
Identifying an Honest EXPNP Oracle Among Many
Shuichi Hirahara

Department of Computer Science, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 133-8654, Japan
hirahara@is.s.u-tokyo.ac.jp

Abstract
We provide a general framework to remove short advice by formulating the following compu-
tational task for a function f : given two oracles at least one of which is honest (i.e. correctly
computes f on all inputs) as well as an input, the task is to compute f on the input with the
help of the oracles by a probabilistic polynomial-time machine, which we shall call a selector.
We characterize the languages for which short advice can be removed by the notion of selector:
a paddable language has a selector if and only if short advice of a probabilistic machine that
accepts the language can be removed under any relativized world.

Previously, instance checkers have served as a useful tool to remove short advice of probabilis-
tic computation. We indicate that existence of instance checkers is a property stronger than that
of removing short advice: although no instance checker for EXPNP-complete languages exists
unless EXPNP = NEXP, we prove that there exists a selector for any EXPNP-complete language,
by building on the proof of MIP = NEXP by Babai, Fortnow, and Lund (1991).

1998 ACM Subject Classification F.1.1 Models of Computation;, F.1.2 Modes of Computation,
F.1.3 Complexity Measures and Classes

Keywords and phrases nonuniform complexity, short advice, instance checker, interactive proof
systems, probabilistic checkable proofs

Digital Object Identifier 10.4230/LIPIcs.CCC.2015.244

1 Introduction

Blum and Kannan [10] introduced the notion of instance checker. Roughly speaking, an
instance checker for a function f is an efficient probabilistic machine that, given access to an
oracle, checks if the oracle computes f(x) correctly on a given instance x; the oracle models a
possibly buggy program that purports to compute f , and an instance checker verifies whether
the program works correctly on a given instance.

The notion of instance checker is intimately related to interactive proof systems: the
line of work showing the power of interactive proofs [22, 24, 6] yielded instance checkers for
P#P-, PSPACE-, and EXP-complete languages; in addition, Blum and Kannan [10] gave a
characterization of the languages with an instance checker by a function-restricted interactive
proof system. Since any language with an interactive proof protocol is in NEXP [17], any
language with an instance checker must be in NEXP ∩ coNEXP.

In this paper, we investigate a computational task weaker than instance checking of a
(Boolean) function f : we are given access to two oracles (instead of a single oracle) as well
as an input x; again, both of the oracles purport to compute f ; however, it is assumed that
at least one of the two oracles is honest, i.e. computes f(q) correctly on all inputs q; and
the task is to compute f(x) with the help of the oracles in polynomial time. We shall call a
probabilistic machine doing the task a (probabilistic) selector for f .

If the answers of oracles on the input x agree, then we have only to output the answer,
which is surely correct by the assumption. Thus, the task of a selector is essentially to

© Shuichi Hirahara;
licensed under Creative Commons License CC-BY

30th Conference on Computational Complexity (CCC’15).
Editor: David Zuckerman; pp. 244–263

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2015.244
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Hirahara 245

identify the honest oracle when two oracles disagree on x (i.e. one of the oracles asserts that
f(x) = 0, whereas the other asserts that f(x) = 1).

Our main result shows that there exists a selector for EXPNP-complete languages. We
also show that the notion of selector does not change even if there are one honest oracle
and polynomially many dishonest oracles. Thus, these results can be encapsulated in the
following phrase: “identifying an honest oracle among many is strictly weaker than instance
checking unless EXPNP = NEXP.”

Although the task is weaker than instance checking, a situation in which one may assume
existence of an honest oracle naturally arises out of computation with advice: Suppose, for
example, that a (paddable) language L is computed by a probabilistic machine M with
advice of one bit. We regard M with advice 0 and 1 as two oracles A0 and A1, respectively.
By the definition of advice, either A0 or A1 is honest on all the inputs (of the same length).
Thus, the advice of one bit can be removed if L has a selector. We can in fact remove advice
of size O(logn), since a selector can identify an honest oracle among polynomially many
oracles.

1.1 Removing Short Advice for Probabilistic Computation
In early work as to removing short advice for probabilistic computation, Trevisan and
Vadhan [25] gave an insight into the potential of instance checkability: they demonstrated
that instance checkability can be exploited to remove short advice. Based on the existence
of an instance checker for EXP-complete languages, they showed a quantitative tradeoff
from a uniform worst-case-hardness assumption (i.e. EXP 6⊆ BPTIME(t(nO(1)))) to average-
case hardness of EXP (i.e. EXP contains languages that cannot be solved by probabilistic
computation on a fraction better than 1

2 + 1
t of inputs in time t).

They also argued that their result cannot be obtained via black-box uniform reductions.
Typical constructions of a worst-case to average-case connection are based on the following
scheme: we convert a function f into another function f ′, which is an error-correcting code
of f ; if we have a “black-box” algorithm that computes f ′ on a fraction greater than 1

2 + ε of
the inputs, then a probabilistic machine that takes advice can compute f on all inputs by
decoding f ′. Since it is impossible to uniquely decode f ′ for small ε, the advice is used to
identify f and is provably indispensable.

Indeed, it was the instance checkability of EXP-complete languages that broke the black-
box construction in the proof of Trevisan and Vadhan; the instance checkability enabled
them to remove advice of logarithmic size. Therefore, it will be helpful for future research to
closely understand the property that they actually exploited.

Subsequent to their work, instance checkability has since been exploited to cope with
short advice for probabilistic computation: for example, Barak [7] proved the first hier-
archy theorem for probabilistic computation with short advice; Buhrman, Fortnow, and
Santhanam [12] unconditionally separated BPEXP from BPP with advice of subpolynomial
size; and Buhrman, Fortnow, Koucký, and Loff [11] gave some evidences that a deterministic
efficient computation with oracle access to the set of Kolmogorov-random strings can be
simulated by a probabilistic efficient computation.

1.2 Our Results
In fact, the notion of selector captures a property of removing short advice:

I Theorem 1.1. Let L be an arbitrary paddable language. The following are equivalent:
1. There exists a selector for L.
2. For any oracle R ⊆ {0, 1}∗, it holds that L ∈ BPPR// log implies L ∈ BPPR.

CCC 2015

246 Identifying an Honest EXPNP Oracle Among Many

That is, a paddable language has a selector if and only if short advice can be removed under
any relativized world. (“//′′ means advice that can depend on coin flips of probabilistic
machines as well as input length [25].)

In addition, we construct a selector for EXPNP-complete languages, thereby indicating
an essential difference between selectors and instance checkers. We also give an upper bound
on the languages with a selector:

I Theorem 1.2 (Main Theorem).
1. Every EXPNP-complete language has a selector.
2. Any language with a selector is in Sexp

2 (which is an exponential-time analogue of Sp
2).

Thus, existence of an instance checker is a property stronger than that of removing
short advice (or, equivalently, existence of a selector): although no instance checker for
EXPNP-complete languages exists unless EXPNP = NEXP, short advice of a probabilistic
machine that accepts EXPNP-complete languages can be removed.

Our Techniques
The most technical part of this paper is a proof of the main theorem (Theorem 1.2, Part 1).
In order to construct a selector for EXPNP-complete languages, we build on the proof of
MIP = NEXP by Babai, Fortnow, and Lund [6]. As pointed out by Gábor Tardos in the
paper [6], the complexity of honest provers of the interactive proof system for NEXP-complete
languages can be bounded above by EXPNP. We crucially use this fact to check satisfiability
of an exponential-sized formula with the help of an EXPNP-complete oracle. We also compare
two exponential-sized strings by performing a binary search.

Thanks to plenty of machinery that has been cultivated together with interactive proof
systems, program checking, and PCPs, we can prove the main theorem by careful combinations
of such machinery. For example, we exploit a multilinearity test [6] and the self-correction of
low-degree polynomials [8, 21].

Due to the usage of arithmetization, we suspect that our proof of the main theorem does
algebrize [1] but does not relativize.

Variants of Selectors
We also investigate other variants of selectors: a deterministic selector and a nonadaptive
deterministic selector. We focus on the “suprema” of the languages with a selector, namely,
upper bounds on these languages and existence of a selector for languages complete for a
complexity class that is close to the upper bounds. (Note that the languages with a selector
are not necessarily closed downward. For example, although NEXP ⊆ EXPNP, we do not
know whether NEXP-complete languages have a selector or not.)

