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Abstract
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The topic of this seminar was the rapidly developing notion of cone rank of a matrix/polytope
that is an important invariant controlling several properties of the matrix/polytope with con-
nections to optimization, communication complexity and theoretical computer science. This
meeting was a follow-up to the 2013 Dagstuhl seminar 13082: “Communication Complexity,
Linear Optimization, and lower bounds for the nonnegative rank of matrices” organized by
Leroy Beasley, Hartmut Klauck, Troy Lee and Dirk Oliver Theis.

The cone rank of a nonnegative matrix is an ordered notion of matrix rank with emerging
applications in several fields. A well-known example is the nonnegative rank of a nonnegative
matrix that appears in areas ranging from communication complexity, to statistics, to
combinatorial optimization, and algebraic complexity theory. A related notion arising as
an invariant in representations of convex sets as projections of affine slices of the positive
semidefinite (psd) cone is the positive semidefinite (psd) rank. The psd rank is a very new
quantity and is still relatively poorly understood.
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110 15082 – Limitations of Convex Programming

The purpose of this seminar was to bring together researchers from optimization, computer
science, real/convex/tropical algebraic geometry, and matrix theory, to discuss relevant
techniques from each area that can contribute to the development of both the theory and
computation of cone ranks and cone factorizations of nonnegative matrices, as well as their
many emerging applications.

In optimization and computer science, a common approach to finding approximate
solutions to NP-hard problems is to look at tractable convex relaxations of the problem as
either a linear or semidefinite program. An optimal solution to such a relaxation gives a
bound on the objective value of the original problem. While much previous work has focused
on specific relaxations of a problem, or a family of relaxations coming from a hierarchy, cone
ranks allow the study of the best possible linear, semidefinite, or other convex formulations
of a NP-hard problem independent of specific construction methods. These formulations all
write the underlying feasible set as the projection of an affine slice of a closed convex cone
and is commonly refereed to as an extended formulation of the underlying feasible region.
The nonnegative rank of a polytope is the smallest size of a linear extended formulation of
the polytope while psd rank of the polytope is the size of the smallest possible semidefinite
extended formulation of the polytope. Linear extended formulations are the best understood
so far and an exciting development in this area is the recent breakthrough by Rothvoß
showing that the matching polytope does not admit a polynomial sized linear extended
formulation, settling a notorious open problem in combinatorial optimization. Very recently,
there has also been exciting new developments in the area of psd rank such as the result of
Lee, Raghavendra, and Steurer that shows that the psd rank of certain polytopes such as
the traveling salesman polytope of a graph with n vertices must be exponential in n.

In the field of communication complexity, nonnegative and psd ranks are exactly char-
acterized by a model of randomized and quantum communication complexity, respectively.
This connection has allowed tools from communication and information theory to help create
lower bounds for these ranks.

A central question in the field of real algebraic geometry is the semidefinite representability
of convex sets. While polytopes only project to polytopes, affine slices of psd cones have
much greater expressive power as their projections are convex sets, which allows the definition
of psd rank for semi algebraic convex sets. Psd rank has inherent semi algebraic structure
and its study crosses over into real and convex algebraic geometry, algebraic complexity, and
semidefinite programming.
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3 Organization of the Seminar

One of the key goals of this seminar was to bring experts from all the different communities
that intersect at the notion of cone ranks to inform the participants on the key tools and
questions from each area that pertain to this topic. To achieve our goals of making the
seminar part tutorial, we invited nine prominent researchers from a variety of areas to give
expository lectures. These lectures were given by the following researchers listed along with
the general topic of their talks:
1. Alexander Barvinok (University of Michigan): Approximations of convex bodies by poly-

topes
2. Greg Blekherman (Georgia Institute of Technology): Sums of squares on the hypercube
3. Hamza Fawzi (MIT): Equivariant lifts of polytopes
4. João Gouveia (University of Coimbra): Survey on psd rank
5. Volker Kaibel (University of Magdeburg): Survey on nonnegative rank
6. James Lee (University of Washington): Lower bounds for SDP relaxations I
7. Markus Schweighofer (University of Konstanz): Real algebraic geometry
8. David Steurer (Cornell University): Lower bounds for SDP relaxations II
9. Ronald de Wolf (CWI, Amsterdam): Quantum communication complexity and psd rank

Roughly two of these speakers were scheduled each day. In addition, there were short
scientific talks by almost all the remaining participants as well as an open problems session
on Wednesday evening.

4 Summaries of selected talks

In this section, we highlight some selected talks from the seminar. The first five are tutorial
talks while the last is a sample research talk.

4.1 João Gouveia
João Gouveia gave the opening talk of the seminar which was a survey on positive semidefinite
rank. The purpose of this talk was to get the audience primed for this topic which was a
main feature at the seminar. The talk was based on the recent survey (with this title) that
was written by Hamza Fawzi, João Gouveia, Pablo Parrilo, Richard Robinson and Rekha
Thomas that is available on the arXiv.

