On Sharing, Memoization, and Polynomial Time*

Martin Avanzini and Ugo Dal Lago

Università di Bologna & INRIA, Sophia Antipolis
martin.avanzini@uibk.ac.at and dallago@cs.unibo.it

Abstract

We study how the adoption of an evaluation mechanism with sharing and memoization impacts the class of functions which can be computed in polynomial time. We first show how a natural cost model in which lookup for an already computed result has no cost is indeed invariant. As a corollary, we then prove that the most general notion of ramified recurrence is sound for polynomial time, this way settling an open problem in implicit computational complexity.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.3.2 Semantics of Programming Languages, F.4.1 Mathematical Logic, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases implicit computational complexity, data-tiering, polynomial time

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.62

1 Introduction

Traditionally, complexity classes are defined by giving bounds on the amount of resources algorithms are allowed to use while solving problems. This, in principle, leaves open the task of understanding the structure of complexity classes. As an example, a given class of functions is not necessarily closed under composition or, more interestingly, under various forms of recursion. When the class under consideration is not too large, say close enough to the class of polytime computable functions, closure under recursion does not hold: iterating over an efficiently computable function is not necessarily efficiently computable, e.g. when the iterated function grows more than linearly. In other words, characterizing complexity classes by purely recursion-theoretical means is non-trivial.

In the past twenty years, this challenge has been successfully tackled, by giving restricted forms of recursion for which not only certain complexity classes are closed, but which precisely generate the class. This has been proved for classes like PTIME, PSPACE, the polynomial hierarchy PH, or even smaller ones like NC. A particularly fruitful direction has been the one initiated by Bellantoni and Cook, and independently by Leivant, which consists in restricting the primitive recursive scheme by making it predicative, thus forbidding those nested recursive definitions which lead outside the classes cited above. Once this is settled, one can tune the obtained scheme by either adding features (e.g. parameter substitutions) or further restricting the scheme (e.g. by way of linearization).

Something a bit disappointing in this field is that the expressive power of the simplest (and most general) form of predicative recurrence, namely simultaneous recurrence on generic algebras is unknown. If algebras are restricted to be string algebras, or if recursion is not simultaneous, soundness for polynomial time computation is known to hold [21, 16]. The two soundness results are obtained by quite different means, however: in presence of trees, one is

* This work was partially supported by FWF project number J 3563 and by French ANR project Elica ANR-14-CE25-0005.
forced to handle sharing [16] of common sub-expressions, while simultaneous definitions by recursion requires a form of memoization [21].

In this paper, we show that sharing and memoization can indeed be reconciled, and we exploit both to give a new invariant time cost model for the evaluation of rewrite systems. This paves the way towards polytime soundness for simultaneous predicative recursion on generic algebras, thus solving the open problem we were mentioning. More precisely, with the present paper we make the following contributions:

1. We define a simple functional programming language. The domain of the defined functions is a free algebra formed from constructors. Hence we can deal with functions over strings, lists, but also trees (see Section 3). We then extend the underlying rewriting based semantics with memoization, i.e. intermediate results are automatically tabulated to avoid expensive re-computation (Section 4). As standard for functional programming languages such as Haskell or OCaml, data is stored in a heap, facilitating sharing of common sub-expression. To measure the runtime of such programs, we employ a novel cost model, called memoized runtime complexity, where each function application counts one time unit, but lookups of tabulated calls do not have to be accounted.

2. Our invariance theorem (see Theorem 17) relates, within a polynomial overhead, the memoized runtime complexity of programs to the cost of implementing the defined functions on a classical model of computation, e.g. Turing or random access machines. The invariance theorem thus confirms that our cost model truthfully represents the computational complexity of the defined function.

3. We extend upon Leivant’s notion of ramified recursive functions [20] by allowing definitions by generalised ramified simultaneous recurrence (GRSR for short). We show that the resulting class of functions, defined over arbitrary free algebras have, when implemented as programs, polynomial memoized runtime complexity (see Theorem 21). By our invariance theorem, the function algebra is sound for polynomial time, and consequently GRSR characterizes the class of polytime computable functions.

An extended version of this paper with more details, including all proofs, is also available [4].

1.1 Related Work

That predicative recursion on strings is sound for polynomial time, even in presence of simultaneous recursive definitions, is known for a long time [9]. Variations of predicative recursion have been later considered and proved to characterize classes like PH [10], PSPACE [23], ExpTime [3] or NC [12]. Predicative recursion on trees has been claimed to be sound for polynomial time in the original paper by Leivant [20], the long version of which only deals with strings [21]. After fifteen years, the non-simultaneous case has been settled by the second author with Martini and Zorzi [16]; their proof, however, relies on an ad-hoc, infinitary, notion of graph rewriting. Recently, ramification has been studied in the context of a simply-typed λ-calculus in an unpublished manuscript [17]; the authors claim that a form of ramified recurrence on trees captures polynomial time; this, again, does not take simultaneous recursion into account.

The formalism presented here is partly inspired by the work of Hoffmann [19], where sharing and memoization are shown to work well together in the realm of term graph rewriting. The proposed machinery, although powerful, is unnecessarily complicated for our purposes. Speaking in Hoffmann’s terms, our results require a form of full memoization, which is definable in Hoffmann’s system. However, most crucially for our concerns, it is unclear how the overall system incorporating full memoization can be implemented efficiently, if at all.
The Need for Sharing and Memoisation

This Section is an informal, example-driven, introduction to ramified recursive definitions and their complexity. Our objective is to convince the reader that those definitions do not give rise to polynomial time computations if naively evaluated, and that sharing and memoization are both necessary to avoid exponential blowups.

In Leivant’s system [21], functions and variables are equipped with a tier. Composition must preserve tiers and, crucially, in a function defined by primitive recursion the tier of the recurrence parameter must be higher than the tier of the recursive call. This form of ramification of functions effectively tames primitive recursion, resulting in a characterisation of the class of polytime computable functions.