For a nonadaptive deterministic selector, we prove polynomial-time analogues of Theo-
rem 1.2:

I Theorem 1.3.
1. Every PNP-complete language has a nonadaptive deterministic selector.
2. Any language with a nonadaptive deterministic selector is in Sp

2 .

The proofs of this theorem will clearly illustrate the basic ideas for Theorem 1.2.
Notice that PNP is close to the upper bound Sp

2 since PNP ⊆ Sp
2 ⊆ ZPPNP [23, 14]. (Under

suitable hardness assumptions, it holds that PNP = Sp
2 by derandomization [19].)

For a deterministic selector, the supremum is PSPACE:

S. Hirahara 247

I Theorem 1.4.
1. Every PSPACE-complete language has a deterministic selector. More generally, any

downward self-reducible language has a deterministic selector.
2. Any language with a deterministic selector is in PSPACE.

As with Theorem 1.1, a property of removing short advice for deterministic computation
can be characterized by existence of a deterministic selector:

I Theorem 1.5. Let L be an arbitrary paddable language. The following are equivalent:
1. There exists a deterministic selector for L.
2. For any oracle R ⊆ {0, 1}∗, it holds that L ∈ PR/ log implies L ∈ PR.

1.3 Comparison with Prior Work
In seminal work by Karp and Lipton [18] as to collapses of a uniform class contained in a
nonuniform class, it was shown that NP ⊆ P/ log implies NP ⊆ P and PSPACE ⊆ P/ log
implies PSPACE ⊆ P. These results are essentially equivalent to the existence of deterministic
selectors for NP- and PSPACE-complete languages, respectively.

Fortnow and Klivans [16] observed that NEXP ⊆ BPP// log implies NEXP = BPP
by combining previous results. Similarly, it is folklore that EXPNP ⊆ BPP// log implies
EXPNP = BPP. This follows by combining the result by Buhrman and Homer [13] stating
that EXPNP ⊆ EXP/poly implies EXPNP = EXP, the existence of an instance checker (or a
selector) for EXP-complete languages, and BPP// log ⊆ P/poly (see [16]).

We clarify the differences between the folklore and our results in two respects. First,
our results can be relativized on the right-hand side. Second, selectors can be used to
quantitatively remove advice of logarithmic size: if we allow a machine to run in time t
(instead of polynomial time), then advice of size log t can be removed.

I Corollary 1.6 (Analogous to Proposition 5.6 in [25]). There are an EXPNP-complete
language L and a constant d ∈ N such that, for any nice time bound1 t : N → N and any
oracle R ⊆ {0, 1}∗, if L ∈ BPTIMER(t(n))// log t(n) then L ∈ BPTIMER(t(nd)).

We mention in passing that, by substituting selectors for instance checkers in the proofs
of Trevisan and Vadhan [25], one can obtain a quantitative tradeoff from a uniform worst-
case-hardness assumption on EXPNP to a uniform average-case hardness of EXPNP (see [25,
Theorem 5.7]).

1.4 Application: Random Strings vs. Randomized Computation
In Section 6, we will give another application in order to demonstrate usefulness of the notion
of selector, by simply substituting selectors for instance checkers in the previous work by
Buhrman, Fortnow, Koucký, and Loff [11].

They tried to show that a deterministic polynomial-time computation with oracle access
to the set of Kolmogorov-random strings is, in some sense, equivalent to a probabilistic
polynomial-time computation; they modeled oracle access to the set of Kolmogorov-random
strings as advice strings of high nonuniform complexity. Although the nonuniform complexity
of the advice strings is required to be much higher than that of Kolmogorov-random strings,
they showed, as a partial result, that if a language L can be solved in deterministic polynomial

1 Although the definition of a nice time bound is the same as in [25], we note that the condition t(n) ≤ 2n

is not needed here.

CCC 2015

248 Identifying an Honest EXPNP Oracle Among Many

time with high nonuniform advice, then L is in BPP with advice of almost linear size [11,
Theorem 13].

Because the goal is to show that L is in BPP without any advice, they further observed
that one can dispense with the advice of almost linear size if there exists an instance checker
for L. From this observation, they showed that, for any class C ∈ {NP,P#P,PSPACE,EXP},
if some C-complete language can be solved in deterministic polynomial time with high
nonuniform advice, then C ⊆ BPP [11, Theorem 15].

In fact, they proved this result by analyzing the two cases: For C ∈ {P#P,PSPACE,
EXP}, they used an instance checker for C-complete languages, whose existence was shown
by [22, 24, 6]; Unfortunately, because it is not known whether NP-complete languages have
instance checkers or not, they needed to prove the result in another way solely for C = NP.

The notion of selector, however, enables us to show the result in a unified way and to
extend the result from {NP,P#P,PSPACE,EXP} to any classes whose complete languages
have a selector. Given the fact that many languages have selectors (e.g. languages with
instance checkers and downward self-reducible languages), it becomes more plausible that
we can dispense with the advice of almost linear size; thereby we slightly strengthen the
connection between Kolmogorov-random strings and randomized computation.

Organization
In Section 2, we give formal definitions, common properties of selectors, and a proof of
Theorem 1.1. Sections 3, 4, and 5 are devoted to investigating nonadaptive deterministic
selectors, probabilistic selectors, and deterministic selectors, respectively. We mention some
possible directions for future work in Section 7.

Preliminaries and Notations
We assume that the reader is familiar with basics of computational complexity (e.g. [2]).

For a Turing machine M , let M(x) denote the output of M on input x ∈ {0, 1}∗. For
an oracle Turing machine M and oracles A0, A1 ⊆ {0, 1}∗, let MA0,A1 represent a machine
equipped with access to oracle A ⊆ {0, 1}∗ such that A(i · q) = Ai(q), for each i ∈ {0, 1} and
for any q ∈ {0, 1}∗. We identify false and true with 0 and 1, respectively. We also identify a
language L ⊆ {0, 1}∗ with its characteristic function from {0, 1}∗ to {0, 1}. For a Boolean
formula ϕ in n variables, we abuse notation and write ϕ : {0, 1}n → {0, 1}.

We say that a language L is paddable if there exists a polynomial-time machine that, on
input (x, 1m) where x ∈ {0, 1}n and n ≤ m, outputs a string y of length m such that y ∈ L
if and only if x ∈ L.

2 Definitions and Common Properties of Selectors

In this section, we give formal definitions of selectors and show common properties that all
types of selectors have. First, we define a probabilistic selector:

IDefinition 2.1 (Probabilistic Selector). A (probabilistic) selector S for a language L ⊆ {0, 1}∗
is a probabilistic polynomial-time oracle Turing machine which computes L with high
probability, given arbitrary two oracles A0, A1 ⊆ {0, 1}∗ such that A0 or A1 is equal to L.
That is, for any input x ∈ {0, 1}∗ and oracles A0, A1 ⊆ {0, 1}∗,

L ∈ {A0, A1 } =⇒ Pr
[
SA0,A1(x) = L(x)

]
≥ 2

3 ,

where the probability is taken over coin flips of S.

S. Hirahara 249

Note that the success probability 2
3 in Definition 2.1 can be enhanced by repetitions. We

often abbreviate a probabilistic selector as a selector.
An oracle equal to L is said to be honest; otherwise it is said to be dishonest.
Next, we define a deterministic selector and a nonadaptive deterministic selector:

I Definition 2.2 (Deterministic Selector). A deterministic selector for a language L is a
deterministic polynomial-time oracle machine S such that SL,X(x) = SX,L(x) = L(x) for
any oracle X ⊆ {0, 1}∗ and for any input x ∈ {0, 1}∗.

I Definition 2.3 (Nonadaptive Deterministic Selector). A nonadaptive deterministic selector
S for a language L is a deterministic polynomial-time oracle machine such that

SL,X(x) = SX,L(x) = L(x) for any oracle X ⊆ {0, 1}∗ and any input x ∈ {0, 1}∗, and
S is nonadaptive, i.e. there exists a polynomial-time machine which, on input x ∈ {0, 1}∗,
outputs the query set Q(x) of all the queries that S makes to either of the oracles.

We state a useful structural property:

I Proposition 2.4. The class of the languages with a selector is closed under polynomial-time
Turing equivalence. Namely, L1 ≤pT L2 and L2 ≤pT L1 imply that if L1 has a selector then so
does L2.

In particular, it is closed under complement. Moreover, for any complexity class C, if a
specific C-complete language has a selector, then so does an arbitrary C-complete language.