The talk began with the definition of psd rank of a nonnegative matrix, basic properties
and relationships to other common notions of rank. There was an instructive running example
using circulant matrices that illustrated the main ranks that were introduced. Then he
moved on to more sophisticated properties of psd rank such as the guarantee of factorizations
of controlled norm. This result in particular played an important role in the recent work of
Briët, Dadush and Pokutta who proved that 0/1 polytopes in a fixed dimension cannot all
have small psd rank. Other features were also examined such as the space of factorizations,
its connectivity properties, and symmetric factorizations. Several open questions were stated
during the course of the talk which set the stage for the rest of the week. In particular, there
was some discussion of the many open problems on the computational complexity of psd
rank.

15082
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4.2 Greg Blekherman
Greg Blekherman gave another of our expository lectures on the topic Symmetry Reduction
for Sums of Squares on the Hypercube.

The polytopes whose psd rank has attracted the most attention come from combinatorial
optimization. In this setting, the polytope under consideration is the convex hull of a
collection of vectors from {0, 1}n, where each vector denotes a subset of some ground set, and
the problem is to minimize a polynomial function over it. This model covers many NP-hard
problems and hence their psd rank is believed to be high. Yet, we have so far been able to
only prove this for specific classes of polytopes such as cut polytopes (c.f. talks of James Lee
and David Steurer).

The max cut problem which is NP-hard can be formulated as optimizing a quadratic
polynomial over the entire n-dimensional hypercube. Thus polynomial optimization even
over this simple-seeming 0/1-polytope is already very interesting and complicated. In max
cut the polynomial to be optimized does not only have low degree, but is also symmetric
under permutation of variables. One would expect that symmetric polynomial optimization
has nice properties since one can bring to bear the power of the group action on the problem.

Greg’s talk addressed precisely this situation. Given a symmetric polynomial p(x) of
low degree, he discussed the problem of writing it as a sum of squares polynomial modulo
the equations of {0, 1}n. He explained a remarkably simple method to reduce this question
to a univariate sum of squares problem on the “levels” of the hypercube which are the
numbers 0, . . . , n. This is based on the observation that if we define t := x1 + . . .+ xn, then
a symmetric polynomial p in the variables x1, . . . , xn is a polynomial in t.

Using this reduction he was able to derive simple proofs of previously known results
such as certain quadratic polynomials can only be equal to sum of squares polynomials of
high degree. The method promises to have more applications and Greg gave an excellent
exposition of his methods on the black board at the meeting.

4.3 Markus Schweighofer
Markus Schweighofer was the main representative at this seminar from the field of real
algebraic geometry which is the home of the theory of sums of squares polynomials. The
organizers had requested from him a survey talk that would explain the real algebraic methods
(via semidefinite programming) for solving polynomial optimization problems. Markus
did precisely that. He developed the popular Lasserre hierarchy for solving polynomial
optimization problems in an elementary way starting with systems of polynomial inequalities.
He showed how the method is a natural consequence of introducing the right kind of
combinations of existing inequalities followed by linearizations. This was instructive even
to the experts. In the process, Markus introduced the important Positivestellensatz which
underlies real algebraic geometry. This is a certificate for the infeasibility of a system of
polynomial inequalities analogous to Hilbert’s Nullstellensatz that provides a certificate for
the infeasibility of systems of polynomial equations. Most of the audience was far from real
algebraic geometry and this talk was both a friendly and natural introduction to the theorems
in real algebraic geometry that contribute to polynomial optimization and the underlying
convex sets. Markus went on to describe recent results which were more advanced, but the
talk served well the purpose of providing the audience a taste of real algebraic geometry and
its connections to psd rank.
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4.4 Alexander Barvinok
In contrast to the setting of extended formulations, Alexander Barvinok talked about
approximating a convex body B ⊂ Rd by a polytope P ⊂ Rd in the same dimensional space.
In the work he discussed, based on the paper “Thrifty approximations of convex bodies by
polytopes”, the goal is to find a polytope P satisfying P ⊂ B ⊂ τP with as few vertices as
possible. He showed that if B is centrally symmetric, then for τ = 1 + ε for a small constant ε
one can find a 1 + ε approximating polytope with ( 1

2
√
ε

ln( 1
ε ))d many vertices. This improves

by about a square-root factor of ε over the standard volumetric argument for constructing
an ε-net which gives (1 + 2/ε)d many points. The proof has essentially two steps. The first
step relies on John’s theorem which says that for a centrally symmetric convex body B,
the maximal volume ellipsoid E contained in B satisfies E ⊆ B ⊆

√
dE. This is used to

find a polytope with few vertices (only O(d)) that gives a weak O(
√
d) approximation to B.

