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Abstract
In cops and robber games a number of cops tries to capture a robber in a graph. A variant of
these games on undirected graphs characterises tree width by the least number of cops needed to
win. We consider cops and robber games on digraphs and width measures (such as DAG-width,
directed tree width or D-width) corresponding to them. All of them generalise tree width and
the game characterising it.

For the DAG-width game we prove that the problem to decide the minimal number of cops
required to capture the robber (which is the same as deciding DAG-width), is PSPACE-complete,
in contrast to most other similar games. We also show that the cop-monotonicity cost for directed
tree width games cannot be bounded by any function. As a consequence, D-width is not bounded
in directed tree width, refuting a conjecture by Safari.

A large number of directed width measures generalising tree width has been proposed in the
literature. However, only very little was known about the relation between them, in particular
about whether classes of digraphs of bounded width in one measure have bounded width in
another. In this paper we establish an almost complete order among the most prominent width
measures with respect to mutual boundedness.
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1 Introduction

Graph searching games, also known as cops and robber or pursuit-evasion games, are an
important type of games on graphs and digraphs studied intensively in the literature. While
there are many different forms of graph searching games, the basic idea is always that a
number of searchers tries to find or catch a fugitive hiding in the vertices or edges of a graph
or digraph. See Section 2 for details of the games used in this paper and see [15] for an
introduction and [12] for a comprehensive survey of graph searching games.

Graph searching games have originally been introduced to model the search of rescuers
trying to find a miner lost in a mine after some accident. Any graph searching game defines
a natural graph invariant assigning to every graph the minimal number of cops needed to
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guarantee capture of the robber. It has subsequently emerged that these graph invariants are
closely related to width measures such as directed or undirected tree or path width studied in
graph structure theory (see e.g. [8, 14, 2]).

In particular, a type of strategies for the cops called monotone strategies often corresponds
exactly to decompositions such as tree or path decompositions and hence concepts such as tree
width etc. can equivalently be defined by a particular variant of graph searching games. In
this paper we will therefore treat strategies for the cops and corresponding graph or digraph
decompositions equivalently, emphasising either of the two views whenever it seems more
appropriate.

Graph searching games can be defined on undirected or directed graphs. On undirected
graphs, the visible robber game defines exactly tree width, the invisible robber game defines
path width and a variation of the invisible game called the inert robber game again defines
tree width. These games can be generalised to digraphs in two different ways. In this way
we naturally obtain games on digraphs corresponding to directed width measures such as
directed tree width [14], DAG-width [4], Kelly-width [13] or directed path width [2]. We will
therefore refer to these games as the directed tree width games, DAG-width games etc.

Structural width measures such as tree and path width have found important applications
in algorithms and complexity theory. In view of the correspondence between graph searching
games and such structural decomposition based width measures, a natural question arising
is the problem of determining for a given graph or digraph the minimal number of cops
that guarantees to capture the robber in a particular game variant. For most game variants
including tree or path width games (both directed and undirected) one can show that this
problem is in NP: decompositions, i.e. monotone winning strategies for the cops (see below),
are of size polynomial in the input graph and one can therefore simply guess such a strategy
and verify the correctness of the guess. In this way for most game variants relevant in this
context it was shown that they can be decided in NP and they are usually NP-complete. Only
the complexity of DAG-width games was left as an open problem as there the corresponding
decompositions are DAG-like and hence not obviously seen to be polynomial.

Surprisingly, in this paper we show that deciding the DAG-width of a digraph is not
only not in NP (under standard complexity theoretical assumptions), it is in fact PSpace-
complete and therefore exhibits the worst case complexity of such games. This result is quite
unexpected and especially surprising as such a high complexity was to date only exhibited by
a form of graph searching games called domination games (see [10, 9, 16]). In these games,
each cop not only occupies his current vertex but a whole neighbourhood of fixed radius,
which essentially allows to simulate set quantification making the problem PSpace-complete.

The DAG-width game, however, is a straight forward translation of the NP-complete
game for tree width to digraphs and to the best of our knowledge this is the only graph
searching game with the usual capturing condition that exhibits such a complexity.

As a consequence of the proof technique used to prove this result we also show that there
are classes of graphs for which any DAG decomposition of optimal width must contain a
super polynomial number of bags. (If NP 6= PSpace, this would follow from the previous
result, but we show this unconditionally.) Furthermore, we obtain that there cannot be a
polynomial time approximation algorithm for DAG-width with only an additive error.

As explained above, the cop number of graph searching game variants is very closely
related, and often equivalent, to standard width measures for graphs and digraphs. In the
literature on digraph width measures a significant number of width measures have been
proposed as directed analogue of undirected tree width. Among these are directed tree
width [14], DAG-width [4], Kelly-width [13] and D-width [23]. Furthermore, there are some

STACS 2015



36 Graph Searching Games and Width Measures for Directed Graphs

game variants such as cop-monotone directed tree width games and non-monotone DAG-width
games, for which no corresponding width measure has been defined. The obvious question
is how these different measures compare to each other, i.e. whether a class of digraphs of
bounded width in one measure has bounded width in another. For some pairs of digraph
width measures the relation has been determined, but to date there is no clear picture.
In particular, the relation between DAG-width, Kelly-width, D-width and cop-monotone
directed tree width games is not known. As the second main result of this paper we establish
a nearly complete order among these width measures. The most difficult part hereby is to
show that any class of digraphs of bounded Kelly-width also has bounded DAG-width.

