–wise independent.
Mathematically, the q-wise independence problem is natural. The permutation-wise

problem compares the action of the network and the action of Sn on the set X = [n]q of
all ordered subsets of size q, and the set-wise problem does the same for the set X =

([n]
q

)
of all subsets of size q. The q-wise question was extensively studied, e. g., by Gowers [7]
and later by Hoory et al. [8], who show, using canonical paths, that composing few random
simple permutations from a certain fixed family is ε-almost q-wise. Morris, Rogaway and
Stegers [14] showed the Thorp shuffle, that we soon discuss, is almost q permutation–wise
independent for a large q, and we soon expand on their result.

1.2 The Thorp shuffle and the butterfly network

We first introduce some notation. For 0 ≤ x < n let x = xlogn, . . . , x1 be its binary
representation. Let x (resp. x) be the integer that has the same binary representation as x
except that its most significant bit is 0 (resp. 1) independent of the most significant bit of x.

1 It seems that the constant in the exponent is currently at least 7.
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I. e.,

x = 0, xlogn−1, . . . , x1

x = 1, xlogn−1, . . . , x1

For example, if n = 16, x = 11 then x = 3 and x = 11.
Now we introduce the Thorp shuffle. At each stage of the Thorp shuffle we do the

following:
For all 0 ≤ x < n/2, with probability half we switch the elements in cells number x and
x (and keep them in place with probability half).
We permute the elements as follows: an element that is at cell number x = xlogn, . . . , x1
is moved to cell number xlogn−1, . . . , x1, xlogn. Notice that this forms a permutation over
the n elements.

This process is equivalent to the butterfly switching network. In the butterfly switching
network we have logn layers with n vertices in each layer. We index the n elements by their
binary representation in {0, 1}logn. The edges of the i’th layer, for i = 1, . . . , logn, connect
x, y ∈ {0, 1}logn if and only if they differ only in the i’th coordinate. The Thorp shuffle
for T = r logn stages is equivalent to applying r butterfly switching networks one after the
other.

One way to visualize what the butterfly switching network does is as follows. Take the
(logn) dimensional cube with its usual edges, i. .e. x, y ∈ {0, 1}logn are neighbors if and only
if they differ only in one coordinate. For every i and edge (x, x + ei) color the edge with
color i. As before, put n numbered balls on the n vertices of the cube, go sequentially over
i = 1, . . . , logn, and for each edge (x, y) colored i, switch the balls on x, y with probability
half.

The butterfly switching network (or equivalently the thorp shuffle with logn stages)
induces a probability distribution over permutations of Sn. What can we say about it?

Clearly, the butterfly network is 1-wise (set and permutation) perfect, i. .e. if we put
one ball at any starting vertex x ∈ {0, 1}logn and apply the network, the ball will have the
same ( 1

n ) probability to finish at any vertex. However, if we look at two balls, things are
not that good. Suppose we start with two balls on vertices x1, x2 that are connected by an
edge colored 1, i. .e., x2 = x1 + e1. Notice that after stage 1 the two balls have different
first coordinate, and this does not change later on. Thus, the two balls must end up at
vertices that differ in their first bit. A random permutation, however, would do that only
with probability half. Thus, the induced distribution over Sn is far from uniform (set and
permutation wise).

In [14] , Morris et al. analyze the Thorp shuffle. They show using a clever coupling
argument, that applying the Thorp shuffle T = 2r logn stages, is q

r+1 · (
4q logn
n )r-almost

q-wise-permutation independent. For example running the butterfly twice (i. .e., r = 1) we
get ε = 2q2 logn

n and we may have q almost as large as
√
n.