Of course, ramification also controls the growth rate of functions. However, as soon as we switch from strings to a domain where tree structures are definable, this control is apparently lost. For illustration, consider the following definition:

\[
\text{tree}(0) = L \quad \text{tree}(S(n)) = \text{br}(\text{tree}(n)) \quad \text{br}(t) = B(t, t).
\]

The function \text{tree} is defined by primitive recursion, essentially from basic functions. As a consequence, it is easily seen to be ramified in the sense of Leivant. Even though the number of recursive steps is linear in the input, the result of \text{tree}(S^n(0)) is the complete binary tree of height \(n\). As thus the length of the output is exponential in the one of its input, there is, at least apparently, little hope to prove \text{tree} a polytime function. The way out is sharing: the complete binary tree of height \(n\) can be compactly represented as a directed acyclic graph (DAG for short) of linear size (see Figure 1). Indeed, using the compact DAG representation it is easy to see that the function \text{tree} is computable in polynomial time. This is the starting point of [16], in which general ramified recurrence is proved sound for polynomial time. A crucial observation here is that not only the output’s size, but also the total amount of work can be kept under control, thanks to the fact that evaluating a primitive recursive definition on a compactly represented input can be done by constructing an isomorphic DAG of recursive calls.

This does not scale up to simultaneous ramified recurrence. The following example computes the genealogical tree associated with Fibonacci’s rabbit problem for \(n \in \mathbb{N}\) generations. Rabbits come in pairs. After one generation, each baby rabbit pair (\(\mathbb{N}\)) matures. In each
generation, an adult rabbit pair (M) bears one pair of babies.

$$\text{rabbits}(0) = N_L \quad a(0) = M_L \quad b(0) = N_L$$

$$\text{rabbits}(S(n)) = b(n) \quad a(S(n)) = M(a(n), b(n)) \quad b(S(n)) = N(a(n))$$

The function rabbits is obtained by case analysis from the functions a and b, which are defined by simultaneous primitive recursion: the former recursively calls itself and the latter, while the latter makes a recursive call to the former. The output of rabbits($S^n(0)$) is tightly related to the sequence of Fibonacci numbers: the number of nodes at depth i is given by the ith Fibonacci number. Hence the output tree has exponential size in n but, again, can be represented compactly (see Figure 2). This does not suffice for our purposes, however. In presence of simultaneous definitions, indeed, avoiding re-computation of previously computed values becomes more difficult, the trick described above does not work, and the key idea towards that is the use of memoization.

What we prove in this paper is precisely that sharing and memoization can indeed be made to work together, and that they together allow to prove polytime soundness for all ramified recursive functions, also in presence of tree algebras and simultaneous definitions.

3 Preliminaries

General Ramified Simultaneous Recurrence

Let \mathbb{A} denote a (finite and untyped) signatures of constructors c_1, \ldots, c_k, each equipped with an arity $\text{ar}(c_i)$. In the following, the set of terms $T(\mathbb{A})$ over the signature \mathbb{A}, defined as usual, is also denoted by \mathbb{A} if this does not create ambiguities. We are interested in total functions from $\mathbb{A}^n = \underbrace{\mathbb{A} \times \ldots \times \mathbb{A}}_{n \text{ times}}$ to \mathbb{A}.

Definition 1. The following are so-called basic functions:

- For each constructor c, the constructor function $f_c : \mathbb{A}^{\text{ar}(c)} \to \mathbb{A}$ for c, defined as follows:
 $$f_c(x_1, \ldots, x_{\text{ar}(c)}) = c(x_1, \ldots, x_{\text{ar}(c)})$$
- For each $1 \leq n \leq m$, the (m, n)-projection function $\Pi_n^m : \mathbb{A}^m \to \mathbb{A}$ defined as follows:
 $$\Pi_n^m(x_1 \ldots, x_m) = x_n.$$
On Sharing, Memoization and Polynomial Time

\[
\begin{array}{c}
f_c \triangleright A_n^\langle e \rangle \rightarrow A_n & \Pi_n^0 \mathrel{\triangleright} A_{p_1} \times \ldots \times A_{p_m} \rightarrow A_{p_n} \\
& f_i \triangleright A_p^\langle e_i \rangle \times A \rightarrow A_m \\
\end{array}
\]

\[
\begin{array}{c}
\text{case}(\{f_i\}_{1 \leq i \leq k}) \triangleright A_p \times A \rightarrow A_m \\
\text{simrec}(\{f_i^j\}_{1 \leq i \leq k, 1 \leq j \leq n}) \triangleright A_p \times A \rightarrow A_m \\
\end{array}
\]

\[f \circ (g_1, \ldots, g_n) \triangleright A \rightarrow A_m\]

\[f \triangleright A_{p_1} \times \ldots \times A_{p_m} \rightarrow A_{p_n}\]

Figure 3 Tiering as a Formal System.

Definition 2. Given a function \(f : A^n \rightarrow A\) and \(n\) functions \(g_1, \ldots, g_n\), all of them from \(A^m\) to \(A\), the composition \(h = f \circ (g_1, \ldots, g_n)\) is a function from \(A^n\) to \(A\) defined as follows: \(h(\vec{x}) = f(g_1(\vec{x}), \ldots, g_n(\vec{x}))\).

Suppose given the functions \(f_i\) where \(1 \leq i \leq k\) such that for some \(m\), \(f_i : A^{ar(c_i)} \times A^n \rightarrow A\).

Then the function \(g = \text{case}(\{f_i\}_{1 \leq i \leq k})\) defined by case distinction from \(\{f_i\}_{1 \leq i \leq k}\) is a function from \(A \times A^n\) to \(A\) defined as follows: \(g(c_i(\vec{x}), \vec{y}) = f_i(\vec{x}, \vec{y})\).