A crucial concept in graph searching games is monotonicity. A strategy for the cops is
robber-monotone if vertices unavailable for the robber at a position of a play never become
available later on and it is cop-monotone if the cops never go back to a vertex they have
left before. Monotone strategies are particularly well behaved and in fact, cop-monotone
strategies are very similar to decompositions such as tree or path decompositions. A highly
desirable property of a particular variant of graph searching games therefore is that the
number of cops needed to catch the robber on a graph or digraph G with a monotone strategy
is the same (or at least bounded in) the number of cops needed with any strategy. The
number of extra cops needed for monotone strategies is called the cop- or robber-monotonicity
cost of the game.

This monotonicity problem has driven the field of graph searching games from the very
beginning, see e.g. [18, 5, 24, 6, 2, 11, 25, 14, 1, 27, 26, 12, 19, 7]. For undirected graphs,
the monotonicity problem is by now well understood and most natural graph searching
variants are indeed monotone. For directed graphs, the situation is very different. The games
corresponding to directed path width are cop- and robber-monotone [2]. The games for
directed tree width are not robber- and not cop-monotone, but a robber-monotone strategy
requires at most three times the number of cops [14]. However, many important problems
regarding monotonicity on directed graphs are still wide open.

Among the most important open problems in this respect are the questions whether the
cop-monotonicity cost for the game corresponding to directed tree width can be bounded
by any function and whether the robber-monotonicity cost for the games corresponding
to DAG-width or Kelly-width can be bounded. In [23], it has been conjectured that the
cop-monotonicity cost for directed tree width games is bounded, but the problem was left
open to date. In this paper we refute this conjecture by showing that there is a class of
graphs such that on every digraph in this class, 4 cops have a robber-monotone winning
strategy in the directed tree width game, but the number of cops needed for cop-monotone
winning strategies is unbounded.

As a technical tool to show that DAG-width is bounded in Kelly-width we introduce
another notion of monotonicity for DAG-width games that we call weak monotonicity. The
core of the argument is to show that any weakly monotone strategy in the DAG-width game
can be translated into a fully monotone strategy with only a quadratic increase in the number
of cops. We can then show that strategies in the games corresponding to Kelly-width can be
translated into weakly monotone strategies in the DAG-width game and hence into monotone
strategies.

While this relation between Kelly and DAG-width is the most explicit application of
this concept of weak monotonicity, we believe that weak monotonicity will have many more
applications. In particular, as explained above, the outstanding open problem in the area
of digraph searching games is the monotonicity for DAG-width (and Kelly-width) games.
These games have been shown to be non-monotone in [17]. More precisely, in [17] it was
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shown that there are classes of digraphs on which the cops need 4/3 times as many cops for
a monotone strategy than for an unrestricted strategy. However, all attempts to use the
techniques developed in [17] to show that the monotonicity costs cannot be bounded by any
constant, or any function at all, have failed. Our result on weak monotonicity proves that
these attempts are doomed to fail as the non-monotone strategy used by cops in the examples
in [17] is in fact weakly monotone. We therefore believe that weak monotonicity will prove
to be a valuable step towards a solution of the monotonicity problem of DAG-width games.
And indeed this was the original motivation for introducing weak monotonicity in [21]. It
is worth mentioning that the weakly monotone DAG-width games have a corresponding
decomposition. These weak DAG decompositions approximate DAG decompositions and
always have size polynomial in the size of the graph.

Our contributions. The main results of this paper are the following.

We show that deciding the DAG-width of a graph, or equivalently deciding the number
of cops needed to win the corresponding monotone graph searching game, is PSpace-
complete.
We show that there are graphs for which no DAG decomposition of polynomial size exist
whose width is at most an additive constant away from the optimal width.
We refute a conjecture by Safari [23] by showing that the cop-monotonicity costs for
the graph searching games corresponding to directed tree width are unbounded. As a
consequence, we obtain that D-width is not bounded by any function in the directed tree
width. In fact, D-width is not even bounded by any function in the number of cops needed
in the cop-monotone directed tree width game. Furthermore, we also show that D-width
cannot even be bounded by any function in the DAG-width and in the Kelly-width.
We show that DAG-width can be bounded by a quadratic function in the Kelly-width.
Together with the previous results, we obtain an almost complete classification of the
directed width measures proposed in the literature.