Proof. The proof is essentially the same with Beigel’s theorem [10], which shows the same
closure property of instance checkers. The idea is as follows: reduce a L2 problem to a L1
problem by using the reducibility from L2 to L1, and solve the L1 problem by running a
selector for L1, while converting its query (which is an instance of L1) into an instance of L2.

Let Mij be a polynomial-time oracle machine that witnesses the polynomial-time Turing
reduction Li ≤pT Lj for each (i, j) ∈ { (1, 2), (2, 1) } (that is, MLj

ij (x) = Li(x) for any x), and
S be a selector for L1. The following algorithm yields a selector for L2: Given an input
x ∈ {0, 1}n and two oracles A0, A1, simulate M21(x) in order to compute L2(x). If M21
makes a query q, then we try to answer it with L1(q), by running S(q). If S makes a query
q′ to the ith oracle (i ∈ {0, 1}), then answer it with MAi

12 (q′).
Let Ai be an honest oracle (i.e. Ai = L2). Then, we have MAi

12 (q′) = ML2
12 (q′) = L1(q′),

and hence S(q) is simulated under the existence of the honest oracle; thus it outputs L1(q)
correctly with high probability (say, with probability at least 1− 2−n, by running the selector
O(n) times). Therefore, the simulation ofM21(x) results in outputting L2(x) with probability
at least 1− 2−nnO(1). J

I Remark 2.5. Similarly, the class of languages with a deterministic selector is closed under
polynomial-time Turing equivalence, and the class of languages with a nonadaptive deter-
ministic selector is closed under polynomial-time truth-table (i.e. nonadaptive) equivalence.

To prove Theorem 1.1, we show that the definitions of selectors are robust even if we
consider a situation in which we are given polynomially many oracles.

I Lemma 2.6. For any language L ⊆ {0, 1}∗, the following are equivalent:
1. There exists a selector for L.
2. There exists a selector for L that identifies an honest oracle among polynomially many

oracles.

CCC 2015

250 Identifying an Honest EXPNP Oracle Among Many

The latter can be formally stated as follows: for any polynomial m : N→ N, there exists
a probabilistic polynomial-time oracle Turing machine S such that, on input length n ∈ N, it
holds that Pr

[
SA(x) = L(x)

]
≥ 2

3 for any x ∈ {0, 1}n, where A is an arbitrary oracle such
that there exists an index i ∈ {1, · · · ,m(n)} that satisfies A(i, q) = L(q) for all q ∈ {0, 1}∗.

Proof. The one direction is obvious: If there exists a selector that works among m(n) oracles,
then letting m(n) := 2 yields a selector that works among two oracles.

Conversely, let S be a selector (that identifies an honest oracle among two oracles) with
probability at least 1− 1

3m(n) . Given an oracle A, let Ai(q) denote A(i, q) for any i ∈ N. On
input x ∈ {0, 1}n, we first make a query x to all the oracles A1, · · · , Am(n), and divide them
into the two sets according to their answers:

C0 = { j ∈ {1, · · · ,m(n)} | Aj(x) = 0 },
C1 = { k ∈ {1, · · · ,m(n)} | Ak(x) = 1 }.

That is, Cα (α ∈ {0, 1}) is the set of the indices of all the oracles asserting that L(x) = α.
Next, we repeat the following until C0 = ∅ or C1 = ∅: Pick arbitrary elements j ∈ C0

and k ∈ C1. We check which is a supposedly honest oracle by running SAj ,Ak on input x.
If SAj ,Ak (x) = 0, then we doubt Ak and thus eliminate k from C1; Otherwise we doubt Aj
and eliminate j from C0.

Finally, we output 1 if and only if C1 6= ∅.
Now let us analyze this algorithm. It runs in polynomial time because |C0| + |C1| is

decreased by one in each repetition.
We claim the correctness of the algorithm. For simplicity, we assume that L(x) = 0.

Then, there exists an index i ∈ {1, · · · ,m(n)} such that Ai is honest and i ∈ C0. If i ∈ C0
and some k ∈ C1 are picked in a repetition, then Pr

[
SAi,Ak (x) = 0

]
≥ 1− 1

3m(n) . That is, i
remains in C0 with probability at least 1− 1

3m(n) . Since i is picked at most |C1| (≤ m(n))
times, the probability that i remains in C0 is at least 1−m(n) · 1

3m(n) = 2
3 . J

I Remark 2.7. Although Lemma 2.6 is stated only for a probabilistic selector, analogous
statements hold for a deterministic selector and a nonadaptive deterministic selector. For a
deterministic selector, one can easily check that the same proof works. For a nonadaptive
deterministic selector, we must compute the query set in polynomial time. On input
x, let Q(x) denote the query (to either A0 or A1) set of a selector that identifies an
honest oracle among two oracles. Then we can define all the set of possible queries as
Q′(x) := { (i, q) ∈ N×{0, 1}∗ | 1 ≤ i ≤ m(|x|), q ∈ Q(x)∪{x} }, which is clearly computable
in polynomial time.

By using Lemma 2.6, we characterize the class of the paddable languages with a selector
by the property that short advice can be removed under any relativized world. In fact, we
can prove a statement stronger than Theorem 1.1:

I Theorem 2.8.
1. For any paddable language L, if L has a selector, then L ∈ BPPR// log implies L ∈ BPPR

for any oracle R ⊆ {0, 1}∗.
2. For any language L, if L ∈ PR/1 implies L ∈ BPPR for any oracle R ⊆ {0, 1}∗, then L

has a selector.

As a corollary, we immediately obtain Theorem 1.1 (note that PR/1 ⊆ BPPR// log).

S. Hirahara 251

Proof.

Part 1. Let M be a polynomial-time oracle machine which witnesses L ∈ BPPR//a, where
a(n) = O(logn). That is, there exists an advice function α : {0, 1}∗ → {0, 1}∗ such that, for
every n ∈ N,

Pr
r∈{0,1}t(n)

[
∀x ∈ {0, 1}n, MR(x, r, α(r)) = L(x)

]
≥ 5

6 , (1)

where |α(r)| = a(n) and t is a polynomial (see also [25, Definition 5.1]).
Let l(n)

(
= nO(1)) be an upper bound on the running time of a selector for L on inputs

of length n. By Lemma 2.6, there exists a selector S that can identify an honest oracle
among m(n) oracles for m(n) := 2a(l(n)) = nO(1) with probability at least 5

6 . By padding, we
may assume that S makes only queries of length exactly l(n) on each input length n ∈ N

Consider the following probabilistic algorithm: On input x ∈ {0, 1}n, pick a string
r ∈R {0, 1}t(l(n)) uniformly at random, and define oracles by Ai(q) := MR(q, r, i) for any
q ∈ {0, 1}l(n), where i ∈ {1, · · · ,m(n)} is identified with i ∈ {0, 1}a(l(n)). Simulate S on
input x, answering its queries q ∈ {0, 1}l(n) to Ai by computing MR(q, r, i).

If a “good” string r is picked (whose probability is at least 5
6 by (1)), then we have

Ai(q) = MR(q, r, i) = L(q) for any q ∈ {0, 1}l(n), where i = α(r). That is, Ai is honest for
some i with probability at least 5

6 . Thus, the algorithm computes L correctly with probability
at least 1− 1

6 −
1
6 = 2

3 .

Part 2. We prove the contraposition. Assume that L does not have any selectors.
Recall that we regard the computation given oracle access to two oracles R0, R1, namely

MR0,R1 , as MR where R(i · q) = Ri(q) for each i ∈ {0, 1}. Thus, the goal is to show that
there exist oracles R0, R1 ⊆ {0, 1}∗ such that L ∈ PR0,R1/1 and L 6∈ BPPR0,R1 .

We use a diagonalization argument on all the probabilistic polynomial-time oracle machine
M1,M2, · · · . We construct R(e)

0 , R
(e)
1 at stage e ∈ N, and then define Ri :=

⋃
eR

(e)
i for each

i ∈ {0, 1}.
We will construct them so that, for each n ∈ N, there exists jn ∈ {0, 1} such that

Rjn
(q) = L(q) for any q ∈ {0, 1}n. Thus, L ∈ PR0,R1/1 holds because we can make a query

x to obtain Rjn(x) = L(x) with advice {jn}n∈N of one bit.
Let us now construct R(e)

0 , R
(e)
1 , and l(e) ∈ Z, where l(e) represents the maximum length

of the strings that have been fixed. At stage e = 0, we set R(0)
0 = R

(0)
1 = ∅, and l(0) := −1.

