
Tight Bounds for Conflict-Free Chromatic
Guarding of Orthogonal Art Galleries
Frank Hoffmann1, Klaus Kriegel1, Subhash Suri2, Kevin Verbeek3,
and Max Willert1

1 Freie Universität Berlin, Institut für Informatik, 14195 Berlin, Germany
{hoffmann,kriegel,willerma}@mi.fu-berlin.de

2 Dept. of Computer Science, University of California, Santa Barbara, USA
suri@cs.ucsb.edu

3 Dept. of Mathematics and Computer Science, TU Eindhoven, The Netherlands
k.a.b.verbeek@tue.nl

Abstract
The chromatic art gallery problem asks for the minimum number of “colors” t so that a collection
of point guards, each assigned one of the t colors, can see the entire polygon subject to some
conditions on the colors visible to each point. In this paper, we explore this problem for orthogonal
polygons using orthogonal visibility—two points p and q are mutually visible if the smallest axis-
aligned rectangle containing them lies within the polygon. Our main result establishes that for
a conflict-free guarding of an orthogonal n-gon, in which at least one of the colors seen by every
point is unique, the number of colors is Θ(log logn). By contrast, the best upper bound for
orthogonal polygons under standard (non-orthogonal) visibility is O(logn) colors. We also show
that the number of colors needed for strong guarding of simple orthogonal polygons, where all the
colors visible to a point are unique, is Θ(logn). Finally, our techniques also help us establish the
first non-trivial lower bound of Ω(log logn/ log log logn) for conflict-free guarding under standard
visibility. To this end we introduce and utilize a novel discrete combinatorial structure called
multicolor tableau.
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1 Introduction

The classic Art Gallery Problem (AGP) posed by Klee in 1973 asks for the minimum number
of guards sufficient to watch an art gallery modelled by an n-sided simple polygon P . A
guard sees a point in P if the connecting line segment is contained in P . Therefore, a guard
watches a star polygon contained in P and the question is to cover P by a collection of
stars with smallest possible cardinality. The answer is bn3 c as shown by Chvátal [3]. This
result was the starting point for a rich body of research about algorithms, complexity and
combinatorial aspects for many variants of the original question. Surveys can be found in
the seminal monograph by O’Rourke [10], in Shermer [12], and Urrutia [15].

Graph coloring arguments have been frequently used for proving worst case combinatorial
bounds for art gallery type questions starting with Fisk’s proof [5]. Somehow surprisingly,
chromatic versions of the AGP have been proposed and studied only recently. There are two
chromatic variants: strong chromatic guarding and conflict-free guarding of a polygon P . In
both versions we look for a guard set G and give each guard one of t colors. The chromatic
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Figure 1 Example of conflict-free (left) and strong chromatic (right) r-guarding.

guarding is said to be strong if for each point p ∈ P all guards G(p) that see p have pairwise
different colors [4]. It is conflict-free if in each G(p) there is at least one guard with a unique
color, see [1]. The goal is to determine guard sets such that the number of colors sufficient
for these purposes is minimal. Observe, in both versions minimizing the number of guards is
not part of the objective function. Figure 1 shows a simple orthogonal polygon with both
conflict-free and strong chromatic guardings in the orthogonal visibility model.

To grasp the nature of the problem, observe that it has two conflicting aspects. We have
to guard the polygon but at the same time we want the guards to hide from each other,
since then we can give them the same color. For example, in the strong version we want a
guard set that can be partitioned into a minimal number of subsets and in each subset the
pairwise orthogonal link distance is at least 3. Moreover, we will see a strong dependence of
the results on the underlying visibility model, standard vs. orthogonal. We refer to standard
and orthogonal visibility as l-visibility (line visibility) and r-visibility, respectively. We use
superscripts l and r in the bounds to indicate the model.

Let χlst(n) and χlcf (n) denote the minimal number of colors sufficient for any simple
polygon on n vertices in the strong chromatic and in the conflict-free version if based on line
visibility.