2 Preliminaries

We assume familiarity with basic concepts of graph theory and refer to [8] for background.
All graphs in this paper are finite, directed and simple, i.e. they do not have loops or multiple
edges between the same pair of vertices. Undirected graphs are digraphs with a symmetric
edge relation. We write Ḡ for the underlying undirected graph of G. If G is a graph, then
V (G) is its set of vertices and E(G) is its set of edges. For a set X ⊆ V (G) we write G[X] for
the subgraph of G induced by X and G−X for G[V (G) \X]. The set of vertices reachable
from a set V ′ ⊆ V (G) is denoted ReachG(V ′). If V ′ = {v}, we also write ReachG(v). A
strongly connected component of a digraph G is a maximal subgraph C of G which is strongly
connected, i.e. between any pair u, v ∈ V (C) there are directed paths from u to v and from
v to u. All components of digraphs considered in this paper will be strong and hence we
simply speak of components.

2.1 Graph Searching Games
A graph searching game (also known as cops and robber game and pursuit-evasion game) is
played on a graph G by a team of cops and a robber. The robber and each cop occupy a
vertex of G. Hence, a current game position can be described by a pair (C, v), where C is
the set of vertices occupied by cops and v is the current robber position. At the beginning
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the robber chooses an arbitrary vertex v and the game starts at position (∅, v). The game
is played in rounds. In each round, from a position (C, v) the cops first announce their
next move, i.e. the set C ′ ⊆ V (G) of vertices that they will occupy next. Based on the
triple (C,C ′, v) the robber chooses his new vertex v′. This completes a round and the play
continues at position (C ′, v′). Variations of graph searching games are obtained by restricting
the moves allowed for the cops and the robber. In all game variants considered here, from
a position (C,C ′, v), i.e. when the cops move from their current position C to C ′ and the
robber is on v, the robber has exactly the same choice of moves from any vertex in the
component of G−C containing v. We will therefore describe game positions by a pair (C,R),
or a triple (C,C ′, R), where C,C ′ are as before and R induces a component of G− C.

A graph searching game on G is specified by a tuple G = (Pos(G), Moves(G),Mon),
where Pos(G) describes the set of possible positions, Moves(G) the set of legal moves and
Mon specifies the monotonicity condition used. In all game variants considered here, the set
Pos(G) of positions is Posc ∪ Posr where Posc = {(C,R) : C ⊆ V (G) , R ⊆ V (G) induces a
component of G−C} are cop positions and Posr = {(C,C ′, R) : C,C ′ ⊆ V (G) and R ⊆ V (G)
induces a component of G− C} are robber positions.

As far as legal moves are concerned, we distinguish between two different types of games,
called reachability and component games. In both cases the cops moves are

Movesc(G) := {
(
(C,R), (C,C ′, R)

)
: (C,R) ∈ Posc, (C,C ′, R) ∈ Posr} .

The difference is in the definition of the set of possible robber moves.

Reachability game

In the reachability game, we define Moves(G) as ReachMoves(G), where

ReachMoves(G) := Movesc(G) ∪ {
(
(C,C ′, R), (C ′, R′)

)
: (C,C ′, R) ∈ Posr,

(C ′, R′) ∈ Posc and R′ is a component of G− C ′ such that R′ ⊆ ReachG−(C∩C′)(R)} .

In other words, the robber can run along any directed path in the digraph which does not
contain a cop from C ∩ C ′ (i.e. one that remains on the board).

Component game

In the component game, we define Moves(G) as CompMoves(G), where

CompMoves(G) :=Movesc(G) ∪ {
(
(C,C ′, R), (C ′, R′)

)
: (C,C ′, R) ∈ Posr,

(C ′, R′) ∈ Posc and R′ is a component of G− C ′ such that R
and R′ are subsets of the same component of G− (C ∩ C ′)} .

That means, in the component game, the robber can only run to a new vertex within the
strongly connected component of G− (C ∩ C ′) that contains his current position.

Monotonicity

The component Mon is a set of finite plays. The cops win all plays (C0, R0), (C0, C1, R0),
(C1, R1), . . . in Mon where Ri = ∅ for some i (and the play stops here) and the robber wins all
other plays. Usually Mon describes cop- or robber-monotonicity: Mon ∈ {cm(G) ∪ rm(G)}.
A play (C0, R0), (C0, C1, R0), (C1, R1), . . . is

in cm(G), called cop-monotone, if for all i, j, k ≥ 0 with i < j < k we have Ci ∩ Ck ⊆ Cj ,
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in rm(G), called robber-monotone, if Ri+1 ⊆ Ri for all i.

Cop-monotonicity means that the cops never reoccupy vertices. Robber-monotonicity
means that once the robber cannot reach a vertex, he will never be able to reach it in the
future. A strategy for the cops is cop- or robber-monotone if all plays consistent with that
strategy are cop- or robber-monotone, respectively.

By combining reachability or component games with monotonicity conditions we obtain a
range of different graph searching games. It follows immediately from the definition that on
every digraph the cops have a winning strategy in each of the graph searching games defined
above by simply placing a cop on every vertex. For a given digraph G, we are therefore
interested in the minimal number k such that the cops have a winning strategy in which no
cop position Ci contains more than k vertices.