At stage e ≥ 1, we claim that R(e−1)
0 and R(e−1)

1 can be extended so that some input x(e)

can fool Me:
I Claim 2.9. For each e ≥ 1, there exist oracles A0, A1 ⊆ {0, 1}∗ and a string x(e) ∈ {0, 1}∗
such that
1. Ai agrees with R(e−1)

i on all the strings of length at most l(e−1) for each i ∈ {0, 1},
2. either A0 or A1 agrees with L on all the strings of length greater than l(e−1), and
3. Pr

[
MA0,A1
e (x(e)) = L(x(e))

]
< 2

3 .

Proof of Claim 2.9. Assume otherwise. That is, for any oracles A0, A1 ⊆ {0, 1}∗ and string
x ∈ {0, 1}∗, we have Pr

[
MA0,A1
e (x) = L(x)

]
≥ 2

3 if Properties 1 and 2 hold. Then, the
following algorithm yields a selector for L, which contradicts the assumption: we hardwire
all the strings in R(e−1)

i of length at most l(e−1) into a table; given oracles A0, A1 one of
which agrees with L, we simulate Me, answering its queries q to Ai (i ∈ {0, 1}) with the
content of the table if |q| ≤ l(e−1) and with Ai(q) otherwise. J

CCC 2015

252 Identifying an Honest EXPNP Oracle Among Many

Define l(e)
(
> l(e−1)) as an upper bound on the length of the queries that MA0,A1

e (x(e))
makes. Then, define R(e)

i as R(e)
i (q) := R

(e−1)
i (q) = Ai(q) if |q| ≤ l(e−1); R(e)

i (q) := Ai(q)
if l(e−1) < |q| ≤ l(e); and R

(e)
i (q) = 0 otherwise, for each q ∈ {0, 1}∗. This completes the

construction of stage e.
On one hand, x(e) witnesses MR0,R1

e not computing L on input x(e) for any e ≥ 1, by
Property 3; thus, we have L 6∈ BPPR0,R1 . On the other hand, for each input length n ∈ N,
either R0 or R1 agrees with L on {0, 1}n, by Property 2; thus, we have L ∈ PR0,R1/1. J

I Remark 2.10. Again, the analogous statement (Theorem 1.5) holds for a deterministic
selector. A proof is essentially the same and hence is omitted.

One can also prove the quantitative version (Corollary 1.6) of Part 1 of Theorem 2.8 by
changing parameters in the proofs of Theorem 2.8 and Lemma 2.6.

3 Nonadaptive Deterministic Selector

In this section we prove Theorem 1.3.
We first prove Part 1 of Theorem 1.3, which states that every PNP-complete language

has a nonadaptive deterministic selector. It is sufficient to show that a specific PNP-complete
language has a selector (recall Proposition 2.4 and Remark 2.5). We construct a nonadaptive
deterministic selector for the following canonical PNP-complete language (see [20] for a proof
of its completeness).

I Definition 3.1 (Lexicographically Maximum Satisfying Assignment; Krentel [20]). The lexi-
cographically maximum satisfying assignment problem contains all the pairs (ϕ, k) such that
ϕ : {0, 1}n → {0, 1} is a satisfiable Boolean formula in n variables for some n ∈ N, and ak = 1,
where a1 · · · an ∈ {0, 1}n denotes the lexicographically maximum satisfying assignment of ϕ.

In other words, the lexicographically maximum satisfying assignment problem is the
decision version of the problem of answering, given a Boolean formula ϕ in n variables, the
lexicographically maximum satisfying assignment if ϕ is satisfiable and 0n otherwise. Note
that it is implicit in the definition that the answer is 0n for an unsatisfiable Boolean formula.

Proof of Part 1 of Theorem 1.3. We show an algorithm of a selector for the lexicographi-
cally maximum satisfying problem, together with its analysis. Let us call two oracles A0 and
A1.

On input (ϕ, k), the set of all the queries that we make is { (ϕ, j) | j ∈ {1, · · · , n} },
where n ∈ N is the number of variables in ϕ. The (presumably) lexicographically maximum
satisfying assignment asserted by each oracle Ai (i ∈ {0, 1}) can be obtained by concatenating
the answers of the oracle, namely Ai(ϕ, 1) ·Ai(ϕ, 2) · · ·Ai(ϕ, n) =: vi ∈ {0, 1}n.

If the kth bits of v0 and v1 agree, then we simply output it because the oracles agree on
input (ϕ, k).

Otherwise v0 is not equal to v1. Therefore, we may assume without loss of generality
that v0 < v1. We check whether v1 is a satisfying assignment or not by evaluating ϕ(v1). If
ϕ(v1) = 1, then we trust the oracle A1 and output A1(ϕ, k) because A1 showed a satisfying
assignment larger than v0; otherwise we doubt A1 and output A0(ϕ, k) because A1 tried to
cheat us by answering an unsatisfying assignment. J

Then we show that any language with a nonadaptive deterministic selector is in Sp
2 .

S. Hirahara 253

Proof of Part 2 of Theorem 1.3. Let L be a language with a nonadaptive deterministic
selector S. We claim that L is in Sp

2 . Let Q(x) = {q1, · · · , qm} be the query set of S on
input x ∈ {0, 1}∗.

We consider the following polynomial-time machine M : Suppose that the input to M is
(x, y, z) ∈ {0, 1}n × {0, 1}m × {0, 1}m. Let y = y1 · · · ym and z = z1 · · · zm. M simulates the
selector S on input x. If S makes a query qi to the oracle A0, then it is answered with yi.
Similarly, if S makes a query qi to the oracle A1, then it is answered with zi.

Then, there exists y ∈ {0, 1}m such that M(x, y, z) = L(x) for any z ∈ {0, 1}m. Indeed,
if y is the concatenation of L(q1), · · · , L(qm), then by the definition of a nonadaptive
deterministic selector, M(x, y, z) correctly outputs L(x) for any z ∈ {0, 1}m, because all the
queries that S makes to A0 are answered correctly. Similarly, there exists z ∈ {0, 1}m such
that M(x, y, z) = L(x) for any y ∈ {0, 1}m. J

4 Probabilistic Selector

In this section we investigate probabilistic selectors.
First, we show that probabilistic selectors can be constructed based on instance checkers.

An instance checker is formally defined as follows:

I Definition 4.1 (Instance Checker [10]). An instance checker C for a language L is a
probabilistic polynomial-time oracle machine such that, given any oracle A ⊆ {0, 1}∗,
1. if A = L then CA accepts with high probability, i.e. Pr

[
CA(x) = 1

]
≥ 2

3 on all the input
x ∈ {0, 1}∗, and

2. for any input x ∈ {0, 1}∗, if A(x) 6= L(x) then CA(x) rejects with high probability, i.e.
Pr
[
CA(x) = 0

]
≥ 2

3 ,
where the probability is taken over coin flips of C.

I Proposition 4.2. Every language with an instance checker has a selector.

Proof. Suppose that a language L has an instance checker C. Given input x ∈ {0, 1}∗ and
two oracles A0, A1 ⊆ {0, 1}∗, we check which is honest, A0 or A1, by computing CA0(x). If
CA0(x) accepts, then we trust A0 and output A0(x); otherwise we doubt A0 and output
A1(x).

Let us analyze the algorithm above. If A0 = L, then CA0(x) accepts with probability at
least 2

3 , and hence we can output A0(x) = L(x) correctly with probability at least 2
3 .

Otherwise, it must hold that A1 = L. If A0(x) = L(x), then we can surely output L(x)
correctly since A0(x) = A1(x) = L(x). If A0(x) 6= L(x), then CA0(x) rejects with probability
at least 2

3 , and thus we can output A1(x) = L(x) correctly with probability at least 2
3 . J

Next, we show an upper bound on the languages with a probabilistic selector. For
completeness, we include a definition of Sexp

2 , which is a straightforward exponential-time
analogue of Sp

2 :

I Definition 4.3. We say that a language L is in Sexp
2 if there exist a time-constructible

function t(n) = 2nO(1) and a Turing machine M running in time 2|x|O(1) on input (x, ·, ·) such
that, for any input x ∈ {0, 1}∗,

∃y ∈ {0, 1}t(|x|),∀z ∈ {0, 1}t(|x|), M(x, y, z) = L(x),

∃z ∈ {0, 1}t(|x|),∀y ∈ {0, 1}t(|x|), M(x, y, z) = L(x).