The second step amplifies the quality of the approximation, at the expense of adding more
vertices to the approximating polytope. This is done by mapping B to a convex body B̂
in a higher dimensional space where it is argued using Chebyshev polynomials that a weak
approximation to B̂ implies a very good approximation of B. Then the previous argument
using John’s theorem can be applied to B̂.

4.5 James Lee and David Steurer
One of the major motivating questions in the organization of this Dagstuhl seminar was to
show superpolynomial lower bounds on the positive semidefinite extension complexity of an
explicit polytope. This was achieved by James Lee, David Steurer, and Prasad Raghavendra
in November 2014. James and David were in attendance at the seminar and treated us
to 3 hours of lectures going through the proof in detail. At a high level, the proof “lifts”
lower bounds against the Lasserre/sum of squares hierarchy to lower bounds for positive
semidefinite extension complexity. In more detail, for a function f : {0, 1}m → R+ they
consider a matrix with rows indexed by subsets S ⊂ [n], |S| = m and columns indexed by
x ∈ {0, 1}n, where n is polynomial in m. The matrix Mf (S, x) = f(x|S) is shown to have
psd rank that is exponential in the sum of squares degree of f .

The basic idea of the proof is the following. If f has sum of squares degree d, then there
is a certificate of this fact known as a pseudoexpectation. This is a function that has negative
correlation with f , but nonnegative correlation with any sum of squares polynomial of degree
< d. The proof leverages this pseudodistribution into a functional that separates Mf from
the set S of all matrices with small psd rank and that have the same `1 and `∞ norms as Mf .
On Mf this functional is negative (≤ −ε). However, it is shown that the functional is at least
−ε/2 on any matrix in S. This is done in two steps. The first step, quantum learning, shows
that if N has a small size factorization then the value of the functional on N is close to that
of a matrix Ñ that has a factorization N(S, x) = Tr(ASBx) where Bx has bounded sums of
squares degree as a matrix polynomial in x. The second step, based on random restrictions,
shows that the value of the functional on a matrix with a bounded degree factorization can
only be slightly negative > −ε/2. Taken together this gives the separating functional as
desired.

15082
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4.6 Samuel Fiorini
Samuel Fiorini talked about 2-level polytopes. A 2-level polytope is a polytope P where for
each facet F there is a parallel facet F ′ such that F ∪ F ′ contains all vertices of P . Thus
the slack matrix of P , after scaling the columns, is a matrix with all entries 0 or 1. As
such 2-level polytopes give nice examples of nontrivial boolean matrices of low rank. Fiorini
raised the very interesting question of the “log rank conjecture” for 2-level polytopes. This is
the question: for the slack matrix of a 2-level polytope is the deterministic communication
complexity at most a polynomial in the logarithm of the rank of the matrix? A relaxation
of this question mentioned by Fiorini is to show that the extension complexity of any d-
dimensional 2-level polytope is at most 2polylog(d). So far the best result known follows from
Lovett’s results on the log rank conjecture that shows a bound of 2

√
d log(d).

5 Overview of Talks

5.1 Thrifty approximations of convex bodies by polytopes
Alexander Barvinok (University of Michigan – Ann Arbor, US)

License Creative Commons BY 3.0 Unported license
© Alexander Barvinok

Main reference A. Barvinok, “Thrifty Approximations of Convex Bodies by Polytopes,” International
Mathematical Research Notices, Vol. 2014(16):4341–4356, 2013; pre-print available as
arXiv:1206.3993v2 [math.MG].

URL http://dx.doi.org/10.1093/imrn/rnt078
URL http://arxiv.org/abs/1206.3993v2

This is a survey talk on how well a convex body can be approximated by a polytope with
a given number of vertices. We measure the quality of approximation with respect to the
Banach-Mazur distance and its versions (that is, given a convex body and an inscribed
polytope, by what factor the polytope should be dilated to contain the body) and consider
both fine (factors close to 1) and coarse (large factors) approximations.

5.2 Preservers of Completely Positive Matrix Rank
LeRoy B. Beasley (Utah State University, US)

License Creative Commons BY 3.0 Unported license
© LeRoy B. Beasley

Let Mm×n(R) denote the set of m-by-n matrices with entries in R. We write Mm×n(R+)
to denote the subsets of matrices, all of whose entries are nonnegative. Let Sn(R) denote
the set of all n-by-n real symmetric matrices. A matrix A ∈ Sn(R) is said to be completely
positive if there is some matrix B ∈ Mn×k(R+) such that A = BBt. The CP-rank of the
matrix A is the smallest k such that A = BBt for some B ∈Mn×k(R+). In this article we
shall investigate the linear operatros on Sn(R) that preserve sets of matrices defined by the
CP- rank. We classify those that preserve the CP-rank function, those that preserve the set
of CP-rank-1 matrices , those that preserve the sets of CP-rank-1 matrices and the set of
CP-rank-2 matrices, and those that strongly preserve the set of CP-rank-1 matrices.
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5.3 Symmetry reduction for sums of squares polynomials on the
hypercube

G.eg Blekherman (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 3.0 Unported license
© Greg Blekherman

Main reference G. Blekherman, J. Gouveia, J. Pfeiffer, “Sums of Squares on the Hypercube,” arXiv:1402.4199v1
[math.AG], 2014.