Suppose given the functions \(f_i^j\) where \(1 \leq i \leq k\) and \(1 \leq j \leq n\), such that for some \(m\), \(f_i^j : A^{ar(c_i)} \times A^{n \cdot ar(c_i)} \times A^m \rightarrow A\). The functions \(\{g_j\}_{1 \leq j \leq n} = \text{simrec}(\{f_i^j\}_{1 \leq i \leq k, 1 \leq j \leq n})\) defined by simultaneous primitive recursion from \(\{f_i^j\}_{1 \leq i \leq k, 1 \leq j \leq n}\) are all functions from \(A \times A^m\) to \(A\) such that for \(\vec{x} = x_1, \ldots, x_{ar(c_i)}\),

\[g_j(c_i(\vec{x}), \vec{y}) = f_i^j(\vec{x}, g_1(x_1, \vec{y}), \ldots, g_1(x_{ar(c_i)}, \vec{y}), \ldots, g_n(x_1, \vec{y}), \ldots, g_n(x_{ar(c_i)}, \vec{y}), \vec{y})\].

We denote by \(\text{SimRec}(A)\) the class of simultaneous recursive functions over \(A\), defined as the smallest class containing the basic functions of Definition 1 and that is closed under the schemes of Definition 2.

Tiering. The central notion underlying Leivant’s definition of ramified recurrence, consists in attributing tiers to inputs and outputs of some functions among the ones constructed as above, with the goal of isolating the polytime computable ones. Roughly speaking, the role of tiers is to single out “a copy” of the signature by a level: this level permits to control the nesting. Tiering can be given as a formal system, in which judgments have the form \(f \triangleright A_{p_1} \times \ldots \times A_{p_{ar(t)}} \rightarrow A_m\) for \(p_1, \ldots, p_{ar(t)}, m\) natural numbers and \(f \in \text{SimRec}(A)\).

The system is defined in Figure 3, where \(A\) denotes the expression \(A_{q_1} \times \ldots \times A_{q_k}\) for some \(q_1, \ldots, q_k \in \mathbb{N}\). Notice that composition preserves tiers. Moreover, recursion is allowed only on inputs of tier higher than the tier of the function (in the case \(f = \text{simrec}(\{f_i^j\}_{1 \leq i \leq k, 1 \leq j \leq n})\), we require \(p > m\)).

Definition 3. We call a function \(f \in \text{SimRec}(A)\) definable by general ramified simultaneous recurrence (GRSR for short) if \(f \triangleright A_{p_1} \times \ldots \times A_{p_{ar(t)}} \rightarrow A_m\) holds.

Remark. Consider the word algebra \(\mathbb{W} = \{\epsilon, a, b\}\) consisting of a constant \(\epsilon\) and two unary constructors \(a\) and \(b\), which is in bijective correspondence to the set of binary words. Then the functions definable by ramified simultaneous recurrence over \(\mathbb{W}\) includes the ramified recursive functions from Leivant [21], and consequently all polytime computable functions.

Example 4.

1. Consider \(\mathbb{N} := \{0, S\}\) with \(ar(0) = 0\) and \(ar(S) = 1\), which is in bijective correspondence to the set of natural numbers. We can define addition \(\text{add} : \mathbb{N}_i \times \mathbb{N}_j \rightarrow \mathbb{N}_j\) for \(i > j\), by

\[\text{add}(0, y) = \Pi_1^0(y) = y\]

\[\text{add}(S(x), y) = (f_S \circ \Pi_2^0)(x, \text{add}(x, y)) = S(\text{add}(x, y))\],

using general simultaneous ramified recursion, i.e. \(\{\text{add}\} = \text{simrec}(\{\Pi_1^0, f_S \circ \Pi_2^0\})\).
We keep the program We introduce a simple, elements of \([6]\). The domain of the defined functions is the constructor algebra Orthogonal programs define a class of deterministic first-order functional programs, see e.g. \(P\) l constructors, and all variables occurring in the of the form \(R\) \(\in\) \(F\) \(\sigma\) from variables to terms. By \(STs\) most once in from \(V\) \(V\) algebras. Let \(T\) := \{\(N_L, M_L, N, M\)\}, where \(ar(N_L) = ar(M_L) = 0, ar(N) = 1\) and \(ar(M) = 2\). Then we can define the functions rabbits : \(N_i \rightarrow T_j\), for \(i > j\) from Section 2 by composition from the following two functions, defined by simultaneous ramified recurrence.

\[
\begin{align*}
a(0) &= M_L & a(S(n)) &= (f_M \circ (\Pi^3_2, \Pi^3_3))(n, a(n), b(n)) = M(a(n), b(n)) \\
b(0) &= N_L & b(S(n)) &= (f_N \circ \Pi^3)(n, a(n), b(n)) = N(a(n)).
\end{align*}
\]

2. Let \(T\) := \(\{N_L, M_L, N, M\}\), where \(ar(N_L) = ar(M_L) = 0, ar(N) = 1\) and \(ar(M) = 2\). Then we can define the functions rabbits : \(N_i \rightarrow T_j\), for \(i > j\) from Section 2 by composition from the following two functions, defined by simultaneous ramified recurrence.

\[
\begin{align*}
a(0) &= M_L & a(S(n)) &= (f_M \circ (\Pi^3_2, \Pi^3_3))(n, a(n), b(n)) = M(a(n), b(n)) \\
b(0) &= N_L & b(S(n)) &= (f_N \circ \Pi^3)(n, a(n), b(n)) = N(a(n)).
\end{align*}
\]

3. We can define a function \(#leaves : T \rightarrow N\) by simultaneous primitive recursion which counts the number of leaves in \(T\)-trees as follows.

\[
\begin{align*}
#leaves(N_L) &= S(0) & #leaves(M_L) &= S(0) \\
#leaves(N(t)) &= #leaves(t) & #leaves(M(l, r)) &= add(#leaves(l), #leaves(r)).
\end{align*}
\]

However, this function cannot be ramified, since add in the last equation requires different tiers. Indeed, having a ramified recursive function \(#leaves : T_i \rightarrow N_i\) defined as above would allow us to ramify \(\text{fib} = #leaves \circ \text{rabbits}\) which on input \(n\) computes the \(n^{\text{th}}\) Fibonacci number, and is thus an exponential function.