The proof itself is essentially a corollary of Part 2 of Theorem 1.3:

CCC 2015

254 Identifying an Honest EXPNP Oracle Among Many

Proof of Part 2 of Theorem 1.2. Notice that a probabilistic selector can be simulated by
an exponential-time nonadaptive deterministic selector. In addition, every language with an
exponential-time nonadaptive deterministic selector is in Sexp

2 , which is an exponential-time
analogue of Part 2 of Theorem 1.3. Combining these two facts, it follows that every language
with a probabilistic selector is in Sexp

2 . J

4.1 Selector for EXPNP-complete Languages
In this subsection we prove the main theorem (Theorem 1.2, Part 1). That is, we construct
a selector for EXPNP-complete languages.

Proof Sketch
We sketch the proof of the main theorem. We will construct a selector for a specific
EXPNP-complete language, which is a problem of finding the lexicographically maximum
satisfying assignment of a succinctly described Boolean formula FΦ : {0, 1}2n → {0, 1}. The
basic strategy to construct a selector for this language is the same with that of Part 1 of
Theorem 1.3: Given access to two oracles A0, A1 ⊆ {0, 1}∗, we request them to reveal the
presumably lexicographically maximum satisfying assignments V0, V1 ∈ {0, 1}2

n asserted by
A0, A1, respectively. The rest of the algorithm consists of two parts: First, we determine
the larger assignment of V0 and V1, checking whether V0 < V1 or V0 > V1. Second, we verify
whether the larger assignment satisfies the formula FΦ or not. Obviously, the obstacle is that
there can be exponentially many variables and clauses in FΦ.

For the second part, Babai, Fortnow, and Lund [6] showed that, given access to provers
(or, equivalently, an oracle), one can efficiently check that exponentially many constraints in
FΦ are satisfied: basically, by encoding an assignment as a multilinear function and using
arithmetization, it holds that the assignment satisfies all the clauses in FΦ if and only if the
sum of some low-degree polynomials (that can be computed by the multilinear function and
the arithmetization) over a subdomain {0, 1}l is equal to 0, and the latter can be verified by
using the sum-check protocol [22] (called the LFKN protocol in [6]). As pointed out by Gábor
Tardos [6], since EXPNP is capable of finding a satisfying assignment of an exponential-sized
Boolean formula, the honest oracle in the protocol above can be implemented in EXPNP;
thus, given access to an honest EXPNP-complete oracle (which is A0 or A1), one can verify
the satisfiability.

For the first part, we perform a binary search to obtain the lexicographically first index z
such that V0 and V1 disagree. Thus, we need
1. to check if V0 = V1 on some range of indices, and
2. to split the range into two parts.
We observe that these can be done if we encode a satisfying assignment by the multilinear
extension (as with [6]): Let F be a finite field. We regard the assignments V0, V1 ∈ {0, 1}2

n

as vectors in F2n . There is a bijective correspondence between a vector V ∈ F2n and a
multilinear function Ṽ : Fn → F. For example, if n = 2 and V = (V00, V01, V10, V11), then

Ṽ (x1, x2) = V00(1− x1)(1− x2) + V01(1− x1)x2 + V10x1(1− x2) + V11x1x2.

For Part 1, we can rely on the polynomial identity testing: indeed, since the multilinear
extension is bijective, we have V0 6= V1 if and only if these multilinear extensions Ṽ0 and Ṽ1
differ; thus, it is sufficient to check if the two low-degree polynomials Ṽ0 and Ṽ1 differ.

It is well known that, given access to two low-degree polynomials, one can efficiently
check if these polynomials differ: given access to two functions Ṽ0, Ṽ1, pick a random point

S. Hirahara 255

u ∈R Fn and check if Ṽ0(u) 6= Ṽ1(u). Assuming that the functions are low-degree (which is
true if they are multilinear), the Schwartz-Zippel lemma assures that Ṽ0 and Ṽ1 disagree on
a large fraction of inputs if Ṽ0 6= Ṽ1. Although it is possible that a dishonest oracle tries
to cheat us by storing a high-degree polynomial, we can check whether or not the function
stored by an oracle is close to some multilinear function, by using the multilinearity test [6].

For Part 2, we use the following simple fact: Fixing the first variable of a multilinear
extension Ṽ to 0 or 1, we obtain multilinear extensions that correspond to the first or second
part of V . In the example above, we obtain two multilinear functions:

Ṽ (0, x2) = V00(1− x2) + V01x2, Ṽ (1, x2) = V10(1− x2) + V11x2.

These correspond to multilinear extensions of (V00, V01) and (V10, V11), respectively, for n = 1.
Thus, we can recursively compute the lexicographically first disagreement.

Proof of the Main Theorem
Now we move on to the proof of the main theorem. We construct a selector for the following
EXPNP-complete language, which is an analogue of the NEXP-complete languages called
the oracle-3-satisfiability problem in [6].

I Definition 4.4 (Lexicographically Maximum Oracle-3-satisfying Assignment). Let m,n be
nonnegative integers, and Φ: {0, 1}m+3n+3 → {0, 1} be a Boolean formula. For a Boolean
function X : {0, 1}n → {0, 1}, define FΦ(X) as the following Boolean formula:∧

w∈{0,1}m+3n

Φ(w,X(b1), X(b2), X(b3)),

where w = (y, (b1, b2, b3)) ∈ {0, 1}m × ({0, 1}n)3. A Boolean function X : {0, 1}n → {0, 1}
is said to be an assignment of FΦ. For assignments X,Y : {0, 1}n → {0, 1}, we introduce
the lexicographical ordering: X is less than Y if there exists an index b ∈ {0, 1}n such
that X(b) < Y (b) and X(b′) = Y (b′) for any b′ < b. Let VΦ : {0, 1}n → {0, 1} denote the
lexicographically maximum assignment such that FΦ(VΦ) = 1 (i.e. the lexicographically
maximum satisfying assignment of FΦ); if there is no satisfying assignment, then define
VΦ(b) = 0 for any b ∈ {0, 1}n.

The lexicographically maximum oracle-3-satisfying assignment is a problem of answering
VΦ(bin), given nonnegative integers m,n, a Boolean formula Φ: {0, 1}m+3n+3 → {0, 1}, and
an index bin ∈ {0, 1}n as input.

We omit a proof of EXPNP-completeness because this is a simple exponential-time analogue
of the lexicographically maximum satisfying assignment language [20] (see also [6]).

Suppose that the input is a Boolean formula Φ: {0, 1}m+3n+3 → {0, 1} and an index bin,
and that we have access to two oracles A0 and A1, one of which is honest.

Encoding Assignments by the Multilinear Extension
As with the proof of MIP = NEXP [6], we encode a satisfying assignment by the multilinear
extension. Let F be a prime field such that |F| is sufficiently large (but is bounded by a
polynomial in the input size). We regard {0, 1} ⊆ F in the canonical way. We say that a
function f : Fn → F is multilinear if it is a polynomial of degree at most 1 in each variable.

I Proposition 4.5 (Multilinear Extension). Let f : {0, 1}n → F be an arbitrary function. Then,
there exists a unique multilinear function f̃ : Fn → F such that f and f̃ agree on {0, 1}n.

CCC 2015

256 Identifying an Honest EXPNP Oracle Among Many

Proof Sketch. For a complete proof, the reader is referred to [6, Proposition 4.4]. Here, we
note that the extension f̃ can be explicitly written as

f̃(x) =
∑

b∈{0,1}n

f(b)
n∏
i=1

((1− xi)(1− bi) + xibi) , (2)

where b = (b1, · · · , bn) and x = (x1, · · · , xn) ∈ Fn. J

For the lexicographically maximum satisfying assignment VΦ : {0, 1}n → {0, 1} ⊆ F, let
ṼΦ : Fn → F denote its multilinear extension.

We request the oracles to grant local access to ṼΦ. Formally, we consider the following
search problem: given a Boolean formula Φ, a prime |F|, and x ∈ Fn, the task is to output the
value ṼΦ(x). We regard this problem as a decision problem in the standard way. (Specifically,
given the inputs specified above and auxiliary inputs k ∈ N and b ∈ {0, 1}, the task is to
output one bit saying whether or not the kth bit of a binary representation of ṼΦ(x) is b.)
The problem is still solvable in EXPNP, by first computing VΦ in EXPNP and then computing
the expression (2) straightforwardly in exponential time.