URL http://arxiv.org/abs/1402.4199v1

Let p be a symmetric polynomial, i.e. a polynomial fixed under permutations of variables,
and let H be the discrete hypercube {0, 1}n. The question of whether p is a sum of squares
of polynomials of low degree on H can be reduced to a univariate sum of squares problem.
I will present this reduction and explain how some known results on the Lasserre sum of
squares hierarchy on H easily follow from it.

5.4 Rescaling PSD factorizations
Daniel Dadush (CWI – Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Daniel Dadush

I will present a short proof that any PSD factorization of a matrix M can be rescaled so that
the operator norm of each matrix in the factorization can be bounded by a function of the
maximum entry size and rank of the factorization.

5.5 2-level polytopes
Samuel Fiorini (University of Brussels, BE)

License Creative Commons BY 3.0 Unported license
© Samuel Fiorini

A polytope is called 2-level if for each facet-defining hyperplane H, the vertices that are not
on H all lie in a hyperplane that is parallel to H. A polytope is 2-level iff it has a binary
slack matrix. These polytopes appeared e.g. as a solution of a problem of Lovász in Gouveia,
Parrilo and Thomas (2010), and earlier under the name of compressed polytopes in works
of Stanley (1980) and Sullivant (2006). In this talk I will give motivations to study 2-level
polytopes, survey some results about their structure and state many open problems about
them.

15082

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1402.4199v1
http://arxiv.org/abs/1402.4199v1
http://arxiv.org/abs/1402.4199v1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


118 15082 – Limitations of Convex Programming

5.6 Numerical Computation of Nonnegative and PSD Factorizations
Nicolas Gillis (University of Mons, BE)

License Creative Commons BY 3.0 Unported license
© Nicolas Gillis

Main reference A. Vandaele, N. Gillis, F. Glineur, D. Tuyttens,“Heuristics for Exact Nonnegative Matrix
Factorization,” arXiv:1411.7245v1 [math.OC], 2014.

URL http://arxiv.org/abs/1411.7245v1

Nonnegative (resp. positive semidefinite–PSD) factorizations allow to compute linear (resp.
semidefinite) extended formulations of polytopes. In this talk, we present several numerical
algorithms to compute such factorizations using standard low-rank matrix approximation
formulations. These algorithms (sometimes) allow to provide explicit extended formulations
and hence upper bounds for the nonnegative and PSD ranks (that is, the sizes of the smallest
extended formulations). We illustrate this on regular n-gons, and show how our algorithms
can give insight on their smallest extended formulations.

Matlab code to compute nonnegative factorizations can be downloaded from https:
//sites.google.com/site/exactnmf/

5.7 Extension complexity bounds for polygons – Numerical
factorizations and conjectures

Francois Glineur (University of Louvain, BE)

License Creative Commons BY 3.0 Unported license
© Francois Glineur

Joint work of Glineur, Francois; Nicolas Gillis; Arnaud Vandaele and Julien Dewez

In this talk we describe an explicit nonnegative factorization of the slack matrix of the regular
n-gon. We conjecture its rank to be optimal based on extensive numerical computations (cf.
Gillis’ talk on heuristic exact matrix factorization). In particular we describe the behaviour
of the nonnegative tank for values of n lying between powers of two. We also compare this
nonnegative rank to available computable lower bounds. Finally we describe our attempts at
obtaining a (smaller) explicit positive semidefinite factorization for this slack matrix.

5.8 Positive Semidefinite Rank
João Gouveia (University of Coimbra, PT)

License Creative Commons BY 3.0 Unported license
© João Gouveia

Main reference H. Fawzi, J. Gouveia, P.A. Parrilo, R. Z. Robinson, R.R. Thomas, “Positive semidefinite rank,”
arXiv:1407.4095v1 [math.OC], 2014.

URL http://arxiv.org/abs/1407.4095v1

In this talk we will cover basic properties of the positive semidefinite rank. A special emphasis
will be put on its geometry and complexity, its relation to the square root rank and its space
of factorizations. Based on joint work with Hamza Fawzi, Pablo Parrilo, Richard Robinson
and Rekha Thomas.
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5.9 Linear algebra invariants over semirings
Alexander Guterman (Moscow State University, RU)

License Creative Commons BY 3.0 Unported license
© Alexander Guterman

Semiring matrix invariants are useful in different problems of linear algebra and its applications.
In the talk we will discuss the properties of different matrix invariants which replace rank,
determinant, etc., over semirings, in particular, over tropical semirings. The preferences will
be given to the interrelations between different invariants and their applications. The talk is
based on several works joint with Marianne Akian, LeRoy Beasley, Stephane Gaubert, and
Yaroslav Shitov.