Computational Model, Syntax and Semantics

We introduce a simple, rewriting based, notion of program for computing functions over term algebras. Let \(V\) denote a set of variables. Terms over a signature \(F\) that include variables from \(V\) are denoted by \(T(F, V)\). A term \(t \in T(F, V)\) is called linear if each variable occurs at most once in \(t\). The set of subterms \(STs(t)\) of a term \(t\) is defined by \(STs(t) := \{\}\) if \(t \in V\) and \(STs(t) := \bigcup_{1 \leq i \leq ar(f)} STs(f_i) \cup \{\}\) if \(t = f(t_1, \ldots, t_{ar(f)})\). A substitution, is a finite mapping \(\sigma\) from variables to terms. By \(\sigma(x)\) we denote the term obtained by replacing in \(t\) all variables \(x \in \text{dom(}\sigma\)) by \(\sigma(x)\).

Definition 5. A program \(P\) is given as a triple \((F, C, R)\) consisting of two disjoint signatures \(F\) and \(C\) of operation symbols \(f_1, \ldots, f_m\) and constructors \(c_1, \ldots, c_n\) respectively, and a finite set \(R\) of rules \(l \rightarrow r\) over terms \(l, r \in T(F \cup C, V)\). For each rule, the left-hand side \(l\) is of the form \(f_i(p_1, \ldots, p_k)\) for some \(i\), where the patterns \(p_j\) consist only of variables and constructors, and all variables occurring in the right-hand side \(r\) also occur in the left-hand side \(l\).

We keep the program \(P = (F, C, R)\) fixed throughout the following. Moreover, we require that \(P\) is orthogonal, that is, the following two requirements are met:

1. left-linearity: the left-hand sides \(l\) of each rule \(l \rightarrow r \in R\) is linear; and
2. non-ambiguity: there are no two rules with overlapping left-hand sides in \(R\).

Orthogonal programs define a class of deterministic first-order functional programs, see e.g. \([6]\). The domain of the defined functions is the constructor algebra \(T(C)\). Correspondingly, elements of \(T(C)\) are called values, which we denote by \(v, u, \ldots\).
On Sharing, Memoization and Polynomial Time

In Figure 4 we present the operational semantics, realizing standard call-by-value evaluation order. The statement $t \downarrow v$ means that the term t reduces to the value v. We say that P computes the function $f: T(C)^k \rightarrow T(C)$ if there exists an operation $f \in F$ such that $f(v_1, \ldots, v_k) = v$ if and only if $f(v_1, \ldots, v_k) \downarrow v$ holds for all inputs $v_i \in T(C)$.

Example 6 (Continued from Example 4). The definition of rabbits from Section 2 can be turned into a program P over constructors of N and T, by orienting the underlying equations from left to right and replacing applications of functions $f \in \{\text{rabbits}, a, b\}$ with corresponding operation symbols $o \in \{\text{rabbits}, a, b\}$. For instance, concerning the function a, the defining equations are turned into $a(0) \rightarrow M_L$ and $a(S(n)) \rightarrow M(a(n), b(n))$.

The example hints at a systematic construction of programs P computing functions $f \in \text{SIMREC}(A)$, which can be made precise [4].

Term Graphs

We borrow key concepts from term graph rewriting (see e.g. the survey of Plump [25] for an overview) and follow the presentation of Barendregt et al. [8]. A term graph T over a signature F is a directed acyclic graph whose nodes are labeled by symbols in $F \cup V$, and where outgoing edges are ordered. Formally, T is a triple $(N, \text{succ}, \text{lab})$ consisting of nodes N, a successors function $\text{succ}: N \rightarrow N^*$ and a labeling function $\text{lab}: N \rightarrow F \cup V$. We require that term graphs are compatible with F, in the sense that for each node $o \in N$, if $\text{lab}_T(o) = f \in F$ then $\text{succ}_T(o) = [o_1, \ldots, o_{\omega(f)}]$ and otherwise, if $\text{lab}_T(o) = x \in V$, $\text{succ}_T(o) = []$. In the former case, we also write $T(o) = f(o_1, \ldots, o_{\omega(f)})$, the latter case is denoted by $T(o) = x$. We define the successor relation \rightarrow_T on nodes in T such that $o \rightarrow_T p$ holds iff p occurs in $\text{succ}(o)$, if p occurs at the ith position we also write $o \downarrow_T p$. Throughout the following, we consider only acyclic term graphs, that is, when \rightarrow_T is acyclic. Hence the unfolding $[o]_T$ of T at node o, defined by $[o]_T := x$ if $T(o) = x \in V$, and otherwise $[o]_T := f([o_1]_T, \ldots, [o]_T)$ where $T(o) = f(o_1, \ldots, o_k)$, results in a finite term. We called the term graph T rooted if there exists a unique node o, the root of T, with $o \rightarrow_T p$ for every $p \in N$. We denote by $T|_o$ the subgraph of T rooted at o. Consider a symbol $f \in F$ and nodes $\{o_1, \ldots, o_{\omega(f)}\} \subseteq N$ of T. The extension S of T by a fresh node $o_f \not\in N$ with $S(o_f) = f(o_1, \ldots, o_{\omega(f)})$ is denoted by $T \uplus \{o_f \mapsto f(o_1, \ldots, o_{\omega(f)})\}$. We write $f(T|_1, \ldots, T|_{\omega(f)})$ for the term graph $S|_{o_f}$.