Therefore, the problem can be reduced to the original EXPNP-complete problem; by
using the EXPNP-completeness, one can translate the problem of computing ṼΦ(x) into the
original problem in polynomial time, and hence we can ask the oracles to output ṼΦ(x). Let
f0, f1 : Fn → F denote the answers of the oracles A0, A1, respectively. Then, we have fi = ṼΦ
for an honest oracle Ai.

Although fi is not necessarily multilinear for a dishonest oracle Ai, we can ensure
that it is close to some multilinear function. This can be done by the multilinearity test,
which was one of the main technical ingredients in the proof of MIP = NEXP [6]. For
two functions f, g : Fn → F and a real number δ ∈ R, we say that f and g are δ-close if
Prx∈Fn [f(x) 6= g(x)] < δ.

I Lemma 4.6 (Multilinearity Test [6]). Let n ∈ N and F be a finite field. There exist a
constant δ = nO(1)/|F| and an efficient probabilistic algorithm that, given oracle access to an
arbitrary function f : Fn → F,
1. accepts with probability 1 if f is multilinear, and
2. rejects with high probability if f is not δ-close to any multilinear function.

We perform the multilinearity test for f0 and f1. Suppose that fi is not δ-close to any
multilinear function for a dishonest oracle Ai. Then, the multilinearity test fails and hence
we can doubt Ai with high probability. Therefore, in what follows, we may assume that both
f0 and f1 are δ-close to some multilinear functions f̂0 and f̂1, respectively (note that f̂0 and
f̂1 are unique for small δ).

In reality, we have only access to f0, f1 instead of multilinear functions f̂0, f̂1. However,
we may pretend to have access to the multilinear functions f̂0, f̂1, by using the random
self-reducibility of multivariate low-degree polynomials (also known as the self-correction of
the Reed-Muller code).

I Lemma 4.7 (Self-correction; Beaver and Feigenbaum [8] and Lipton [21]). There exists an
efficient probabilistic algorithm that, given input x ∈ Fn and oracle access to a function
f : Fn → F that is δ-close to a multilinear function f̂ : Fn → F, outputs f̂(x) with probability
at least 1− δ(n+ 1).

Proof. Let a0, · · · , an be arbitrary distinct points in F \ {0}. Pick a random point y ∈R Fn.
By the polynomial interpolation, find the univariate polynomial p of degree at most n such
that f(x+ ai · y) = p(ai) for all i ∈ {0, · · · , n}, and output p(0).

S. Hirahara 257

Since x+ ai · y is uniformly distributed on Fn for any fixed x and ai 6= 0, it holds that
f̂(x+ ai · y) = f(x+ ai · y) with probability at least 1− δ. By the union bound, we have
p(ai) = f̂(x+ ai · y) for each i ∈ {0, · · · , n} with probability at least 1− δ(n+ 1); thus we
have p(0) = f̂(x) with probability at least 1− δ(n+ 1), because f̂ is a polynomial of total
degree at most n. J

I Remark 4.8. In the case of the proof of MIP = NEXP, the self-correcting algorithm was
not needed; for the sum-check protocol, it is sufficient to evaluate a multilinear function
f̂i on random points x ∈R Fn, rather than fixed points. In contrast, we need to evaluate
a multilinear function f̂i on points that are not uniformly distributed, during the binary
search.

In the following, we pretend that the dishonest oracle Ai asserts that the satisfying
assignment is f̂i|{0,1}n , instead of fi|{0,1}n . (Note that it holds that fi|{0,1}n = f̂i|{0,1}n = VΦ
for the honest oracle Ai.)

Identifying the Larger Assignment
We are now ready to describe how to identify the larger assignment. It is sufficient to show
that we can find, with high probability, the lexicographically first index z ∈ {0, 1}n such that
f̂0(z) 6= f̂1(z).

First, we check if f̂0(bin) = f̂1(bin): For each i ∈ {0, 1}, run the self-correcting algorithm
for fi to obtain f̂i(bin). If f̂0(bin) = f̂1(bin), then output it (which is surely the correct answer
since f̂i(bin) = VΦ(bin) for the honest oracle Ai) and halt. Otherwise, perform the binary
search described below.

We compute the lexicographically first disagreement z = (z1, · · · , zn) ∈ {0, 1}n one by
one. For j := 1 to n, repeat the following: Suppose that we have computed z1, · · · , zj−1.
Pick a random point u = (uj+1, · · · , un) ∈R Fn−j uniformly at random. Define x :=
(z1, · · · , zj−1, 0, uj+1, · · · , un) ∈ Fn. For each i ∈ {0, 1}, use the self-correcting algorithm for
fi to obtain f̂i(x). If f̂0(x) 6= f̂1(x), then set zj := 0; else, set zj := 1.

I Claim 4.9. Assume that f̂0(bin) 6= f̂1(bin). Let z ∈ {0, 1}n denote the lexicographically first
index such that f̂0(z) 6= f̂1(z). Then, the binary search described above correctly computes
z with probability at least 1− δn(n+ 1)− n2

|F| .

In particular, by setting |F| large enough, we can compute z with high probability.

Proof. Let j ∈ {1, · · · , n}. Consider the jth iteration and assume that we have computed
z1, · · · , zj−1 correctly. For each i ∈ {0, 1}, let f ′i : Fn−j → F be the multilinear function such
that

f ′i(tj+1, · · · , tn) = f̂i(z1, · · · , zj−1, 0, tj+1, · · · , tn),

for any (tj+1, · · · , tn) ∈ Fn−j . (The binary search tries to check if f ′0 6= f ′1 by the polynomial
identity testing, and sets zj := 0 if and only if f ′0 6= f ′1.)

If zj = 0, then we have f ′0 6= f ′1 because f ′0(zj+1, · · · , zn) 6= f ′1(zj+1, · · · , zn). The
probability that the self-correcting algorithm outputs f̂i(x) correctly is at least 1− δ(n+ 1)
for a dishonest oracle Ai. By the Schwartz-Zippel lemma, the probability that f ′0(u) 6= f ′1(u)
for a random point u ∈R Fn−j is at least 1− n−j

|F| ≥ 1− n
|F| . Therefore, the algorithm sets

zj := 0 correctly with probability at least 1− δ(n+ 1)− n
|F| .

If zj = 1, then it follows from the minimality of z that f ′0(t) = f ′1(t) for every t ∈ {0, 1}n−j .
Since f ′0 and f ′1 are multilinear, we have f ′0 = f ′1 by the uniqueness of the multilinear extension

CCC 2015

258 Identifying an Honest EXPNP Oracle Among Many

(Proposition 4.5) and hence f ′0(u) = f ′1(u) holds for any u ∈ Fn−j . Therefore, since the
self-correcting algorithm outputs f̂i(x) with probability at least 1− δ(n+ 1), the algorithm
sets zj := 1 correctly with probability at least 1− δ(n+ 1).

Overall, the algorithm computes z correctly with probability at least(
1− δ(n+ 1)− n

|F|

)n
≥ 1− δn(n+ 1)− n2

|F|
.

J

We have computed the lexicographically first disagreement z ∈ {0, 1} such that f̂0(z) 6=
f̂1(z). Run the self-correcting algorithm to obtain f̂0(z) and f̂1(z). Without loss of generality
(by swapping the oracles if f̂0(z) > f̂1(z)), we may assume that f̂0(z) < f̂1(z).

Now we know, with high probability, that A1 asserts the larger (presumably satisfying)
assignment f̂1|{0,1}n : {0, 1}n → F.

Verifying the Satisfiability
All that remains is to verify that f̂1|{0,1}n satisfies FΦ, which can be done in the same way
with a proof of MIP = NEXP. For completeness, we sketch a proof suggested in [6, Section
7.1] and observe that it can be done with the help of an EXPNP-complete oracle.

Babai, Fortnow, Lund [6] used the sum-check protocol [22] to check whether or not an
exponentially long assignment satisfies FΦ. Basically, checking if an assignment f̂1|{0,1}n :
{0, 1}n → F satisfies a Boolean formula FΦ reduces to checking if some low-degree polynomials
g : Fl → F evaluate to 0 on {0, 1}l.