I Definition 2.1. Let Fin be the set of all finite plays. For every digraph G and for

X ∈ {dtw, cmdtw, rmdtw,nmDAG, cmDAG,DAG}

let cnG(X) be the minimal number of cops that have a winning strategy in the game GG(X)
where

G(dtw, G) := (Pos(G), CompMoves(G), Mon = Fin),
G(cmdtw, G) := (Pos(G), CompMoves(G), Mon = cm(G)),
G(rmdtw, G) := (Pos(G), CompMoves(G), Mon = rm(G)),
G(nmDAG, G) := (Pos(G), ReachMoves(G), Mon = Fin),
G(cmDAG, G) := (Pos(G), ReachMoves(G), Mon = cm(G)),
G(DAG, G) := (Pos(G), ReachMoves(G), Mon = rm(G)).

It follows immediately from the definitions that, for all digraphs G,

cnG(dtw) ≤ cnG(cmdtw), cnG(rmdtw) and
cnG(cmdtw), cnG(rmdtw) ≤ cnG(nmDAG) ≤ cnG(DAG), cnG(cmDAG) .

(1)

The number cnG(cmdtw)− cnG(dtw) is called the cop-monotonicity cost for the component
game on G. Robber-monotonicity cost as well as monotonicity cost for other game variants
are defined analogously.

2.2 Decompositions and Widths
Most of the games described in Definition 2.1 can be characterised by widths of decompositions
of the graphs. In the following let G be an arbitrary graph. For v, w ∈ V (G) we write v ≤ w
if w ∈ ReachG(v) and v < w if, additionally, v 6= w.

Directed tree width [22, 14] was the first generalisation of tree width to digraphs. For
X,Y ⊆ V (G) we say that X is Y -normal if X is a union of components of G−Y . An arboreal
decomposition of G is a triple (R,X,W ) where R is a directed tree with edges oriented away
from the root and X = {Xe : e ∈ E(R)} and W = {Wr : r ∈ V (R)} are collections of sets of
vertices of G such that

(i) W is a partition of V (G) into nonempty sets and
(ii) if e = (t, s) ∈ E(R), then W≥e is Xe-normal where W≥e =

⋃
{Wr : r ∈ V (R), r ≥ s}.

The width of (R,X,W ) is maxr∈V (R) |Wr∪
⋃
e∼rXe|−1 where e ∼ r means that r is incident

with e. The directed tree width of G is the least width of an arboreal decomposition of G.
DAG-width was defined in [3] and simultaneously in [20]. A DAG decomposition of G is

a tuple (D,B) where D is a DAG and B = {Bd : d ∈ V (D)} is a set of bags, i.e. subsets of
V (G), such that
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1.
⋃
d∈V (D) Bd = V (G),

2. for all a, b, c ∈ D, if a < b < c, then Ba ∩Bc ⊆ Bb,
3. for every root r ∈ V (D), ReachG(B≥r) = B≥r where B≥r =

⋃
r≤dBd,

4. for each (a, b) ∈ E(D), ReachG−(Ba∩Bb)(B≥b \Ba) = B≥b \Ba.

The width of (D,B) is maxd∈V (D) |Bd| and its size is |V (D)|. The DAG-width DAG-w(G)
of G is the minimal width of a DAG decomposition of G.

Kelly-width is a complexity measure for digraphs introduced in [13]. Similarly to tree
width, Kelly-width can be defined by a decomposition, by a graph searching game or by
an elimination order. We choose the latter definition. An elimination order C for a graph
G = (V,E) is a linear order on V . For a vertex v define VBv := {u ∈ V : vC u}. The support
of a vertex v with respect to C is

suppC(v) := {u ∈ V : v C u and there is v′ ∈ ReachG−VBv (v) with (v′, u) ∈ E} .

The width of an elimination order C is maxv∈V | suppC(v)|. The Kelly-width Kelly-w(G)
of G is one plus the minimum width of an elimination order of G.

In [23], Safari suggests D-width as another structural complexity measure. Let G be
a graph. A D-decomposition of G is a pair (T, (Xt)t∈V (T )) where T is an undirected tree
and Xt ⊆ V (G) for all t ∈ V (T ) is a set of bags such that for all v ∈ V (G) the set
{t ∈ V (T ) : v ∈ Xt} is non-empty and connected in T and for every edge (s, t) ∈ E(T ) and
every strongly connected component C of G − (Xs ∩ Xt), either V (C) ⊆

⋃
r∈V (Ts) Xr or

V (C) ⊆
⋃
r∈V (Tt) Xr, where Ts, Tt are the two connected components of T − {(s, t), (t, s)}.

The width of (T, (Xt)) is maxt∈V (T ) |Xt|. The D-width of G, D-w(G), is the minimum of the
widths of all D-decompositions of G. 1

2.3 Known Relations between Cop Numbers and Widths
We are interested in the question which cop numbers and widths are bounded in terms of
which (other) cop numbers and widths. For instance, for DAG-width and Kelly-width we
want to know whether there is a function f : N → N such that for all graphs G we have
DAG-w(G) ≤ f(Kelly-w(G)). Besides bounds from the inequalities in (1) the following
relations are known.