5.10 Extended Formulations: Constructions and Obstructions
Volker Kaibel (Universität Magdeburg, DE)

License Creative Commons BY 3.0 Unported license
© Volker Kaibel

Joint work of Kaibel, Volker; Lee, Jon; Walter, Matthias; Weltge, Stefan

We are going to demonstrate both the power of extended formulations as well as the limitations
of the concept. In the first part (based on joint work with Jon Lee, Matthias Walter and
Stefan Weltge), we present polynomial size extended formulations for the independence
polytopes of regular matroids. On the way, we review beautiful extended formulations for
the spanning tree polytopes of planar graphs due to Williams (2001) and encounter some
very simple, but stunning occurences of representations in higher dimensional spaces. In the
second part (based on joint work with Stefan Weltge), we give an elementary combinatorial
proof of an exponential lower bound on the rectangle covering numbers (and hence on the
nonnegative ranks) of unique disjointness matrices, and we review the implications for the
minimal sizes of extended formulations of the correlation polytopes.

5.11 Semialgebraic geometry of nonnegative and psd ranks
Kaie Kubjas (Aalto Science Institute, FI)

License Creative Commons BY 3.0 Unported license
© Kaie Kubjas

Cohen and Rothblum asked in 1993 whether every rational matrix of nonnegative rank r
has a size r rational nonnegative factorization. In joint work with Elina Robeva and Bernd
Sturmfels, we answer this question positively for matrices of nonnegative rank 3. I will
explain how looking for a semialgebraic description of the set of matrices of nonnegative rank
at most 3 helped us to derive this result, and talk about ongoing research with Elina Robeva
and Richard Z. Robinson on semialgebraic geometry of the set of matrices of psd rank at
most k.
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5.12 Lower bounds on semidefinite programming relaxations: Part I
James R. Lee (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
© James R. Lee

Main reference James R. Lee, Prasad Raghavendra, David Steurer, “Lower bounds on the size of semidefinite
programming relaxations,” arXiv:1411.6317v1 [cs.CC], 2014.

URL http://arxiv.org/abs/1411.6317v1

We introduce a method for proving lower bounds on the size of SDP relaxations for com-
binatorial problems. In particular, we show that the cut, TSP, and stable set polytopes
on n-vertex graphs are not the affine image of the feasible region of any spectrahedron of
dimension less than 2nc for some constant c > 0. A spectrahedron is the feasible region
of an SDP: The intersection of the positive semidefinite cone and an affine subspace. This
yields the first super-polynomial lower bound on the semidefinite extension complexity of
any explicit family of polytopes.

Our results follow from a general technique for proving lower bounds on the positive
semidefinite rank of a nonnegative matrix. To this end, we establish a close connection between
arbitrary SDPs and those arising from the sum-of-squares hierarchy. For approximating
maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are
equivalent in power to those arising from degree-O(1) sum-of-squares relaxations. This
result implies, for instance, that no family of polynomial-size SDP relaxations can achieve
better than a 7/8-approximation for max 3-sat. Part I: After a brief review of the SDP
extended formulation model, I will recast the SDP model as a proof system for certifying the
nonnegativity of a family of statements. The size of the SDP corresponds to the number
of axioms in the system. Then we will attempt to prove that for the family of nonnegative
quadratic functions on the discrete cube, the smallest family of axioms is the subspace
of low-degree multilinear polynomials. This will be reduced the tak of approximating an
arbitrary low-rank PSD factorization by a “low-degree” PSD factorization. In Part II, David
will discuss and prove the existence of an approximate low-degree factorization.

5.13 Extension complexity of polytopes with few vertices (or facets)
Arnau Padrol Sureda (FU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Arnau Padrol Sureda

The number of combinatorial types of d-polytopes with up to d+4 vertices grows superex-
ponentially with d. However, only quadratically many can have realizations with extension
complexity smaller than d+4. These are easy to classify into finitely many families and the
exact extension complexity of each realization is easy to decide.
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5.14 Polytopes of minimum positive semidefinite rank in dimension
four

Kanstantsin Pashkovich (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Kanstantsin Pashkovich

For a given polytope the smallest size of a semidefinite extended formulation can be bounded
from below by the dimension of the polytope plus one. This talk is about polytopes for
which this bound is tight, i.e. polytopes with positive semidefinite (psd) rank equal to
their dimension plus one. I will speak about a classification of psd minimum polytopes in
dimension four.

Joint work with Gouveia, Robinson and Thomas.