Here is a short summary of known bounds. For simple orthogonal polygons on n vertices
χlcf (n) ∈ O(logn), as shown in [1]. The same bound applies to simple general polygons, see
[2]. Both proofs are based on subdividing the polygon into weak visibility subpolygons that
are in a certain sense independent with respect to conflict-free chromatic guarding. For the
strong chromatic version we have χlst(n) ∈ Θ(n) for simple polygons and χlst(n) ∈ Ω(

√
n)

even for the monotone orthogonal case, see [4]. NP-hardness is discussed in [6]. In [4], simple
O(1) upper bounds are shown for special polygon classes like spiral polygons and orthogonal
staircase polygons combined with line visibility.

Next we state our main contributions for simple orthogonal polygons:
1. For the strong chromatic version we show χrst(n) ∈ Θ(logn).
2. For the conflict-free chromatic version we show χrcf (n) ∈ Θ(log logn).
3. For line visibility guards we have: χlcf (n) ∈ Ω(log logn/ log log logn).

This is the first super-constant lower bound also for general simple polygons.

The chromatic AGP versions can be easily interpreted as coloring questions for concrete
geometric hypergraphs. Smorodinsky ([14]) gives a nice survey of both practical and theoret-
ical aspects of hypergraph coloring. A special role play hypergraphs that arise in geometry.
For example, given a set of points P in the plane and a set of regions R (e.g. rectangles,
disks), we can define the hypergraph HR(P ) = (P, {P ∩ S|S ∈ R}). The discrete interval
hypergraph HI is a concrete example of such a hypergraph: We take n points on a line and
all possible intervals as regions. It is not difficult to see that χcf (HI) ∈ Θ(logn). As to our
AGP versions, we can associate with a given polygon and a guard set a geometric hypergraph.
Its vertices are the guards and a hyperedge is defined by a set of guards for which there
exists a point that can see exactly these guards. Then one wants to color this hypergraph in
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a conflict-free or in a strong manner. Another example is the following rectangle hypergraph.
The vertex set is a set of n axis-aligned rectangles and each maximal subset of rectangles
with a common intersection forms a hyperedge. Here the order for the conflict-free chromatic
number is Ω(logn) and O(log2 n) as shown in [11, 14].

Looking at our results, it is not a big surprise that the combination of orthogonal polygons
with r-visibility yields the strongest bounds. This is simply due to additional structural
properties and this phenomenon has already been observed for the original AGP. For example,
the bn4 c tight worst case bound for covering simple orthogonal polygons with general stars
can also be proven for r-stars (see [10]) and it holds even for orthogonal polygons with holes,
see [7]. Further, while minimizing the number of guards is NP-hard both for simple general
and orthogonal polygons if based on line visibility, it becomes polynomially solvable for
r-visibility in the simple orthogonal case, see [9, 17]. The latter result is based on the solution
of the strong perfect graph conjecture.

The paper is organized as follows. We give necessary basic definitions in the next section.
Then we prove upper bounds in Section 3 using techniques developed in [1, 2]. That means
we also subdivide a simple orthogonal polygon into histograms which are independent with
respect to chromatic guarding. To deal with a single histogram we introduce the notion of
its spine tree. The spine tree provides an elegant and efficient way to describe r-visibility
properties of the histogram. Our main contributions are the lower bound proofs in Section 4.
Especially, we introduce a novel combinatorial structure called multicolor tableau. This
structure enables us to show a first super-constant lower bound for chromatic conflict-free
guarding based on the line visibility model.

2 Preliminaries

We study simple orthogonal polygons, i.e., polygons consisting of alternating vertical and
horizontal edges only. By |P | we denote the number of vertices, by ∂P the boundary and
by intP = P \ ∂P the interior of the polygon. Vertices can be reflex or convex. A reflex
vertex has an interior angle 3π/2 while convex vertices have an interior angle of π/2. We
do not make any general position assumption for the simple orthogonal polygons P . Points
p, q ∈ P are r-visible to each other if the closed axis-parallel rectangle r[p, q] with diagonal
pq is contained in P . In the following, unless stated otherwise, visible always means r-
visible. The visibility polygon of p, the set of all points visible from p, is formally defined as
V (p) = {q ∈ P |r[p, q] ⊆ P}. A polygon that is fully visible from one of its points is called a
star. For P ′ ⊂ P we define its visibility polygon by V (P ′) = ∪p∈P ′V (p). The windows of a
subpolygon P ′ in P are those parts of ∂P ′ that do not belong to ∂P .