1.3 The Benes network
Another classical switching network is the Benes network. The Benes network is applying
the butterfly twice, first in its original order, and then in reversed order. Thus, the Benes
network is similar to the Thorp shuffle in that it repeatedly uses the butterfly network, but
it differs from it in the way it orders the layers. An example of the Benes network on eight
vertices is given in Figure 1.
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It is well known that the Benes network gives positive probability to each permutation
π ∈ Sn, see., e. g., [9, Section 3.2]. Other than that, not much was known about the
distribution induced over Sn by the Benes network. The techniques of Morris et al. do not
seem to work for the Benes network.2

The Benes network is mathematically very natural (as it makes the operator Hermitian,
see Sec 2.1). It also induces a clean recursive structure, i. .e., a Benes network on n elements
is composed of simple first and last layers, and two parallel Benes networks on n/2 elements,
see Section 2.1 and Figure 1. This clean recursive structure is also behind the proof that
every permutation may be obtained by the Benes network.

Also, the Benes network appears in many applications, and often the reason is exactly
this clean structure it possesses. For example, Abe [2] uses the Benes network for mixnets
(and electronic voting) and a key property that is required is the ability to easily route any
permutation on the network, a property that, as far as we know, the thorp shuffle lacks.

There are therefore two main reasons to study the Benes network: the first is that it
appears in protocols that require some specific property of it. The second is that it is
mathematically elegant, and the hope that one may be able to use its elegant recursive
structure to finally give a construction of a good logarithmic-depth switching network. In
particular, it is possible that applying sequentially a constant number of Benes networks,
defines a distribution that is close to uniform over Sn.

In this work we use the elegant structure of the network and prove that the Benes network
is ε-almost q-set-wise independent, for q up to about

√
n. Specifically, we prove:

I Theorem 2. The Benes network is q(q−1)
2n -almost q-set-wise independent.

Parameter-wise, the result we obtain is slightly better than the one obtained in [14] for the cor-
responding Thorp shuffle (with 2 logn stages). On the downside, [14] show q-permutation-
wise independent and also show that applying a series of Thorp shuffle sequentially significantly
reduces the error, while we do not show the corresponding fact for the Benes network.

More importantly, we believe the proof technique, that is completely different than the
one in [14], is of independent interest, and reveals the delicate and beautiful structure of the
Benes network. We give a recursive formula for the probability the Benes moves a given
set of q elements to another, and we identify the crucial parameters on which it depends.
The question then reduces to a combinatorial question, that can be solved by analyzing
two related experiments. Using this we prove that any set of q elements is obtained with
probability at least q!

nq (and notice how close this is to the uniform probability of 1
(nq)

) which
is a strong and surprising result by itself. We believe there might be a way to tighten the
analysis given in the paper and achieve much better results (e. g., proving q above

√
n). We

view this work as a first step of understanding the Benes switching network and believe it
sheds light on the way it operates and we hope it may possibly lead to solving the challenging
problem of constructing a good switching network of logarithmic depth.

2 Definitions and Notation

For a set S,
(
S
q

)
is the set of all q-subsets of S, i. .e., {A ⊆ S | |A| = q}. We let [n] denote

the set {0, . . . , n− 1}. The symmetric group Sn acts on
([n]
q

)
in a natural way, π(A) =

2 One key ingredient in the proof is the fact that using the update rule described in the paper, for time
t > log n − 1, the probability that any two elements are adjacent at time t is 6 21−log n. This does
not hold for the Benes network since with this update rule the probability can only be bounded by
6 21−0.5 log n.
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{π(a) | a ∈ A}. Clearly the action is transitive.
Suppose Sn acts on a set X. We define πX to be the |X| × |X| matrix, where (πX)i,j =

δπ(xj),xi . We specify two special cases:
When X = Sn and the action is by left multiplication, we denote the matrix πX by π.
When X =

([n]
q

)
and the action is the natural action defined above, we denote the matrix

πX by πq.

For a distribution D over Sn we let DX denote the |X| × |X| matrix

DX =
∑
π∈Sn

D(π) · πX . (1)

If H is a subset of Sn, we identify it with the flat distribution over H, and let HX be the
corresponding matrix.

Notice that (DX)i,j = Prπ∈D [ π(xj) = xi ], i. .e., (DX) describes the transition matrix
of the stochastic process that picks π according to the distribution D and applies it on x (or
a distribution over X).