For two rooted term graphs $T = (N_T, \text{succ}_T, \text{lab}_T)$ and $S = (N_S, \text{succ}_S, \text{lab}_S)$, a mapping $m: N_T \rightarrow N_S$ is called morphic in $o \in N_T$ if (i) $\text{lab}_T(o) = \text{lab}_S(m(o))$ and (ii) $o \downarrow_T p$ implies $m(o) \downarrow_S m(p)$ for all appropriate i. A homomorphism from T to S is a mapping $m: N_T \rightarrow N_S$ that (i) maps the root of T to the root of S and that (ii) is morphic in all nodes $o \in N_T$ not labeled by a variable. We write $T \models_m S$ to indicate that m is, possibly an extension of, a homomorphism from T to S.

Every term t is trivially representable as a canonical tree $\triangle(t)$ unfolding to t, using a fresh node for each occurrence of a subterm in t. For t a linear term, to each variable x in t we can associate a unique node in $\triangle(t)$ labeled by x, which we denote by o_x. The following proposition relates matching on terms and homomorphisms on trees. It essentially relies on the imposed linearity condition.

Proposition 7 (Matching on Graphs). Let t be a linear term, T be a term graph and let o be a node of T.

1. If $\triangle(t) \models_m T|_o$ then there exists a substitution σ such that $t\sigma = [o]_T$.
2. Vice versa, if $t\sigma = [o]_T$ holds for some substitution σ then there exists a homomorphism $\triangle(t) \models_m T|_o$.
\[f \in \mathcal{F} \quad (C_{i-1}, t_i) \Downarrow_{n_i} (C_i, v_i) \quad (C_k, f(v_1, \ldots, v_k)) \Downarrow_{m} (C_{k+1}, v) \quad m = n + \sum_{i=1}^{k} n_i \]
(Split)

\[c \in \mathcal{C} \quad (C_{i-1}, t_i) \Downarrow_{n_i} (C_i, v_i) \quad m = \sum_{i=1}^{k} n_i \]
(Con)

\[(f(v_1, \ldots, v_k), v) \in \mathcal{C} \]
(Read)

\[(C, f(v_1, \ldots, v_k)) \Downarrow_{m} (C, v) \]
(Update)

| Figure 5 | Cost Annotated Operational Semantics with Memoization for Program \((\mathcal{F}, \mathcal{C}, \mathcal{R})\). |

Here, the substitution \(\sigma\) and homomorphism \(m\) satisfy \(\sigma(x) = [m(o_x)]_T\) for all variables \(x\) in \(t\).

4 Memoization and Sharing, Formally

To implement memoization, we make use of a cache \(C\) which stores results of intermediate functions calls. A cache \(C\) is modeled as a set of tuples \((f(v_1, \ldots, v_{\alpha(f)}), v)\), where \(f \in \mathcal{F}\) and \(v_1, \ldots, v_{\alpha(f)}\) as well as \(v\) are values.

Figure 5 collects the memoizing operational semantics with respect to the program \(P = (\mathcal{F}, \mathcal{C}, \mathcal{R})\). Here, a statement \((C, t) \Downarrow_{n} (D, v)\) means that starting with a cache \(C\), the term \(t\) reduces to the value \(v\) with updated cache \(D\). The natural number \(m\) indicates the cost of this reduction. The definition is along the lines of the standard semantics (Figure 4), carrying the cache throughout the reduction of the given term. The last rule of Figure 4 is split into two rules (Read) and (Update). The former performs a read from the cache, the latter the reduction in case the corresponding function call is not tabulated, updating the cache with the computed result. Notice that in the semantics, a read is attributed zero cost, whereas an update is accounted with a cost of one. Consequently the cost \(m\) in \((C, t) \Downarrow_{m} (D, v)\) refers to the number of non-tabulated function applications.

Lemma 8. We have \((\varnothing, t) \Downarrow_{m} (C, v)\) for some \(m \in \mathbb{N}\) and cache \(C\) if and only if \(t \Downarrow v\).

The lemma confirms that the call-by-value semantics of Section 3 is correctly implemented by the memoizing semantics. To tame the growth rate of values, we define small-step semantics corresponding to the memoizing semantics, facilitating sharing of common sub-expressions.

Small-Step Semantics with Memoization and Sharing

To incorporate sharing, we extend the pairs \((C, t)\) by a heap, and allow references to the heap both in terms and in caches. Let \(\text{Loc}\) denote a countably infinite set of locations. We overload the notion of value, and define expressions \(e\) and (evaluation) contexts \(E\) according to the following grammar:

\[v := \ell \mid c(v_1, \ldots, v_k); \]

\[e := \ell \mid \langle f(\ell_1, \ldots, \ell_k), e \rangle \mid f(e_1, \ldots, e_k) \mid c(e_1, \ldots, e_k); \]

\[E := \emptyset \mid \langle f(\ell_1, \ldots, \ell_k), E \rangle \mid f(\ell_1, \ldots, \ell_{i-1}, E, e_{i+1}, \ldots, e_k) \mid c(\ell_1, \ldots, \ell_{i-1}, E, e_{i+1}, \ldots, e_k). \]