5.15 Completely positive semidefinite cone
Teresa Piovesan (CWI – Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Teresa Piovesan

Main reference S. Burgdorf, M. Laurent, T. Piovesan, “On the closure of the completely positive semidefinite cone
and linear approximations to quantum colorings,” arXiv:1502.02842v1 [math.OC], 2015.

URL http://arxiv.org/abs/1502.02842v1

We investigate structural properties of the completely positive semidefinite cone, consisting of
all the n-by-n symmetric matrices that admit a Gram representation by positive semidefinite
matrices of any size. This cone has been introduced to model quantum graph parameters
as conic optimization problems. Recently it has also been used to characterize the set Q of
bipartite quantum correlations, as projection of an affine section of it. We have two main
results concerning the structure of the completely positive semidefinite cone, namely about
its interior and about its closure. On the one hand we construct a hierarchy of polyhedral
cones which covers the interior of the completely positive semidefinite cone, which we use
for computing some variants of the quantum chromatic number by way of a linear program.
On the other hand we give an explicit description of the closure of the completely positive
semidefinite cone, by showing that it consists of all matrices admitting a Gram representation
in the tracial ultraproduct of matrix algebras.

Join work with Sabine Burgdorf and Monique Laurent

5.16 Small Linear Programs Cannot Approximate Vertex Cover Within
a Factor of 2− ε;

Sebastian Pokutta (Georgia Institute of Technology, US)

License Creative Commons BY 3.0 Unported license
© Sebastian Pokutta

We prove that every linear programming (LP) relaxation that approximates vertex cover
within a factor of 2− ε has super-polynomially many inequalities. As a direct consequence of
our methods, we also establish that LP relaxations that approximate independent set within
any constant factor have super-polynomially many inequalities.
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5.17 Geometric properties, matroids, and forbidden minors
Raman Sanyal (FU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Raman Sanyal

Nonegative rank, PSD-rank, and Theta rank are just some geometric properties that are
interesting but difficult to compute. In this talk I will discuss such geometric properties for
matroid base polytopes. In this setup, the class of matroids with bounded rank is closed
under taking minors. I will give some excluded-minor descriptions and connections to classical
results in matroid theory. This is joint work with Francesco Grande.

5.18 On the exactness of moment relaxations
Markus Schweighofer (Universität Konstanz, DE)

License Creative Commons BY 3.0 Unported license
© Markus Schweighofer

Semidefinite programming is optimizing a linear function over a spectrahedron, i.e., the
solution set of a linear matrix inequality. It becomes increasingly important in discrete and
continuous optimization since it serves to solve the hierarchy of moment relaxations for
polynomial optimization problems introduced by Lasserre around the turn of the millennium.
In our days, algorithms like the Goemans-Williamson relaxation for the maximum cut problem
can be viewed as the first level of this hierarchy. Recent work of Lee, Raghavendra and Steurer
seems to suggest that moment relaxations might be universal semidefinite programming
relaxations. The semidefinite programs dual to moment relaxations are sum-of-squares
programs. In this talk, we will try to analyze the moment relaxations for writing a convex
semi-algebraic set as a projected spectrahedron. We have a new positive result building upon
the work of Helton and Nie.

5.19 Sublinear extensions of polygons
Yaroslav Shitov (NRU Higher School of Economics – Moscow, RU)

License Creative Commons BY 3.0 Unported license
© Yaroslav Shitov

Main reference Y. Shitov, “Sublinear extensions of polygons,” arXiv:1412.0728v1 [math.CO], 2014.
URL http://arxiv.org/abs/1412.0728v1

One of the central questions of extended formulations theory is the existence of strong lower
bounds for polytopes naturally arising in optimization. The study of lower bounds for linear
formulations dates back to the 1991 paper by Yannakakis, and, since then, many important
polytopes have been proven to have exponential extension complexity.

This talk will be devoted to the case of generic polytopes, that is, polytopes whose vertices
chosen randomly in space. How strong are linear formulations in this case? Beasley and
Laffey conjectured that, even for a convex n-gon on the plane, the extension complexity can
be worst possible (equal to n). However, it turns out that linear formulations are not that
weak: we show that the extension complexity of any convex n-gon is o-small of n. Moreover,
we can provide examples of generic n-gons whose complexities do not exceed c ·

√
n; this

upper bound coincides with the known lower bound up to a constant factor. Our results
allow us to make a number of conjectures concerning higher-dimensional generic polytopes.
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5.20 Lower bounds for semidefinite programming relaxations: part II
David Steurer (Cornell University – Ithaca, US)

License Creative Commons BY 3.0 Unported license
© David Steurer

Main reference J.R. Lee, P. Raghavendra, D. Steurer, “Lower bounds on the size of semidefinite programming
relaxations,” arXiv:1411.6317v1 [cs.CC], 2014.