2.1 The Benes network
Given x, y ∈ [n], we say x i∼ y if their binary representation differs only on bit number i
(starting with the least significant bit). For example 13 2∼ 15 since their binary representations
are 1101 and 1111.

A Benes network is a layered graph with 2 logn layers, indexed from 1 to 2 logn and n
vertices in each layer. In layers i and 2 logn+ 1− i (for i = 1, . . . , logn), the matching is
formed by all the edges (x, y) s.t. x logn+1−i∼ y.

Alternatively, let Hi (for i = 1, 2, . . . , logn) be the abelian subgroup of Sn generated by
the set of n/2 disjoint transpositions{

(x y) | x i∼ y
}
.

A Benes network is a series H logn, . . . ,H1, H1, . . . ,H logn indexed by n.
A Benes network defines a distributionB(n) on Sn as follows: pick πlogn ∈ H logn, . . . , π1 ∈

H1, σ1 ∈ H1, . . . , σlogn ∈ H logn and output σlogn · . . . σ1 · π1 · . . . πlogn ∈ Sn. We denote

B
(n)
X = Σπ∈SnB(n)(π) · πX . (2)

As before, when X = Sn and the action is by left multiplication, we denote B(n)
X simply

by B(n), and if X =
([n]
q

)
and the action is the natural action, we denote B(n)

X by B(n)
q . When

n is clear from the context we omit it and write B, BX , Bq and B instead of B(n), B
(n)
X , B

(n)
q

and B(n) respectively. Notice that

BX = H logn
X · . . . ·H1

X ·H1
X . . . H

logn
X . (3)

Looking at Eq (3) we see that for every X, BX is Hermitian and positive. Looking at Eq
(2) we see that BX is stochastic. In particular BX is also doubly stochastic.

As BX is Hermitian we have that (BnX)α,β = (BnX)β,α for any α, β ∈ X. Since for any
π ∈ Sn and A ⊆ [n] we have that π(Ac) = (π(A))c, then (Bnq )α,β = (Bnn−q)αc,βc for any
A1, A2 ∈ [n], where c denotes set complement, i. .e., Ac = [n]−A.
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Figure 1 The Benes switching network on eight vertices. The nodes are the elements of {0, . . . , 7}
in binary representation. Notice that if we look at layers 2-5 and omit the most significant bit, we
get the Benes network on four vertices at the left half and right half of the network.

2.2 Almost q-set-wise independence
I Definition 3 (Almost q-set-wise Independence). Let D be a distribution over Sn, and q an
integer. We say D is ε–almost q–set-wise independent in norm `, if for any initial distribution
v0 over X =

([n]
q

)
,

‖DXv0 − UX‖` ≤ ε,

where DX is the |X| × |X| matrix defined in Eq (1) and UX is the uniform distribution over
X.

As usual, it is enough to show that

‖DXv0 − UX‖` ≤ ε,

for initial distributions v0 that are 1 on one element of X and zero otherwise and use the
convexity of the norm.

It is well known that B is perfectly one-wise independent, i.e

B1 = 1
n
J, (4)

where J is the all-one matrix.

FSTTCS 2014
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3 Benes is q(q−1)
2n

-almost q-set-wise independent

I Theorem 4. For every q and n such that
(
q
2
)
6 n, the Benes network is q(q−1)

2n -almost
q-set-wise independent

Proof. Fix X =
([n]
q

)
. Take β ∈

([n]
q

)
and let v0 be the distribution that is 1 on β. By our

previous remark , it is enough to show that:

‖(Bnq )v0 − UX‖1
def

>
∑

α∈X: (Bnq )α,β<Uq

(Uq − (Bnq )α,β) ≤ ε,

where Uq = 1
(nq)

. The central ingredient in the proof is showing that:

I Lemma 5 (Main). For every q ≤ n where n is a power of 2 and every α, β ∈
([n]
q

)
we have

that (Bnq )α,β > q!
nq

Having the lemma we see that∑
α: (Bnq )α,β<Uq

(Uq − (Bnq )α,β) <
∑

α∈([n]
q )

(Uq −
q!
nq

)

=
∑

α∈([n]
q )
Uq −

∑
α∈([n]

q )

q!
nq

= 1−
(
n

q

)
q!
nq

= 1− (1− 1
n

)(1− 2
n

) . . . (1− q − 1
n

)

<

q−1∑
i=0

i

n
= q(q − 1)

2n .