Here, \(\ell_1, \ldots, \ell_k\in\text{Loc}\), \(f \in \mathcal{F}\) and \(c \in \mathcal{C}\) are \(k\)-ary symbols. An expression is a term including references to values that will be stored on the heap. The additional construct \(\langle f(\ell_1, \ldots, \ell_k), e \rangle\) indicates that the partially evaluated expression \(e\) descends from a call
The operation \(f(\ell_1, \ldots, \ell_k), \ell \not\in D \) \(f(p_1, \ldots, p_k) \rightarrow r \in \mathcal{R} \) \(T := \triangle(f(p_1, \ldots, p_k)) \)
\[T \triangleright_m f[H|\ell_1, \ldots, H|\ell_k) \quad \sigma_m := \{ x \mapsto m(\ell_x) \mid \ell_x \in \text{Loc} \}, T(\ell_x) = x \in V \]
\[(D, H, E[f(\ell_1, \ldots, \ell_k)]) \rightarrow_r (D, H, E[(f(\ell_1, \ldots, \ell_k), r\sigma_m)]) \]
(apply)
\[(f(\ell_1, \ldots, \ell_k), \ell) \in D \]
\[(D, H, E[f(\ell_1, \ldots, \ell_k)]) \rightarrow_r (D, H, E[\ell]) \]
(read)
\[(D, H, E[f(\ell_1, \ldots, \ell_k)]) \rightarrow_\ast (D, H, E[\ell]) \]
(store)
\[(H', \ell) = \text{merge}(H, c(\ell_1, \ldots, \ell_k)) \]
\[(D, H, E[c(\ell_1, \ldots, \ell_k)]) \rightarrow_\ast (D, H', E[\ell]) \]
(merge)

\[\text{Figure 6 Small Step Semantics with Memoization and Sharing for Program } \mathcal{P} = (\mathcal{F}, \mathcal{C}, \mathcal{R}) \]

The operation \(\text{merge}(H, c(\ell_1, \ldots, \ell_k)) \), defined as follows, is used to extend the heap \(H \) with a constructor \(c \) whose arguments point to \(\ell_1, \ldots, \ell_k \), retaining maximal sharing. Let \(\ell_f \) be the first location not occurring in the nodes \(N \) of \(H \) (with respect to an arbitrary, but fixed enumeration on \(\text{Loc} \)). For \(\ell_1, \ldots, \ell_k \in N \) we define
\[\text{merge}(H, c(\ell_1, \ldots, \ell_k)) := \begin{cases} (H, \ell) & \text{if } H(\ell) = c(\ell_1, \ldots, \ell_k), \\ (H \cup \{ \ell_f \mapsto c(\ell_1, \ldots, \ell_k) \}, \ell_f) & \text{otherwise}. \end{cases} \]

Observe that the first clause is unambiguous on maximally shared heaps.

Figure 6 collects the small step semantics with respect to a program \(\mathcal{P} = (\mathcal{F}, \mathcal{C}, \mathcal{R}) \). We use \(\rightarrow_{\text{res}} \) to abbreviate the relation \(\rightarrow_r \cup \rightarrow_\ast \cup \rightarrow_\triangle \) and likewise we abbreviate \(\rightarrow_r \cup \rightarrow_{\text{res}} \) by \(\rightarrow_{\text{res}} \). Furthermore, we define \(\rightarrow_{h/rsm} := \rightarrow_{rsm} \cdot \rightarrow_r \rightarrow_{h/rsm} \). Hence the \(m \)-fold composition \(\rightarrow_{h/rsm}^m \) corresponds to \(\rightarrow_{h/rsm} \)-reduction with precisely \(m \) applications of \(\rightarrow_r \).

It is now time to show that the model of computation we have just introduced fits our needs, namely that it faithfully simulates big-step semantics as in Figure 5 (itself a correct implementation of call-by-value evaluation from Section 3). This is proved by first showing how big-step semantics can be simulated by small-step semantics, later proving that the latter is in fact deterministic.

In the following, we denote by \([e]_H \) the term obtained from \(e \) by following pointers to the
heap, ignoring the annotations \((f(\ell_1, \ldots, \ell_k), \cdot) \). Formally, we define
\[
[e]_H := \begin{cases}
 f([e_1]_H, \ldots, [e_k]_H) & \text{if } e = f(e_1, \ldots, e_k), \\
 [e']_H & \text{if } e = (f(\ell_1, \ldots, \ell_k), e').
\end{cases}
\]

Observe that this definition is well-defined as long as \(H \) contains all locations occurring in \(e \) (a property that is preserved by \(\rightarrow_{\text{brsm}} \)-reductions). An initial configuration is a configuration of the form \((\emptyset, H, e) \) with \(H \) a maximally shared heap and \(e = f(v_1, \ldots, v_k) \) an expression unfolding to a function call. Notice that the arguments \(v_1, \ldots, v_k \) are allowed to contain references to the heap \(H \).

Lemma 10 (Simulation). Let \((\emptyset, H, e) \) be an initial configuration. If \((\emptyset, [e]_H) \not\overset{m}{\rightarrow} (C, v) \) holds for \(m \geq 1 \) then \((\emptyset, H, e) \not\overset{m}{\rightarrow}_{\text{brsm}} (D, G, \ell) \) for a location \(\ell \) in \(G \) with \(\ell|_G = v \).

The next lemma shows that the established simulation is unique, that is, there is exactly one derivation \((\emptyset, H, e) \not\overset{m}{\rightarrow}_{\text{brsm}} (D, G, \ell) \). Here, a relation \(\not\overset{m}{\rightarrow} \) is called deterministic on a set \(A \) if \(b_1 \leftarrow a \rightarrow b_2 \) implies \(b_1 = b_2 \) for all \(a \in A \).

Lemma 11 (Determinism). The relation \(\not\overset{m}{\rightarrow}_{\text{brsm}} \) is deterministic on all configurations reachable from initial configurations.

Theorem 12. Suppose \((\emptyset, f(v_1, \ldots, v_k)) \not\overset{m}{\rightarrow} (C, v) \) holds for a reducible term \(f(v_1, \ldots, v_k) \). Then for each initial configuration \((\emptyset, H, e) \) with \(e = f(v_1, \ldots, v_k) \), there exists a unique sequence \((\emptyset, H, e) \not\overset{m}{\rightarrow}_{\text{brsm}} (D, G, \ell) \) for a location \(\ell \) in \(G \) with \(\ell|_G = v \).