I Theorem 2.2 ([14, 4, 23] 2). Let G be a graph.
1. dtw(G), cnG(dtw) and cnG(rmdtw) are within factor 3 of each other.
2. cnG(DAG) = cnG(cmDAG) = DAG-w(G).
3. cnG(dtw) ≤ 2cnG(cmdtw) + 1 < D-w(G).

This allows us to call G(dtw, G) the directed tree width game and G(DAG, G) the DAG-width
game.

Berwanger et al. present a class of graphs certifying that DAG-width is not bounded in
directed tree width. The same holds if we substitute directed tree width by D-width and/or
DAG-width by Kelly-width (using the same class of graphs).

I Theorem 2.3 ([4]). There is a class of graphs Gn such that cnGn(dtw) = cnG(cmdtw) = 2
and cnG(rmdtw) = D-w(Gn) = 1, but DAG-w(G) and Kelly-w(G) are not bounded.

1 In [23] the width is maxt∈V (T ) |Xt| − 1.
2 The second inequality in (3) is not proven in the cited works, but easy to prove, see Appendix.
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3 The Complexity of DAG-width and the DAG-width Game

For all widths W considered in our work except DAG-width it is easy to see that the problem,
given a graph G and a natural number k, whether W (G) ≤ k, is in NP. The reason is that
the size of the corresponding decompositions is polynomial in the size of G. Because on
graphs with a symmetric edge relation all widths considered here are equal to tree width
and tree width is NP-hard, the width measures here are NP-complete. We show that the
situation with DAG-width is different, however. It turns out that DAGW, the problem
whether DAG-w(G) ≤ k, is PSpace-complete and, moreover, for some graphs, there are no
decompositions of polynomial size even if we allow a constant additive error in the width.

I Theorem 3.1. DAGW is PSpace-complete.

Proof sketch. The easier part is to show that DAGW is in PSpace. Due to the robber-mo-
notonicity, the length of every play in G(DAG, G) is linear in |G|. Hence the winner of the
game can be determined in alternating Ptime (by simply simulating the game) and thus in
PSpace.

For the hardness, we reduce QBF, which is PSpace-complete, to DAGW. A quantified
boolean formula ϕ is of the form ϕ = Q1X1 . . . QrXrψ(X1, . . . , Xr) where Qi is either ∀ or ∃
and ψ is a propositional formula in CNF with variables from X = {X1, . . . , Xr}. A formula
∃Xψ(X) is true if there is a value β(X) ∈ {0, 1} for X such that ψ is true. A formula
∀Xψ(X) is true if for both values β(X) ∈ {0, 1} for X, ψ is true.

It is very well known that deciding QBF, the problem whether a given quantified formula is
true, is PSpace-complete. The idea of our reduction is to simulate the choice of a truth value
for a variable by a quantifier in the game G(DAG, Sϕ), where Sϕ is some graph constructed
from ϕ. The choices are stored as vertices occupied by cops using the monotonicity of the
game. These cops only reflect the history of the play and do not change the flow of the
remaining play.

Let ϕ = Q1X1 Q2X2 . . . QrXr ψ(X1, . . . , Xr) be a quantified boolean formula. The graph
Sϕ is constructed inductively level by level, each of which corresponds to some Xi.

If ϕ has no variables, then if ϕ is true, Sϕ is a single vertex, and if ϕ is false, Sϕ is a
2-clique. Then one cop wins if, and only if, ϕ is true. Otherwise we start the construction
of Sϕ with a gadget Fψ. It has a vertex v and for every clause C = L1 ∨ L2 ∨ . . . Lr(C) an
r(C)-clique KC with vertices vC1 , vC2 , . . . , vCr(C). The edges go from v to every vertex of KC

and back, i.e. we have edges (v, vCi ) and (vCi , v) for all clauses C and all i ∈ {1, . . . , r(C)}.
For j = r, r − 1, . . . , 1 we construct graphs Sjϕ such that S1

ϕ = Sϕ. For convenience, let
Sr+1
ϕ = Fψ.
Assume that Sj+1

ϕ has already been constructed. Then Sjϕ is the following graph. There
are two cases. If Qj = ∃, then the vertex set is

V (Sjϕ) = V∃(j) = V (Sj+1
ϕ ) ·∪A(j) ·∪B(j) ·∪ C0(j) ·∪ C1(j) ·∪M(j) ·∪D(j) ·∪ {c0(j), c1(j)}

where |A(j)| = |B(j)| = |D(j)| = 2, |Ci(1)| = |M(1)| = 4, |Ci(k + 1)| = |M(k + 1)| =
|M(k)|+ 3 for all k ∈ {2, . . . , j − 1} and i ∈ {0, 1}. Furthermore, B(j) = {b0(j), b1(j)}. We
set N(j) = M(j) ·∪D(j).
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The set of edges is