Whereas the first inequality is using the lemma and summing over all α ∈
([n]
q

)
, the

equalities are simple algebra and the second inequality is simply inclusion-exclusion principle:
Think of independent events Ai, i = 1 . . .m ,with probabilities pi. Then the probability that
at least one of the event occurs is given by 1− (1− p1)(1− p2) . . . (1− pm) and is smaller
then

∑m
i=1 pi. Now take m = q − 1 and pi = i

n and the inequality follows. J

Before proving the main lemma we will look into the recursive structure of the Benes
network and obtain a recursive formula for (Bnq )α,β .

4 The recursive structure of the Benes network

Looking at the Benes network, we notice that if we take the series

H logn−1, . . . ,H1, H1, . . . ,H logn−1

where Hi (for i = 1, . . . , logn− 1) is the subgroup of Sn generated by the set of n/4 trans-
positions

{
(x y) | x i∼ y , x < n/2

}
, we get a Benes network on [n/2].

Taking H logn−1
, . . . ,H

1
, H

1
, . . . ,H

logn−1, where Hi (for i = 1, . . . , logn − 1) is the sub-
group of Sn generated by the set of n/4 transpositions

{
(x y) | x i∼ y , x > n/2

}
, gives us

a switching network on {n/2, . . . , n− 1} that is isomorphic to the Benes network on [n/2].
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We now want to use this recursive structure to get a recursive formula for (Bnq )α,β , which
is the probability that if we choose πlogn ∈ H logn, . . . , π1 ∈ H1, σ1 ∈ H1, . . . , σlogn ∈ H logn

(all with flat probability 1
2
n
2
) then σlogn · . . . σ1 · π1 · . . . πlogn(β) = α.

The first and last layers of the Benes network connect two inputs that differ only in the
most significant bit. We use the notation of x and x introduced earlier. We remind the
reader that x logn∼ x and that either x = x or x = x

Given α ⊆ [n], We denote

α = {x|x ∈ α}
α = {x|x ∈ α}

We say β ∈ X =
([n]
q

)
contains a pair (x, x) if both x, x belong to β. We observe that

if π ∈ H logn then π {x, x} = {x, x}. An element x ∈ [n] is called paired in β if β contains
(x, x).

I Proposition 1 (Recursive Formula). Fix α and β in X =
([n]
q

)
. Assume now β contains r

pairs (x, x) and α contains d such pairs. Denote R and D the set of paired elements in β

and α respectively. Either r or d may be zero. Denote by R1 the set of paired elements in
β that are on the left side of the network (i. .e. belong to [n/2]). Symmetrically denote by
R2 the set of paired elements in β that are on the right side of the network (i. .e. belong to
{n/2, . . . , n− 1}). Notice that R2 = R1 and that R = R1

⋃
R2 . We denote respectively the

sets D1, D2 for α. So |R1| = |R2| = r and |D1| = |D2| = d. In this setting we have:

(Bnq )α,β = 1
2q−2r ·

1
2q−2d

∑
βL:R1⊆βL⊆β−R2

∑
αL:D1⊆αL⊆α−D2

(B
n
2
|βL|)αL,βL(B

n
2
q−|βL|)α−αL,β−βL

Proof of Proposition 1. The action of the first layer of the Benes network on β is captured
by the set βL ⊆ β of elements of β that are moved by the first layer to the left side. Clearly,
for any πlogn ∈ H logn we have that πlogn(R) = R. Thus, paired elements in β are left in
place, so R1 stays on the left side and R2 on the right side. Non-paired elements, i. .e., the
set β −R can be either moved to the left or to the right, and each possibility occurs with
equal probability.