URL http://arxiv.org/abs/1411.6317v1

We introduce a method for proving lower bounds on the size of SDP relaxations for com-
binatorial problems. In particular, we show that the cut, TSP, and stable set polytopes
on n-vertex graphs are not the affine image of the feasible region of any spectrahedron of
dimension less than 2nc for some constant c > 0. A spectrahedron is the feasible region
of an SDP: The intersection of the positive semidefinite cone and an affine subspace. This
yields the first super-polynomial lower bound on the semidefinite extension complexity of
any explicit family of polytopes.

Our results follow from a general technique for proving lower bounds on the positive
semidefinite rank of a nonnegative matrix. To this end, we establish a close connection between
arbitrary SDPs and those arising from the sum-of-squares hierarchy. For approximating
maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are
equivalent in power to those arising from degree-O(1) sum-of-squares relaxations. This result
implies, for instance, that no family of polynomial-size SDP relaxations can achieve better
than a 7/8-approximation for max 3-sat.

Part II: We will show that for certain families of matrices, every low-rank PSD factorization
can be approximated by a low-degree PSD factorization. Following Part I, this will reduce
lower bounds for PSD rank to lower bounds for sum-of-squares degree.

5.21 Subgraph Polytopes and Independence Polytopes of Count
Matroids

Stefan Weltge (Universität Magdeburg, DE)

License Creative Commons BY 3.0 Unported license
© Stefan Weltge

Given an undirected graph, the non-empty subgraph polytope is the convex hull of the
characteristic vectors of pairs (F,S) where S is a non-empty subset of nodes and F is a subset
of the edges with both endnodes in S. We obtain a strong relationship between the non-empty
subgraph polytope and the spanning forest polytope. We further show that these polytopes
provide polynomial size extended formulations for independence polytopes of count matroids,
which generalizes recent results obtained by Iwata et al. referring to sparsity matroids. As a
byproduct, we obtain new lower bounds on the extension complexity of the spanning forest
polytope in terms of extension complexities of independence polytopes of these matroids.
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5.22 Quantum Communication Complexity as a Tool to Analyze PSD
Rank

Ronald de Wolf (CWI – Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
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Main reference Jedrzej Kaniewski, Troy Lee, Ronald de Wolf, “Query complexity in expectation,”
arXiv:1411.7280v1 [quant-ph], 2014.

URL http://arxiv.org/abs/1411.7280v1

We start with a brief introduction to the general area of quantum communication complexity,
and then describe the connection with the positive-semidefinite rank of matrices (due to
Fiorini et al. ’12): the logarithm of the psd rank of a matrix M equals the minimal quantum
communication needed by protocols that compute M in expectation. This means that
results about quantum communication complexity can be used to obtain results about
psd rank, both lower and upper bounds. As an example of the latter we present an
efficient quantum communication protocol (due to Kaniewski, Lee, and de Wolf ’14) that
induces an exponentially-close approximation for the slack matrix for the perfect matching
polytope, of psd rank only roughly 2

√
n. In contrast, Braun and Pokutta’14 showed that

such approximating matrices need nonnegative rank 2Ω(n).

6 Problems resolved from Dagstuhl Seminar 13082

Progress has been made on a number of open problems discussed at the preceding seminar
in February 2013. We briefly highlight some of this work here.

1. Is there a nonnegative n-by-n matrix of rank 3 and nonnegative rank n (for n ≥ 7)?
Shortly after the last seminar Yaroslav Shitov showed that this is not the case. He
has since improved these results to show that every nonnegative matrix of rank 3 has
nonnegative rank o(n) in this paper http://arxiv.org/abs/1412.0728.

2. Does rank+(A⊗B) = rank+(A) · rank+(B) ? This was disproven by Hamza Fawzi using
the software to compute nonnegative rank of Nicolas Gillis. The analogous statement
for positive semidefinite rank is also false as shown by Lee, Wei, and de Wolf http:
//arxiv.org/abs/1407.4308.

3. Does positive semidefinite rank depend on the underlying field? Say that a matrix M has
rational entries, and we require the matrices Ai, Bj in the factorization Mij = Tr(AiBj)
to have rational entries as well. Can this require larger matrices than if we allowed
Ai, Bj to have real entries. Gouveia, Fawzi, and Robinson indeed give an example
of a rational matrix M where the rational psd rank is larger than the real psd rank
http://arxiv.org/abs/1404.4864. Lee, Wei, and de Wolf give an example of a family of
matrices where the real psd rank is asymptotically larger than the complex psd rank
(where the factors are allowed to be complex Hermitian psd matrices) by a factor of

√
2

http://arxiv.org/abs/1407.4308.
4. What is the largest possible gap between the approximate rank and the approximate

nonnegative rank for boolean matrices? Let rank1/10(M) denote the minimum rank
of a matrix S such that ‖S −M‖∞ ≤ 1/10. Define rank+

1/10(M) in the same way for
the nonnegative rank. Kol, Moran, Shpilka, and Yehudayoff (Approximate Nonnegative
Rank is Equivalent to the Smooth Rectangle Bound, ICALP 2014) made progress on
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this question by showing that the approximate nonnegative rank of the set intersection
matrix of subsets of [n] is 2Ω(n) while it is known that its approximate rank is 2O(

√
n).