E(Sjϕ) = E(Sj+1
ϕ ) ∪

(
N(j)

2

)
∪

1⋃
i=0

(
Ci(j)

2

)
∪
(
A(j)

2

)

∪
1⋃
i=0

((
N(j)× {ci(j)}

)
∪
(
{ci(j)} × Ci(j)

)
∪
(
Ci(j)×D(j)

)
∪
(
Ci(j)× {bi(j)}

))
∪
(
B(j)×A(j)

)
∪
(
A(j)×B(j)

)
∪
(
A(j)×M(j)

)
∪
(
N(j)× V (Sj+1

ϕ )
)
∪
(
A(j)× V (Sj+1

ϕ )
)
∪
(
V (Sj+1

ϕ )×A(j)
)
∪ E(j) .

Hereby, for a set X, the notation
(
X
2
)
means {(a, b) ∈ X2 : a 6= b} and E(j) is the set of edges

connecting Fψ to the new level defined as follows. Let KC be a clique in Fψ corresponding
to the clause C = L1 ∨ . . . ∨ Lr. If Xj = Li, then (vCi , b1(j)) ∈ E(j). If ¬Xj = Li, then
(vCi , b0(j)) ∈ E(j). Otherwise (i.e. if Xj does not appear in C) {(vCi , b0(j)), (vCi , b1(j))} ⊆
E(j).

In the second case Qj = ∀. Then V (Sϕ(j)) = V∀(j) = V∃(j) \ {c0(j), c1(j)} and the
edges are as in an existential level (including edges connecting the level and Fψ), but edges
containing ci(j) are replaced by edges

⋃1
i=0 N(j) × Ci(j). In other words, the paths that

lead from N(j) to Ci(j) through ci(j) are replaced by direct edges.
One can show that r + 1 cops win on Sϕ if, and only if, the formula ϕ is true. The main

ingredient of the proof is that in the cops and robber game on Sϕ, the cops can expel the
robber from a level ` only in one way up to irrelevant changes. Hereby, exactly `− 3 cops
remain free for use in the next level `− 3. They occupy N(`), the robber goes to one of the
Ci(`) and a cop is placed to bi(`). If now the robber remains in Ci(`), he is captured there
by the cops from M(`), so he goes to A(`) or to the next level. In any case the cops from
D(`) move to A(`) and the robber is in the next level `− 3. Note that the cops occupy A(`)
(blocking the robber in lower levels) and one vertex from B(`). This one vertex encodes the
choice for the value of the variable from ϕ that corresponds to that level. In universal levels
it is the robber who makes the choice and in the existential these are the cops.

If the level is universal, the robber determines which vertex from B(`) will be occupied
by deciding in which Ci(`) he goes after the cops occupy N(`). In the existential level, the
cops can determine in which Ci(`) the robber must go. If they want b1−i(`) to be occupied
when the robber leaves level `, they place a cop on ci(`) before occupying N(`). Then the
cops expel the robber from Ci(`) if he is there and occupy N(`). The robber goes to C1−i(`)
(all paths to Ci(`) are blocked) or directly to A(`) ∪B(`) ∪ S`−3

ϕ . In any case the cop from
ci(`) moves to b1−i(`). If the robber was in C1−i(`) and remains there, he is captured by the
cops from M(`) as before, so after b1−i(`) is occupied, the robber is in A(`) and after the
cops from D(`) occupy A(`), he is in the next level.

When the robber leaves the last level and proceeds to Fψ, one cop remains free and goes
to v. The robber chooses a clique KC corresponding to the clause C in ψ. At this point,
the value for Xj from C is α(Xj) = i if and only if a cop occupies bi(j). Furthermore, the
construction of edges between Fψ and the levels guarantees that α |= C if and only if the cop
from B(j) can be reused without violating robber-monotonicity. Finally, the cops capture
the robber in KC if and only if they have one free cop. Summing up, the cops win if and
only if ϕ is true. J

We can change the construction of Sϕ to obtain graphs that have no polynomial size
DAG decomposition of width that differs from the optimal one in at most a fixed additive
constant. We replace Fψ in Sϕ by a single vertex, make every level universal and adjust the



S. A. Amiri, Ł. Kaiser, S. Kreutzer, R. Rabinovich, and S. Siebertz 43

sizes of A(`), B(`) and D(`) by setting |A(`)| = |B(`)| = |D(`)| = b `
log `c. Then a careful

calculation of used cops proves the following theorem.

I Theorem 3.2. There is no polynomial size approximation of an optimal DAG decomposition
of Gn(s, t) with an additive constant error.

4 Comparing Width Measures with Respect to Generality

By Theorem 2.2, directed tree width and the robber-monotone variant of the corresponding
game are bounded in each other. One would expect that the same holds for the cop-monotone
variant. This was implicitly assumed by Safari in [23] who conjectured that D-width and
directed tree width are the same. Note that by Theorem 2.2, s · cnG(dtw) + 1 ≤ D-w(G), so if
dtw(G) = D-w(G), then the cop-monotonicity cost for directed tree width is zero. We show,
however, that it is not only positive, but, moreover, cannot be bounded by any function.