Thus, to transfer β to α through the Benes network we have to go over all the possibilities
to choose βL s.t. R1 ⊆ βL ⊆ β −R2. Once we choose βL, we have to route βL through the
left Benes network to some αL and β − βL through the right Benes network to α− αL. The
last layer then routes αL ∪ α− αL to α.

Let us see what paths are possible. First, as we saw before, we have freedom to choose
any R1 ⊆ βL ⊆ β −R2. Next, we have freedom to choose any αL such that |αL| = |βL| and
D1 ⊆ αL ⊆ α −D2. The probability of such an event is 1

2q−2r for the probability the first
layer is captured by βL, 1

2q−2d for the probability the last layer is captured by αL, and for
each αL, βL as above, (B

n
2
|βL|)αL,βL for the probability the left Benes network routes β

L
to

αL, and (B
n
2
q−|βL|)α−αL,β−βL

for the probability the right Benes network routes β − β
L
to

α− αL. J

We now prove the main lemma.

5 Proof of main lemma

Proof of Lemma 5. We prove the lemma by induction on q using the recursive structure of
the Benes network. The base case is q = 1 and arbitrary n and is very simple: (Bn1 )α,β = 1

n

for every α, β ∈
([n]

1
)
. We now assume for all q ≤ q0 and we prove for q = q0 + 1.

FSTTCS 2014
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We prove the case q = q0 + 1 by induction on n. The base case is for n = nq where nq is
the first power of 2 such that q 6 nq, i. .e. nq

2 < q 6 nq. In this case

(Bnqq )α,β = (Bnqnq−q)αc,βc >
(nq − q)!
n
nq−q
q

>
q!
nqq
,

where we have used the simple fact that nq − q ≤ q0 and the induction hypothesis on q.
Now, fix α and β in X =

([n]
q

)
with the same setting as proposition 1. We get:

(Bnq )α,β = 1
2q−2r ·

1
2q−2d

∑
βL:R1⊆βL⊆β−R2

∑
αL:D1⊆αL⊆α−D2

(B
n
2
|βL|)αL,βL(B

n
2
q−|βL|)α−αL,β−βL

= 1
2q−2r ·

1
2q−2d

q−r∑
i=r

∑
βL:R1⊆βL∈(β−R2

i )

∑
αL:D1⊆αL∈(α−D2

i )
(B

n
2
i )α

L
,β
L

(B
n
2
q−i)α−αL,β−βL

>
1

2q−2r ·
1

2q−2d

q−r∑
i=r

(
q − 2r
i− r

)(
q − 2d
i− d

)
i!

(n2 )i
(q − i)!
(n2 )q−i

= (q − 2d)!
nq

(d!)2

2q−2r−2d ·
q−r∑
i=r

(
q − 2r
i− r

)(
i

d

)(
q − i
d

)
where the inequality is by induction on n and the final equality is simple algebra.

We want to show that (q−2d)!
nq

(d!)2

2q−2r−2d ·
q−r∑
i=r

(
q − 2r
i− r

)(
i

d

)(
q − i
d

)
> q!

nq . This follows from

our main combinatorial lemma:

I Lemma 6 (Combinatorial Lemma). Let d 6 r then:

(q − 2d)! (d!)2

2q−2r−2d ·
q−r∑
i=r

(
q − 2r
i− r

)(
i

d

)(
q − i
d

)
> q!

J

We now prove the combinatorial lemma.

Proof of Lemma 6. We denote (N)l = N(N − 1) · . . . (N − l+ 1) = N !
(N−l)! , so if l > N then

(N)l = 0. The inequality is equivalent to

q−r∑
i=r

(
q−2r
i−r
)

2q−2r (i)d(q − i)d >
(q)2d

22d . (5)

We consider two experiments. In both experiments we have q numbered balls, and two
colors black and white. In the first experiment we color all the q balls uniformly at random.
In the second experiment r of the balls are already colored white and r are colored black and
we color the remaining q − 2r balls uniformly at random. In both experiments we define a
random variable X whose value is the number of possibilities to choose an ordered sequence
of d white balls and an ordered sequence of d black balls. I. e., if C is the random variable
counting the number of balls that are colored white, then X = (i)d(q − i)d given that C = i.
Now we compute the expected value of X in each of the two experiments.
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In the first experiment E(X) =
q−d∑
i=d