Let us arithmetize the Boolean formula Φ: {0, 1}m+3n+3 → {0, 1} to a low-degree
polynomial Φ̃ : Fm+3n+3 → F in the standard way, so that Φ and Φ̃ agree on {0, 1}m+3n+3

(see [6, Section 3.1]). Define g1 : Fm+3n → F and g2 : Fn → F as

g1(w) := 1− Φ̃
(
w, f̂1(b1), f̂1(b2), f̂1(b3)

)
, (3)

g2(b) := f̂1(b)
(

1− f̂1(b)
)
, (4)

where w = (y, (b1, b2, b3)) ∈ Fm× (Fn)3 and b ∈ Fn. Note that since f̂1 and Φ̃ are low-degree
polynomials, so are g1 and g2.

It is easy to see that g1(w) = 0 and g2(b) = 0 for any w ∈ {0, 1}m+3n and b ∈ {0, 1}n if
and only if f̂1|{0,1}n is a satisfying assignment of FΦ. Indeed, g2(b) = 0 forces f̂1|{0,1}n to
be a Boolean function (i.e. f̂1(b) ∈ {0, 1} for any b ∈ {0, 1}n), and g1(w) = 0 means that
Φ(w, f̂1(b1), f̂1(b2), f̂1(b3)) is true for any w ∈ {0, 1}m+3n.

We note that, given a random point w or b, we can compute the value of g1(w) or g2(b)
with high probability by substituting f1 for f̂1 in (3) or (4) (i.e. we do not need to use the
self-correcting algorithm); for a random point w ∈R Fm+3n, it holds that g1(w) computed by
substituting f1 in (3) and g1(w) are identical with probability at least 1− 3δ.

Therefore, it is sufficient to show that we can check if each g ∈ {g1, g2} vanishes on {0, 1}l,
given access to a low-degree polynomial g. (Here, l := m+ 3n if g = g1 and l := n if g = g2.)
There are several ways to verify that g : Fl → F vanishes on {0, 1}l, including [6, Section 7.1]
and [5, 15, 9]. Here, we follow the way of Feige, Goldwasser, Lovász, Safra, and Szegedy [15].

We reduce a task of checking if g : Fl → F vanishes on {0, 1}l to a task of checking if a
sum is equal to 0, the latter of which can be verified by the sum-check protocol (see [15,

S. Hirahara 259

Section 4.2.2] for more details): Pick a random point t = (t1, · · · , tl) ∈R Fl. Consider the
following sum:∑

w=(w1,··· ,wl)∈{0,1}l

g(w)
∏

{i|wi=1}

ti =
∑

w∈{0,1}l

g(w)
∏

i∈{1,··· ,l}

(witi + 1− wi). (5)

If g vanishes on {0, 1}l, then this sum is equal to 0. Otherwise, regarding the left-hand side of
(5) as a multilinear function on variables t1, · · · , tl, the sum is not equal to 0 with probability
at least 1− l

|F| by the Schwartz-Zippel lemma. Therefore, by defining a low-degree polynomial
ht : Fl → F as ht(w) := g(w)

∏
i∈{1,··· ,l}(witi + 1 − wi) for any w ∈ Fl, it is sufficient to

check if the sum of ht(w) over w ∈ {0, 1}l is equal to 0, which can be done by the sum-check
protocol.

We describe the sum-check protocol briefly (see [6, Section 3.2] for a detailed description):
In order to check if

∑
w∈{0,1}l ht(w) = 0, pick a random point r = (r1, · · · , rl) ∈R Fl. Define

a low-degree univariate polynomial gi : F→ F for each i ∈ {1, · · · , l} as

gi(x) :=
∑

(wi+1,··· ,wl)∈{0,1}l−i

ht(r1, · · · , ri−1, x, wi+1, · · · , wl)

and g0(x) := 0. We request the oracle A1 to reveal all the coefficients of the univariate
polynomial gi for all i ∈ {1, · · · , l}. We trust A1 if and only if gi−1(ri−1) = gi(0) + gi(1) for
each i ∈ {1, · · · , l} (the Consistency Test) and gl(rl) = ht(r) (the Final Test). Here, since r
is a random point, we may evaluate ht(r) by using f1 in place of f̂1 in (3) and (4).

We claim that the complexity of the honest oracle to output gi is bounded by EXPNP.
Consider the following search problem: given a Boolean formula Φ, a prime |F|, and r, t ∈ Fl,
the task is to output all the coefficients of gi for all i ∈ {1, · · · , l} (which can be written
in a binary representation of polynomial length), where ṼΦ is substituted for f̂1 in (3) and
(4). Regarding this problem as a decision problem, one can easily show that the problem is
computable in EXPNP. Thus, we can request the oracle A1 to output gi.

Finally, we conclude the proof by analyzing the correctness (assuming that the binary
search succeeded):
1. If A1 is honest, then f̂1 = f1 = ṼΦ. Thus, each g ∈ {g1, g2} vanishes on {0, 1}l, and

hence the sum (5) is 0; therefore, we can trust A1 with probability 1.
2. If A1 is dishonest, then f̂1 does not constitute a satisfying assignment of FΦ. (If it

were a satisfying assignment, then f̂1|{0,1}n would be a satisfying assignment larger than
f̂0|{0,1}n = VΦ.) Thus, for some g ∈ {g1, g2}, the sum (5) is not 0 with probability at
least 1− l

|F| .
Assume that the sum is not 0, and let d ∈ N be an upper bound on the degree of the
low-degree polynomial ht. Suppose that the dishonest oracle claimed that gi is g′i for each
i ∈ {1, · · · , l}. Assuming that the Consistency Tests pass (i.e. g′i−1(ri−1) = g′i(0) + g′i(1)
for each i ∈ {1, · · · l}), it holds that g′l(rl) 6= gl(rl) = ht(r) with probability at least 1− dl

|F|
(see [6, Section 3.2]). The probability that ht can be evaluated correctly on a random
point r ∈R Fl is at least 1 − 3δ. Thus, the Final Test (i.e. g′l(rl) = ht(r)) fails with
probability at least 1− dl

|F| − 3δ.
Overall, we can doubt A1 with probability at least 1− dl

|F| − 3δ − l
|F| .

5 Deterministic Selector

This section is devoted to investigating a deterministic selector.

CCC 2015

260 Identifying an Honest EXPNP Oracle Among Many

To prove the existence of a deterministic selector for a PSPACE-complete language
(Theorem 1.4, Part 1), we show that a deterministic selector can be constructed based on
downward self-reducibility:

I Theorem 5.1. Any downward self-reducible language has a deterministic selector.

Since there exists a downward self-reducible PSPACE-complete language, we immediately
obtain a deterministic selector for any PSPACE-complete language.

Proof. Let L be a downward self-reducible language. Namely, there exists a polynomial-time
oracle machine M such that

ML(x) = L(x) for any x ∈ {0, 1}∗, and
M does not make any queries of length greater than or equal to |x|, on input x ∈ {0, 1}∗.

The idea is to keep a string y such that A0(y) 6= A1(y), and to run MA0 and MA1

to obtain another string q of length less than |y| such that A0(q) 6= A1(q). Consider the
following algorithm: Given an input x ∈ {0, 1}∗ and two oracles A0, A1, if A0(x) = A1(x)
then output it and halt. Else, let y := x and repeat the following: Compute MAi(y) for each
i ∈ {0, 1}. If MA0(y) = MA1(y) =: b, then we trust the oracle Ai such that Ai(y) = b and
output Ai(x). Otherwise, let q be the first query that MA0 and MA1 make on input y such
that A0(q) 6= A1(q). (There exists such a q because MA0(y) 6= MA1(y); moreover, it holds
that |q| < |y| by the definition of downward self-reducibility.) Then, we update y := q and
move on to the next iteration.

This algorithm runs in polynomial time, since |y| decreases in each repetition.
We claim the correctness of the algorithm. It is easy to see that A0(y) 6= A1(y) at the

beginning of each repetition. Suppose that MA0(y) = MA1(y) =: b. Since A0 or A1 is equal
to L, we have b = MA0(y) = MA1(y) = ML(y) = L(y), where the last equality holds by the
definition of M . Moreover, there exists the unique i ∈ {0, 1} such that Ai(y) = b because A0
and A1 disagree on y. Therefore, Ai is honest if and only if Ai(y) = b (= L(y)). J

Then, we claim that any language with a deterministic selector is in PSPACE (Theorem
1.4, Part 2). We thereby prove that the supremum of the languages with a deterministic
selector is PSPACE.