I Theorem 4.1. There is a class {Gn : n > 2} of graphs such that for all n > 2, cnG(dtw) =
cnGn(rmdtw) ≤ 4 and cnGn(cmdtw) ≥ n.

Proof. Let n > 2. We inductively define a sequence of graphs Gmn and sets of marked vertices
M(Gmn ) ⊆ V (Gmn ) for m ∈ {1, . . . , n+ 1}. We then define Gn as Gn+1

n .
First G1

n is an edgeless graph with a single vertex and M(G1
n) = V (G1

n), i.e. the vertex
of G1

n is marked. Assume that (Gmn ,M(Gmn )) has been constructed. Let T d` denote the
complete undirected tree of branching degree d and depth ` (the depth is the maximum
number of vertices on the path from the root to a leaf). One part of Gm+1

n is a copy of
Tn+1
n+2 , which has (n+ 1)n+2 leaves vs for s ∈ {1, . . . , (n+ 1)n+2}. The graph Gm+1

n is the
disjoint union of Tn+1

n+2 and n · (n+ 1)n+2 copies Hm+1
j (vs) of Gmn where j ∈ {1, . . . , n} and

s ∈ {1, . . . , (n+ 1)n+2} plus some additional edges which we describe next. We denote the
subgraph of Gm+1

n induced by Tn+1
n+2 by T (Gm+1

n ) and the root of Hm+1
j (vs) by r(Hm+1

j (vs))
for all m, j and s.

For every leaf v ∈ {vs : 1 ≤ s ≤ (n + 1)n+2} of T (Gm+1
n ) there is an undirected edge

from v to the root of Hm+1
i (v). Let xm+1

i (v) be the ith vertex on the path from the root of
T (Gm+1

n ) to v. For all leaves v of T (Gm+1
n ) and all 1 ≤ i ≤ n we add directed edges from

xm+1
i (v) to all marked verticesM(Hm+1

i (v)) of Hm+1
i (v). Finally, for all leaves v of T (Gm+1

n )
and all leaves of Hm+1

i (v) we add a directed edge to v. We define M(Gm+1
n ) := V (T (Gm+1

n )).
Let us describe a non-cop-monotone winning strategy for 4 cops on Gn. Observe that

Gn = Gn+1
n is an undirected tree with additional edges that connect only vertices of the

same branch. In particular, for each subgraph Hi
j(v), if the robber is in Hi

j(v) and the cops
block the root of T (Hi

j(v)) and xi+1
j (v), then the robber cannot leave Hi

j(v) as he cannot
re-enter Hi

j(v).
The cops chase the robber from the root of Gn downwards. In T (Gn), two cops suffice for

that. Consider a position where the cops just expelled the robber from T (Gn). The robber
is in some Hn

j (v) and the cops occupy v and its predecessor w. Now the cop from w goes
to xnj (v) (here non-cop-monotonicity occurs) and a third cop occupies r(Hn

j (v)). The cop
on r(Hn

j (v)) together with the cop on xnj (v) block all paths from T (Gn) to the robber in
Hn
j (v)− r(Hn

j (v)), so the cops on v and w are not needed any more. These two cops chase
the robber down the tree further, while the other cops remains on r(Hn

j (v)) and xnj (v).
In general, assume for some i < n, j and v (j and v are new), the robber is blocked inHi

j(v)
by cops on v, on r(Hi+1

j′ (v′)) and on xi+1
j (v). Hereby j′ and v′ are such that r(Hi+1

j′ (v′)) is
on the path from r(Hi

j(v)) to the root of Gn. Now the cop from the predecessor of v goes to
xi+1
j (v) (again non-monotonicity occurs). Then the cop from r(Hi+1

j′ (v′)) goes to r(Hi
j(v)).
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These two cops block all paths from Gn −Hi
j(v) to Hi

j(v)− r(Hi
j(v)). Hence the other two

cops can chase the robber down the tree further. Finally the robber is captured in some leaf
of Gn.

Now we construct a robber strategy that wins against all cop-monotone strategies for n
cops if n > 2. For a vertex v and subtree T of Gn we say that T is a subtree of v if the root
of T is a direct successor of v. The robber resides on a vertex of T (Gn) that has the least
distance to the root of Gn as long as this is possible. When a cop occupies his vertex v the
robber proceeds to a directed successor of v such that the subtree of v is cop free. Such a
successor always exists due to the high branching degree of T (Gn). When the robber reaches
a leaf wn of T (Gn), every vertex on the path from the root of Gn to wn has been occupied
by a cop. As the length of the path is greater that the number of cops, there is a vertex
xnin(wn) that has been left by a cop. When a cop occupies wn, the robber goes to Gnin(wn).
Now on Gnin(wn) (which is isomorphic to Gn−1

n ) the robber plays in the same way as on Gn
and so on recursively for each m on Gmim(wm). Note that until the robber is captured, there
is a path from this vertex to a leaf of Gn and then to all already chosen wj .