5. For a n-by-n boolean matrix A satisfying A ◦AT = In how small can the rank be? Here
◦ denotes the entrywise product of matrices AT is the transpose of A. This question is
motivated by the fooling set method in communication complexity. It is known that the
rank must be at least

√
n. Friesen, Hamed, Lee, and Theis http://arxiv.org/abs/1208.2920

constructed a growing family of matrices with rank
√

(n) +O(1) over a finite field, and
another construction of matrices with integer entries with rank O(

√
n) over the reals.

Shigeta and Amano (http://arxiv.org/abs/1311.6192) have now essentially answered the
original question, constructing a growing family of boolean matrices with rank n1/2+o(1).

7 Open Problems

Many open problems were posed during the talks at the seminar. There was also a session
on Wednesday evening for presenting open problems at the board and discussing them with
the participants. Jon Swenson from the University of Washington kindly recorded several of
these problems on behalf of the organizers. The main questions that came up are listed below.
Some of these problems are classical—the name indicates the promotor of the problem, not
necessarily the originator.

1. (R. de Wolf) For a regular n-gon it is known that the nonnegative rank of the slack matrix
is Θ(log(n). For the psd rank, the best lower bound is Ω(

√
logn

log logn ) and the best upper
bound is still O(logn). What is the true psd rank of the slack matrix of the n-gon?

2. (T. Lee) Let the rational psd rank of a matrix A ∈ Rm×n+ be the minimum r such
that A(i, j) = B(i,j)

C(i,j) for all i ∈ [m], j ∈ [n] where B,C are nonnegative matrices with
r = rankpsd(B) + rankpsd(C). Does the slack matrix of the correlation polytope have
exponential rational psd rank? Note for contrast that the slack matrix of the perfect
matching polytope has rational psd rank O(n4).

3. (J. Gouveia) Let Fk(M) = SF(M)/GL(k) be the space of factorizations of a matrix M
with psd rank k. Under what conditions is Fk(M) connected? Perhaps one can come up
with a condition involving psd rank, ordinary rank, or something else. (For notation, see
http://www.mat.uc.pt/~jgouveia/dagstuhl.pdf.)

4. (K. Pashkovich) Give a geometric characterization of the polytopes in Rn for which the
psd rank of the slack matrix of P is equal to dim(P ) + 1. This is the smallest that the
psd rank of a polytope can be. Such a characterization exists now for n ≤ 4.

5. (S. Fiorini) Is there a constant k such that for every d and 2-level polytope P of dimension
d the linear extension complexity is 2O(log(d)k)?

6. (V. Kaibel) From results of Rothvoß we know that there is a matroid polytope with
exponential linear extension complexity. Give an explicit example of an explicit matroid
polytope with exponential linear extension complexity.

7. (J. Lee) What is the positive semidefinite rank of the matching polytope?
8. (J. Lee) We currently know that the slack matrix of the correlation polytope CORRn(x, y) =

convex hull(xT y for x, y ∈ {0, 1}n) satisfies N2/13 ≤ log2(rankpsd(CORRn)) ≤ N where
N = 2n. What is the right answer? This is the same as the rank of M(f,x)=f(x) where f
ranges over all quadratic nonlinear functions that are nonnegative on the hypercube.
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9. (J. Lee) Consider the matrix M(G, x) = 0.99 − valG(x) where G ranges over n-vertex
graphs, x ranges over cuts, and valG(x) is the fraction of edges in G that cross the cut
x. What is the non-negative rank of M? The best lower bound we have is nΩ(logn), and
there is a barrier of sorts because the n−10-approximate nonnegative rank (additive error)
is nO(logn).

10. (J. Lee) Can one exhibit an explicit function f : {0, 1}n → R+ so that f cannot be
written as a sum of squares of s-sparse polynomials with s = nO(1) ? Here s-sparse means
that the polynomial contains at most s monomials.

8 Problems resolved from Dagstuhl Seminar 15082

Cohen and Rothblum raised the question in 1993 if the nonnegative rank of a rational matrix
over the reals is the same as its nonnnegative rank over the rationals. More generally they
asked: if A has entries in a sub-semiring S of the semiring R of the nonnegative reals, how
large can the gap be between rankS(A) and rankR(A)? For the latter question, Yaroslav
Shitov (http://arxiv.org/abs/1505.01893) has recently provided the first example where
rankS(A) 6= rankR(A).

http://arxiv.org/abs/1505.01893
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