Proof. As \(f(v_1, \ldots, v_k) \) is reducible, it follows that \(m \geq 1 \). Hence the theorem follows from Lemma 10 and Lemma 11.

Invariance

Theorem 12 tells us that a term-based semantics (in which sharing is not exploited) can be simulated step-by-step by another, more sophisticated, graph-based semantics. The latter's advantage is that each computation step does not require copying, and thus does not increase the size of the underlying configuration too much. This is the key observation towards invariance: the number of reduction step is a sensible cost model from a complexity-theoretic perspective. Precisely this will be proved in the remaining of the section.

Define the size \(|e| \) of an expression recursively by \(|l| := 1, |f(e_1, \ldots, e_k)| := 1 + \sum_{i=1}^k |e_i| \) and \(|(f(\ell_1, \ldots, \ell_k), e)| := 1 + |e| \). In correspondence we define the weight \(\text{wt}(e) \) by ignoring locations, i.e. \(\text{wt}(l) := 0 \). Recall that a reduction \((D_1, H_1, e_1) \not\overset{m}{\rightarrow}_{\text{brsm}} (D_2, H_2, e_2) \) consists of \(m \) applications of \(\not\overset{n}{\rightarrow} \), all possibly interleaved by \(\not\overset{m}{\rightarrow}_{\text{brsm}} \)-reductions. As a first step, we thus estimate the overall length of the reduction \((D_1, H_1, e_1) \not\overset{m}{\rightarrow}_{\text{brsm}} (D_2, H_2, e_2) \) in \(m \) and the size of \(e_1 \). Set \(\Delta := \max\{|r| \mid l \rightarrow r \in R\} \). The following serves as an intermediate lemma.

Lemma 13. The following properties hold:
1. If \((D_1, H_1, e_1) \not\overset{m}{\rightarrow}_{\text{brsm}} (D_2, H_2, e_2) \) then \(\text{wt}(e_2) < \text{wt}(e_1) \).
2. If \((D_1, H_1, e_1) \not\overset{m}{\rightarrow}_{\text{brsm}} (D_2, H_2, e_2) \) then \(\text{wt}(e_2) \leq \text{wt}(e_1) + \Delta \).

Then essentially an application of the weight gap principle [18], a form of amortized cost analysis, binds the overall length of an \(\not\overset{n}{\rightarrow}_{\text{brsm}} \)-reduction suitably.

Lemma 14. If \((D_1, H_1, e_1) \not\overset{n}{\rightarrow}_{\text{brsm}} (D_2, H_2, e_2) \) then \((D_1, H_1, e_1) \not\overset{n}{\rightarrow}_{\text{brsm}} (D_2, H_2, e_2) \) for \(n \leq (1 + \Delta) \cdot m + \text{wt}(e) \) and \(\Delta \in \mathbb{N} \) a constant depending only on \(P \).
Define the size of a configuration $|C, v|$ as the sum of the sizes of its components. Here, the size $|D|$ of a cache D is defined as its cardinality, similar, the size $|H|$ of a heap is defined as the cardinality of its set of nodes. Notice that a configuration (D, H, e) can be straightforwardly encoded within logarithmic space-overhead as a string $|(D, H, e)|$, i.e. the length of the string $|(D, H, e)|$ is bounded by a function in $O(\log(n) \cdot n)$ in (D, H, e), using constants to encode symbols and an encoding of locations logarithmic in $|H|$. Crucially, a step in the small-step semantics increases the size of a configuration only by a constant.

Lemma 15. If $(D_1, H_1, e_1) \rightarrow_{\text{rsm}} (D_2, H_2, e_2)$ then $|D_2, H_2, e_2| \leq |(D_1, H_1, e_1)| + \Delta$.

Theorem 16. There exists a polynomial $p : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that for every initial configuration (\emptyset, H_1, e_1), a configuration (D_2, H_2, e_2) with $(\emptyset, H_1, e_1) \rightarrow_{\text{rsm}} (D_2, H_2, e_2)$ is computable from (\emptyset, H_1, e_1) in time $p(|H_1| + |e_1|, m)$.

Proof. It is tedious, but not difficult to show that the function which implements a step $c \rightarrow_{\text{rsm}} d$, i.e. which maps $[c]$ to $[d]$, is computable in polynomial time in $[c]$, and thus in the size $|c|$ of the configuration c. Iterating this function at most $n := (1 + \Delta) \cdot m + |(\emptyset, H_1, e_1)|$ times on input $|(\emptyset, H_1, e_1)|$, yields the desired result $|(D_2, H_2, e_2)|$ by Lemma 14. Since each iteration increases the size of a configuration by at most the constant Δ (Lemma 15), in particular the size of each intermediate configuration is bounded by a linear function in $|(\emptyset, H_1, e_1)| = |H_1| + |e_1|$ and n, the theorem follows. \hfill \Box

Combining Theorem 12 and Theorem 16 we thus obtain the following.

Theorem 17. There exists a polynomial $p : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that for $(\emptyset, f(v_1, \ldots, v_k)) \Downarrow_m (C, v)$, the value v represented as DAG is computable from v_1, \ldots, v_k in time $p(\sum_{i=1}^{k} |v_i|, m)$.

Theorem 17 thus confirms that the cost m of a reduction $(\emptyset, f(v_1, \ldots, v_k)) \Downarrow_m (C, v)$ is a suitable cost measure. In other words, the memoized runtime complexity of a function f, relating input size $n \in \mathbb{N}$ to the maximal cost m of evaluating f on arguments v_1, \ldots, v_k of size up to n, i.e. $(\emptyset, f(v_1, \ldots, v_k)) \Downarrow_m (C, v)$ with $\sum_{i=1}^{k} |v_i| \leq n$, is an invariant cost model.