Consider a position when the robber arrives at a leaf v of Gn and a cop is landing on
this vertex. Then at most n− 1 cops are on the graph and there is some j such that there is
no cop in T (Gjij (wj)). Thus there is a cop free path from v to wj , then to xjij (wj) within
T (Gjij (wj)) and then via xj−1

ij−1
(wj−1), xj−2

ij−2
(wj−2), . . . , x2

i2
(w2) back to v. Note that all

those x-vertices are not occupied by cops by construction of the robber strategy. Thus the
robber can return to wj and play from wj as before. In this way the robber will never be
captured. J

I Corollary 4.2. D-width is not bounded in directed tree width.

There is yet another reason why Corollary 4.2 holds. In the definition of D-width we have
the condition that the set of bags containing a vertex v is connected in the decomposition
tree. This implies cop-monotonicity in the directed tree width game. Moreover, this forbids
the existence of two distinct plays such that the cops are placed on v in both plays, but not
in their common prefix. However, one can construct graphs where this restriction leads to an
unbounded blow up of the number of needed cops. As the DAG-width and the Kelly-width
of those graphs are bounded, we obtain the following theorem3.

I Theorem 4.3. D-w(G) is bounded neither in cnG(cmdtw), nor in DAG-w(G), nor in
Kelly-w(G). More precisely, there is a class of graphs Gn such that 3 cops have a cop- and
robber-monotone winning strategy in the directed tree width and DAG-width games on each
Gn and Kelly-w(Gn) = 4, but D-w(Gn) ≥ n.

4.1 Kelly-width is Bounded in DAG-width
We show that DAG-width is bounded in Kelly-width by a quadratic function.

I Theorem 4.4. If Kelly-w(G) = k + 1, then DAG-w(G) ≤ 72k2 + 42k + 18.

In order to prove this we introduce a weaker notion of robber-monotonicity for the DAG-width
games. Then we show that with a quadratic number of additional cops one can turn a
winning cop strategy for the game with weak monotonicity into a winning strategy for the
game with strong (i.e. usual) monotonicity. By a construction from [13], if Kelly-w(G) = k,

3 See the appendix for a proof.
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dtw

rmdtw

cmdtw DAG-w K-w

D-w

=

< < ≤

< <

<

<>

Figure 1 The boundedness relation between different measures. “=” means mutually bounded,
“<” means bounded only in one direction, “≤” at least in one direction, “≶” not bounded in any
direction.

then 2k − 1 cops have a (possibly non-monotone) winning strategy in the DAG-width game.
We observe that this strategy is, in fact, weakly monotone and thus can be converted into a
strongly monotone one.

Weak monotonicity relaxes the winning condition for the cops, so that they win more
plays. Formally, for a digraph G we define the set wm(G) as the set of all finite plays
(C0, R0), (C0, C1, R0), (C1, R1), . . . such that the following condition is satisfied. For all i let
c(i) := Ci+1 ∩Ri be the cops which move into the component of G− Ci currently used by
the robber. We call these cops the chasers. All other cops being placed, i.e. the cops in
(Ci+1 \Ci) \ c(i) are guards. The play (C0, R0), (C0, C1, R0), (C1, R1), . . . is weakly monotone
if for all i and all j with j < i, no vertex in c(j) is reachable by a directed path from any
vertex in Ri in G− (Ci ∩Ci+1). That is, for weak monotonicity we only require monotonicity
in the cops that are used to shrink the robber space but not in the cops placed outside
of the component to block the paths to previous cop positions. The set wm(G) is the set
of all weakly monotone plays on G. The weakly monotone game is the game defined by
G(wmDAGW, G) = (Pos(G), ReachMoves(G),Mon = wm(G)).

I Lemma 4.5. cnG(wmDAG) ≤ 18 · cnG(DAG)2 + 3 · cnG(DAG).

As, clearly, cnG(DAG) ≤ cnG(wmDAG), we obtain that weakening the monotonicity in
the DAG-width game does not change the boundedness of cnG(DAG).

We remark that it is possible to define a decomposition corresponding to the weakly
monotone game. Unlike DAG decompositions a weak DAG decomposition is always of
polynomial size in the size of G. Hence we have an NP-algorithm that computes a succinct
representation of a DAG decomposition whose width is at most quadratically worse than the
optimum.

I Lemma 4.6. If Kelly-w(G) = k + 1, then cnG(wmDAG) ≤ 2k + 1.

The other direction, i.e. whether DAG-width is bounded in Kelly-width, is the last open
question in our scheme.

We obtain the picture shown in Figure 1. The only blank spot is the strictness of the
inequality DAG-w(G) ≤ Kelly-w(G), i.e. whether Kelly-width is a function of DAG-width.
It was conjectured that Kelly-width and DAG-width differ by at most a constant factor [13,
Conjecture 30]. However, methods we used to show a weaker version of one direction of the
conjecture do not seem to apply for the other direction.
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