For an orthogonal polygon P we construct its induced r-visibility arrangement Ar(P ):
For each reflex vertex of P we extend both incident boundary edges into intP until they meet
the boundary again, therefore defining a subdivision of the polygon. The 2-dimensional faces
of this arrangement are rectangles. Clearly, points from the interior of the same rectangle
(subsequently called cell) have the same visibility polygon.

Finally, we define special classes of orthogonal polygons. A weak visibility polygon, also
known as histogram, has a boundary base edge e connecting two convex vertices such that
V (e) = P . A histogram that is a star is called a pyramid.

Conflict-free and strong chromatic guarding

A set G of points is a guard set for an orthogonal polygon P if their visibility polygons jointly
cover the whole polygon. If in addition each guard g ∈ G is assigned one color γ(g) from a
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fixed finite set of colors [t] = {1, 2, . . . , t} we have a chromatic guarding (G, γ). Next we give
the central definitions. Since these definitions are independent of the visibility model, we
drop the superscripts l and r in the following.
A chromatic guard set (G, γ) for P is strong if each point in P sees only differently colored
guards. (G, γ) is a conflict-free guarding if for any point p ∈ P there is at least one guard in
the guard set G(p) = V (p) ∩G whose color is unique among all guards visible from p.
Figure 1 illustrates both concepts. We denote by χcf (P ) the minimal t such that there is
a conflict-free chromatic guarding set for P using t colors. Maximizing this value over all
polygons with n vertices from a specified polygon class is denoted by χcf (n).
Consequently, we denote by χst(P ) the minimal t such that there is strong chromatic guarding
set using t colors. Maximizing this value for all polygons with n vertices from a specified
polygon class defines the value χst(n). Observe that minimizing the guard number is not
part of the objective function. However, in our upper bound proofs we use at most a linear
number of guards, which is asymptotically optimal in worst case.

3 Upper Bounds

We show two upper bounds for simple orthogonal polygons of size n in the r-visibility model:
χrst(n) ∈ O(logn) and χrcf (n) ∈ O(log logn). These bounds are even realized by guards
placed in the interior of visibility cells. This restriction simplifies the arguments and does not
affect the asymptotic bounds. Furthermore we use the simple fact that a polygon is guarded
iff its interior is guarded. The upper bound proof is inspired by ideas developed in [1, 2] for
conflict-free guarding of simple polygons based on line visibility.

3.1 Reduction to histograms
We reuse the central concept of independence introduced in [1, 2] for line visibility. Inde-
pendence means that one can use the same color sets for coloring guards in independent
subpolygons. The following definition suffices for our purposes and covers both the strong
and the conflict-free variant:

Let P be a simple orthogonal polygon and P1 and P2 subpolygons of P . We call P1 and
P2 independent if no point in P can simultaneously see points from intP1 and intP2.

Next, we hierarchically subdivide an orthogonal polygon P into a linear number of
histograms by a standard window partitioning process, see [1]. For the sake of simplicity we
make the (weak) assumption that the obtained histograms have no degenerate edges.
The subdivision is represented by a partition tree H = HP (e) with histograms as node set.
Let e be a highest horizontal boundary edge. The visibility polygon of e is a histogram Q.
This is the root vertex of H. Now Q splits P into parts and defines a finite set (possibly
empty if Q = P ) of vertical windows w1, . . . , wk. Then we recurse, see Figure 2, with the
windows being the new base edges. Each window corresponds to a last left or right turn
of a shortest orthogonal path from e to the histogram defined by the window. So we can
accordingly label the histograms to be left or right histograms. We define the root Q to be a
left histogram.

Let Hd, d = 0, 1, 2, be the family of all histograms corresponding to nodes in H with
depth congruent d mod 3. We further partition Hd into HL

d and HR
d depending on whether

the histograms are left or right histograms, respectively. In Figure 2 the six families of
histograms are color-coded for illustration. For example, the dark gray histograms are right
children with depth congruent 1 mod 3.
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Figure 2 The partition into histograms and the corresponding partition tree.