(
q
i

)
2q (i)d(q − i)d, and rearranging:

q−d∑
i=d

(
q
i

)
2q (i)d(q − i)d = 1

2q
q−d∑
i=d

q!
i!(q − i)! (i)d(q − i)d

= 1
2q

q−d∑
i=d

q!
(i− d)!(q − i− d)! = (q)2d

2q
q−d∑
i=d

(q − 2d)!
(i− d)!(q − i− d)!

= (q)2d

2q
q−d∑
i=d

(
q − 2d
i− d

)
= (q)2d

2q 2q−2d = (q)2d

22d .

Thus, this is exactly the right term in inequality (5). Also, in the second experiment

E(X) =
q−r∑
i=r

(
q−2r
i−r
)

2q−2r (i)d(q − i)d, which is the left term in the inequality. Thus, we need to

prove that E(X) in the second experiment is larger than E(X) in the first experiment.
Let ti (pi) denote the probability that C = i in the first (second) experiment respectively.

Namely, ti = (qi)
2q and pi = (q−2r

i−r )
2q−2r . Let Xi = (X|C = i) = (i)d(q − i)d. It is easy to see that:

I Claim 1. If i, j are integers, (d 6 i < j 6 q
2 ), then ti < tj and pi < pj.

Also:

I Lemma 7. If i, j are integers, (d 6 i < j 6 q
2 ) then Xi < Xj .

I Lemma 8. If d 6 i < j 6 q
2 then pj

pi
>

tj
ti

.

Both lemmas are proven easily by induction. Take j = i + 1, and by simple algebra
one can see that the inequalities in both lemmas are equivalent to 2i < q − 1 which is true
since i is an integer and i < q

2 . For example, pi
pi+1

= i+1−r
q−r−i and therefore pi < pi+1 iff

i+ 1− r < q − r − i iff 2i < q − 1.
Now, from these two lemmas together with the symmetry around q

2 of our variables and
probabilities (Xj = Xq−j , tj = tq−j , pj = pq−j), we get that there exists some index i0 6 q

2
such that pi > ti if and only if i ∈ S = {i0, i0 + 1 . . . , q − i0}. We also know that since
{Xi}, i = 1, . . . , q2 is monotonically increasing, it must be that for any i ∈ S, j ∈ Sc we have
that Xi > Xj . We now prove this implies that the expected value of the second experiment
is larger then that of the first experiment:

I Lemma 9. Let {Xi}i∈A be a set of non negative variables. Assume S ⊂ A such that:

For any i ∈ S, j ∈ Sc we have that Xi > Xj, i.e mini∈S{Xi} > maxi∈Sc{Xi} =
Xmax(Sc). And,
Let {pi}i∈A and {ti}i∈A be two distributions such that pi > ti if and only if i ∈ S.

Then
∑
i∈A piXi ≥

∑
i∈A tiXi.

To see the lemma, notice that:∑
i∈A

piXi =
∑
i∈S

piXi+
∑
i∈Sc

piXi =
∑
i∈S

tiXi +
∑
i∈S

(pi − ti)Xi +
∑
i∈Sc

tiXi +
∑
i∈Sc

(pi − ti)Xi

=
∑
i∈A

tiXi +
∑
i∈S

(pi − ti)Xi +
∑
i∈Sc

(pi − ti)Xi .
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However, pi − ti is positive for i ∈ S and negative otherwise, and Xi ≥ Xmax(Sc) for
i ∈ S and Xi ≤ Xmax(Sc) for i ∈ Sc. Thus,∑

i∈A
piXi ≥

∑
i∈A

tiXi +
∑
i∈S

(pi − ti)Xmax(Sc) +
∑
i∈Sc

(pi − ti)Xmax(Sc) =
∑
i∈A

tiXi .

J
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