Example 18 (Continued from Example 6). Reconsider the program P_R and the evaluation of a call $\text{rabbits}(S^n(0))$ which results in the genealogical tree v_n of height $n \in \mathbb{N}$ associated with Fibonacci’s rabbit problem. Then one can show that $\text{rabbits}(S^n(0)) \Downarrow_m v_n$ with $m \leq 2 \cdot n + 1$. Crucially here, the two intermediate functions a and b defined by simultaneous recursion are called only on proper subterms of the input $S^n(0)$, hence in particular the rules defining a and b respectively, are unfolded at most n times. As a consequence of the bound on m and Theorem 17 we obtain that the function rabbits from the introduction is polytime computable.

Remark. Strictly speaking, our DAG representation of a value v, viz the part of the final heap reachable from a corresponding location ℓ, is not an encoding in the classical, complexity theoretic setting. Different computations resulting in the same value v can produce different DAG representations of v, however, these representations differ only in the naming of locations. Even though our encoding can be exponentially compact in comparison to a linear representation without sharing, it is not exponentially more succinct than a reasonable encoding for graphs (e.g. representations as circuits, see Papadimitriou [24]). In such succinct encodings not even equality can be decided in polynomial time. Our form of representation does clearly not fall into this category. In particular, in our setting it can be easily checked in polynomial time that two DAGs represent the same value.
5 GRSR is Sound for Polynomial Time

Sometimes (e.g., in [11]), the first step towards a proof of soundness for ramified recursive systems consists in giving a proper bound precisely relating the size of the result and the size of the inputs. More specifically, if the result has tier \(n \), then the size of it depends polynomially on the size of the inputs of tier higher than \(n \), but only \(\text{linearly} \), and in very restricted way, on the size of inputs of tier \(n \). Here, a similar result holds, but size is replaced by \(\text{minimal shared size} \).

The \(\text{minimal shared size} \) \(\|v_1, \ldots, v_k\| \) for a sequence of elements \(v_1, \ldots, v_k \in A \) is defined as the number of subterms in \(v_1, \ldots, v_k \), i.e. the cardinality of the set \(\bigcup_{1 \leq i \leq k} \text{STs}(v_i) \). Then \(\|v_1, \ldots, v_k\| \) corresponds to the number of locations necessary to store the values \(v_1, \ldots, v_k \) on a heap (compare Lemma 9). If \(A \) is the expression \(\mathcal{A}_{n_1} \times \cdots \times \mathcal{A}_{n_m} \), \(n \) is a natural number, and \(\vec{t} \) is a sequence of \(m \) terms, then \(\|\vec{t}\|_A^{\geq n} \) is defined to be \(\|t_{i_1}, \ldots, t_{i_k}\| \) where \(i_1, \ldots, i_k \) are precisely those indices such that \(n_{i_1}, \ldots, n_{i_k} > n \). Similarly for \(\|\vec{t}\|_A^{= n} \).

\(\blacktriangleright \) Proposition 19 (Max-Poly). If \(f \triangleright A \rightarrow \mathcal{A}_n \), then there is a polynomial \(p_T : N \rightarrow N \) such that \(\|f(\vec{v})\| \leq \|\vec{v}\|_A^{= n} + p_T(\|\vec{v}\|_A^{\geq n}) \).

Once we know that ramified recursive definitions are not too fast-growing for the minimal shared size, we know that all terms around do not have a too-big minimal shared size. As a consequence:

\(\blacktriangleright \) Proposition 20. If \(f \triangleright A \rightarrow \mathcal{A}_n \), then there is a polynomial \(p_T : N \rightarrow N \) such that for every \(v, (\emptyset, f(\vec{v})), \psi_m (C, v) \), with \(m \leq p_T(\|\vec{v}\|) \).

The following, then, is just a corollary of Proposition 20 and Invariance (Theorem 17).

\(\blacktriangleright \) Theorem 21. Let \(f : \mathcal{A}_{p_1} \times \cdots \times \mathcal{A}_{p_k} \rightarrow \mathcal{A}_m \) be a function defined by general ramified simultaneous recursion. There exists then a polynomial \(p_T : N^k \rightarrow N \) such that for all inputs \(v_1, \ldots, v_k \), a DAG representation of \(f(v_1, \ldots, v_k) \) is computable in time \(p_T(|v_1|, \ldots, |v_n|) \).

\(\blacktriangleright \) Example 22 (Continued from Example 18). In Example 4 we indicated that the function \texttt{rabbits} : \(N \rightarrow \mathbb{T} \) from Section 2 is definable by GRSR. As a consequence of Theorem 21, it is computable in polynomial time, e.g. on a Turing machine. Similar, we can prove the function \texttt{tree} from Section 2 polytime computable.

6 Conclusion

In this work we have shown that simultaneous ramified recursion on generic algebras is sound for polynomial time, resolving a long-lasting open problem in implicit computational complexity theory. We believe that with this work we have reached the \textit{end of a quest}. Slight extensions, e.g. the inclusion of parameter substitution, lead outside polynomial time as soon as simultaneous recursion over trees is permissible.

Towards our main result, we introduced the notion of memoized runtime complexity, and we have shown that this cost model is invariant under polynomial time. Crucially, we use a compact DAG representation of values to control duplication, and tabulation to avoid expensive re-computations. To the authors best knowledge, our work is the first where sharing and memoization are reconciled, in the context of implicit computational complexity theory. Both techniques have been extensively employed, however separately. Essentially relying on sharing, the invariance of the unitary cost model in various rewriting based models of computation, e.g. the \(\lambda \)-calculus [1, 15, 2] and term rewrite systems [14, 5] could be proved.
Several works (e.g. [22, 13, 7]) rely on memoization, employing a measure close to our notion of memoized runtime complexity. None of these works integrate sharing, instead, inputs are either restricted to strings or dedicated bounds on the size of intermediate values have to be imposed. We are confident that our second result is readily applicable to resolve such restrictions.

References