Figure 3 Spine tree and the bijection between open cells and monotone paths.

I Lemma 1. Let P be a polygon and HL
d , d = 0, 1, 2 the family of histograms corresponding

to left nodes in H with depth congruent d mod 3. Then the interior of histograms in each
HL
d have pairwise orthogonal link distance at least three, analogously for HR

d , so they are
independent.

3.2 Guarding a histogram
Consider a histogram H ⊆ P with a top horizontal base edge. We associate with H a tree T
as follows. Consider the set of cells in the r-visibility arrangement Ar. If several cells have
the same visibility polygon we choose the leftmost cell as representative of this equivalence
class. Let R be the set of all representatives and B ⊆ R the subset of cells incident to bottom
horizontal histogram edges. We define a partial order for B: We say b′ ≤ b iff the horizontal
polygon edge of b′ is not above that of b and there is an r ∈ R that sees both b and b′. The
Hasse diagram of this poset is a tree T which we call the spine tree of H. A monotone path π
in T is a directed subpath of a root-to-leaf path. It corresponds to a pair (b, b′) with b′ ≤ b.

I Lemma 2. There is a bijective mapping Φ between cells of R and monotone paths in T
such that two cells are visible from each other iff the corresponding monotone paths in T

share a node.

Proof. Let r be a cell in R. Then V (r) ∩ T is some monotone path π in T and we set
Φ(r) = π. For the inverse function let π be a monotone path in T from vertex b down to b′.
We associate with π the unique cell Φ−1(π) = r ∈ R that is vertically aligned with b′ and
horizontally with b.
We observe that Φ is well-defined by the choice of the leftmost representative for visibility
equivalent cells and it is clearly a bijection. Especially, for π = (b, b) we have Φ−1(π) = b.

For the second assertion consider two cells r, r′ visible from each other and the smallest
rectangle that includes both. By extending this rectangle downwards it hits a horizontal
boundary edge. The vertex of T corresponding to that edge is in both Φ(r) and Φ(r′). For
the other direction consider a cell r′′ corresponding to a vertex in Φ(r) ∩ Φ(r′). It has a
bottom horizontal edge. We form a rectangle in H above this edge of maximal width and
maximal height. All cells visible from r′′ are in this rectangle, therefore r sees r′. Figure 3
illustrates the bijection. J
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Figure 4 Example histogram with spine tree.

Figure 5 Monotone paths covering the spine tree and the corresponding compressed spine tree.

Now we translate the geometric concepts of strong and conflict-free guardings of H into
equivalent combinatorial questions for the spine tree T . First of all, a colored guard set for
H defines a set of colored cells in R and this defines, using Φ, a covering of T with colored
monotone guarding paths and vice versa. The condition for strong guarding now reads: No
monotone path in T can intersect two guarding paths of the same color.
For conflict-free guardings we have:

I Lemma 3. Colored guards g1, . . . , gr define a conflict-free guarding for H iff for each
monotone path π in T there exists a color and exactly one guarding path Φ(gi) with that color
such that π ∩ Φ(gi) 6= ∅.

Proof. Consider the cell Φ−1(π). It is seen by a guard g with a unique color c. Therefore
Φ(g) ∩ π 6= ∅. Assume, some other c-colored guarding path Φ(g′) intersects π. Then g′ sees
Φ−1(π), a contradiction. The other direction is analogous. J

Path compression: We use a bottom-up path compression to define a covering (in fact, it
is a partition) of T by monotone paths. To this end we form, in parallel, for all leaves l the
maximal length monotone paths π(l) that end in l and do not use nodes of outdegree bigger
than one. We cut off all π(l) from T . Iterating this procedure yields a unique tree T ∗. Its
nodes represent monotone paths in T . T ∗ has depth O(log |H|) since in each iteration the
number of leaves is reduced by at least half. Figure 4 shows an example histogram with its
spine tree T . The derived compressed spine tree is depicted in Figure 5.

The above path compression technique is similar but not equivalent to that of heavy path
decompositions [13]. In fact, the same bounds can be achieved using the (heavy) path tree
of heavy path decompositions as T ∗.