Proof of Part 2 of Theorem 1.4. Let L be a language with a deterministic selector S.
The idea is to regard a computation of S as a game played between the NO player and the

YES player (which correspond to two oracles A0 and A1, respectively): On input x ∈ {0, 1}∗,
the YES player tries to convince the selector S that x ∈ L, whereas the NO player tries to
convince S that x 6∈ L. The YES player chooses A1 ⊆ {0, 1}∗ such that x ∈ A1, and the NO
player chooses A0 ⊆ {0, 1}∗ such that x 6∈ A0. Then, we simulate SA0,A1(x), and the YES
player wins if and only if SA0,A1(x) = 1.

It is easy to see that the YES player has a winning strategy if x ∈ L. Indeed, the YES
player wins by setting A1 = L; similarly, if x 6∈ L, then the NO player wins by setting A0 = L.
Therefore, it is sufficient to show that we can compute the player that has a winning strategy
in PSPACE.

We may restate the game as follows: Simulate S on input x. If S makes a query x to
Ai (i ∈ {0, 1}), then answer it with i. If S makes a query q (6= x) to the oracle A0, then
the NO player gives an arbitrary answer; similarly, if S makes a query to A1, then the YES
player gives an arbitrary answer. (However, we require the players to behave in a consistent
way: if S makes the same query more than once, then a player must give the same answer
that the player answered in the past.)

S. Hirahara 261

Again, one can easily prove that the YES player has a winning strategy for this game if
and only if x ∈ L.

Now we describe a polynomial-time alternating Turing machine that computes L: Simulate
the game described above, while universally guessing the answers of the NO player and
existentially guessing the answers of the YES player. Since a polynomial-time alternating
machine can be simulated in PSPACE, it holds that L ∈ PSPACE. J

6 Random Strings vs. Randomized Computation

In this section, we apply the notion of selector to the proof by Buhrman, Fortnow, Koucký,
and Loff [11]. We thereby extend their result from {NP,P#P,PSPACE,EXP } to any classes
whose complete languages have a selector (e.g. Σp

i ,Π
p
i ,P#P,PSPACE,EXP, and EXPNP).

I Theorem 6.1 (Extended Theorem 15 of [11]). Let α : {0}∗ → {0, 1}∗ be a length preserving
function, c > 0 be a constant such that α(0n) 6∈ i.o-EXP/n− c logn, and C be a complexity
class such that there is a selector for some paddable C-complete language L. If L ∈ P/α(0nd)
for some d > 0, then C ⊆ BPP.

Proof. Let M be a polynomial-time machine such that L(x) = M
(
x, α(0|x|d)

)
, and Gn ⊆

{0, 1}nd be the set of “good” advice:

Gn := { r ∈ {0, 1}n
d

| ∀x ∈ {0, 1}n, L(x) = M(x, r) }.

Buhrman et al. [11] showed that |Gn| ≥ 2nd

/ncd by exploiting the high nonuniform complexity
of advice α(0nd).

As with Theorem 2.8, there exist a polynomial l and a selector S that identifies an honest
oracle among m := 2l(n)cd oracles with probability at least 5

6 , and makes only queries of
length exactly l(n) on inputs of length n.

Consider the following probabilistic algorithm: On input x ∈ {0, 1}n, let l denote l(n).
We pick m random strings r1, · · · , rm ∈R {0, 1}l

d uniformly at random, and define oracles
Ai(q) = M(q, ri), for any i ∈ {1, · · · ,m} and for any q ∈ {0, 1}l. We simulate S on input x,
answering its queries q ∈ {0, 1}l to Ai by computing M(q, ri).

The probability that we fail to pick any “good” advice, namely ri 6∈ Gl for all i, is
(1− |Gl|)2lcd

≤ e−2lcd/lcd

< 1
6 . Thus, we can output the correct answer with probability at

least 2
3 overall. J

7 Concluding Remarks

We state some open problems and possible directions for future work:
Do there exist selectors for NEXP-complete languages or promise-Sexp

2 -complete languages?
In particular, it is interesting to close the gap between EXPNP and Sexp

2 : although these
classes seem “close” in some sense, EXPNP and Sexp

2 are very different in the known
relationship with BPP; it is a notorious open problem whether BPP 6= EXPNP, whereas
one can prove BPP 6= Sexp

2 .
We proved that a property of removing short advice can be captured by the notion of
selector. What about a property of removing advice of polynomial length?
The result of MIP = NEXP was “scaled-down” to obtain the relationship with hardness
of approximating cliques [15], and eventually the PCP theorem [4, 3] was established.
Can we obtain such interesting applications of selectors, by scaling down the selector for
EXPNP-complete languages?

CCC 2015

262 Identifying an Honest EXPNP Oracle Among Many

Acknowledgements. I greatly appreciate Hiroshi Imai’s advice and comments that signifi-
cantly improved the presentation; I thank Akitoshi Kawamura for many useful discussions; I
am deeply grateful to Lance Fortnow and the anonymous CCC reviewers for very helpful
comments that made the paper more understandable; and I would like to thank the reviewer
for suggesting the title.

References
1 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.

ACM Trans. Comput. Theory, 1(1):2:1–2:54, 2009.
2 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, 1st edition, 2009.
3 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
4 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization

of NP. J. ACM, 45(1):70–122, 1998.
5 László Babai, Lance Fortnow, Leonid Levin, and Mario Szegedy. Checking computations

in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, STOC’91, pages 21–32, 1991.

6 László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Comput. Complex., 1:3–40, 1991.

7 Boaz Barak. A probabilistic-time hierarchy theorem for “slightly non-uniform” algorithms.
In Proceedings of the 6th International Workshop on Randomization and Approximation
Techniques, RANDOM’02, pages 194–208, 2002.

8 Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries. In Proceed-
ings of the 7th Annual Symposium on Theoretical Aspects of Computer Science, STACS’90,
pages 37–48, 1990.

9 Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM J.
Comput., 38(2):551–607, 2008.

10 Manuel Blum and Sampath Kannan. Designing programs that check their work. J. ACM,
42(1):269–291, 1995.

11 Harry Buhrman, Lance Fortnow, Michal Koucký, and Bruno Loff. Derandomizing from ran-
dom strings. In Proceedings of the 25th Annual Conference on Computational Complexity,
CCC’10, pages 58–63, 2010.

12 Harry Buhrman, Lance Fortnow, and Rahul Santhanam. Unconditional lower bounds
against advice. In Proceedings of the 36th International Colloquium on Automata, Lan-
guages, and Programming, ICALP’09, pages 195–209, 2009.

13 Harry Buhrman and Steven Homer. Superpolynomial circuits, almost sparse oracles and the
exponential hierarchy. In Proceedings of the 12th Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS’92, pages 116–127, 1992.

14 Jin-Yi Cai. Sp2 ⊆ ZPPNP. J. Comput. Syst. Sci., 73(1):25–35, 2007.
15 Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive

proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996.
16 Lance Fortnow and Adam Klivans. NP with small advice. In Proceedings of the 20th Annual

Conference on Computational Complexity, CCC’05, pages 228–234, 2005.
17 Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover interactive

protocols. Theor. Comput. Sci., 134(2):545–557, 1994.
18 Richard Karp and Richard Lipton. Turing machines that take advice. Enseign. Math,

28(2):191–209, 1982.

S. Hirahara 263

19 Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526,
2002.

20 Mark Krentel. The complexity of optimization problems. J. Comput. Syst. Sci., 36(3):490–
509, 1988.

21 Richard Lipton. New directions in testing. In Joan Feigenbaum and Michael Merritt, editors,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, volume 2,
pages 191–202. American Mathematical Society, 1991.

22 Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992.

23 Alexander Russell and Ravi Sundaram. Symmetric alternation captures BPP. Comput.
Complex., 7(2):152–162, 1998.

24 Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.
25 Luca Trevisan and Salil Vadhan. Pseudorandomness and average-case complexity via uni-

form reductions. Comput. Complex., 16(4):331–364, 2007.

CCC 2015

	Introduction
	Removing Short Advice for Probabilistic Computation
	Our Results
	Comparison with Prior Work
	Application: Random Strings vs. Randomized Computation

	Definitions and Common Properties of Selectors
	Nonadaptive Deterministic Selector
	Probabilistic Selector
	Selector for EXP^NP -complete Languages

	Deterministic Selector
	Random Strings vs. Randomized Computation
	Concluding Remarks