I Proposition 4. Let H be a histogram with n vertices. In the r-visibility model there is a
strong chromatic guarding with O(logn) colors and a conflict-free chromatic guarding with
O(log logn) colors.

Proof. We construct the spine tree T and the compressed tree T ∗ with depth O(logn). To
get a strong guarding we color the nodes of T ∗, i.e. the guarding paths in T , by their depth
in T ∗.
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Figure 6 Chromatic guarding positions for the example histogram: with colors {1,2,3} strong,
with colors {1,2} conflict-free (in brackets) guarding.

For a conflict-free guarding, consider the color set [t] = {1, 2, . . . , t} and the following
recursively defined set of words: s1 = 1 and si = si−1 ◦ i ◦ si−1. Clearly, a prefix of st with
length k has no more than dlog(k+ 1)e different colors and each connected subword contains
a unique color [14]. Now we color the nodes of T ∗ from the root to the leaves with the
sequence st of length at most the height of the tree, that is O(logn). A color alphabet of
size O(log logn) suffices. J

We illustrate the construction in Figure 6. Observe that we use the same guard positions
for both strong and conflict-free guarding. The compressed spine tree has depth 2. For the
strong guarding we use colors 1, 2 and 3 while for the conflict-free version we use the color
sequence 1-2-1. The guard positions are in the open cells corresponding to the monotone
paths via bijection Φ. Moreover, each guard covers a pyramid as indicated in the figure.

I Theorem 5. Let P be an orthogonal polygon with |P | = n. We have χrst(n) ∈ O(logn)
and χrcf (n) ∈ O(log logn).

Proof. We decompose P into 6 families HL
d , H

R
d , d = 0, 1, 2. Each of the families consists of

pairwise independent histograms each of size at most n. Then we apply Proposition 4. J

4 Lower Bounds

This section contains three lower bound proofs, two tight lower bounds for strong and for
conflict-free r-visibility guards, and a first non-trivial lower bound for conflict-free l-visibility
guards in simple polygons. All use the same underlying orthogonal histogram but they
completely differ with respect to proof techniques. Both r-visibility cases rely on the spine
tree concept from Section 3.2. For line visibility guards we introduce a new combinatorial
method which we call multicolor tableau.

4.1 Lower bounds for r-visibility
All lower bounds established in this paper are based on a simple, recursively defined family
of so called spike polygons Sm, where S1 is a simple square and Sm+1 is formed by two copies
of Sm separated by a vertical spike, but joined by an additional horizontal layer. Figure 7
illustrates this construction together with the subdivision of S2 into visibility cells. Obviously,
the spine tree T of Sm is a balanced binary tree of height m− 1 with vertices corresponding
one-to-one to bottom cells in the r-visibility arrangement. Recall, a colored r-visibility guard
set for Sm corresponds to a covering of T with colored monotone guarding paths and vice
versa.

I Theorem 6. For simple orthogonal polygons χrst(n) ∈ Ω(logn).

SoCG’15
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Proof. We show that any strong guarding of Sm requires m different colors. Consider in the
spine tree T a guarding path π covering the root with unique color c. Then c does not occur
in the left or in the right subtree of the root. By induction we need m− 1 more colors for
the subtree missed by π. Since Sm has n = 2m+1 vertices, the claim follows. J

Next we consider a lower bound for the conflict-free version of the problem. To that end, we
analyze the special case that a root-to-leaf path π in T is covered by short guarding paths
only. Later we show the existence of such a path.

I Lemma 7. Let P = {π1, . . . , πr} be conflict-free guarding paths for a path π with m nodes
such that |πi| = O(mε) for 1 ≤ i ≤ r and some 0 < ε < 1. Then this guarding uses at least
Ω(logm) colors.

Proof. Let K = max{|πi|, 1 ≤ i ≤ r}. We subdivide π into k = m
K ∈ Ω(m1−ε) buckets of

size K each. This way every πi can overlap with at most two buckets. Since P is induced by
a conflict-free guarding, there is a color c1 such that exactly one πi (responsible for π) is
colored with c1. Hence there is a subpath of π consisting of at least k−2

2 buckets that does
not intersect any c1-colored path. Applying this argument recursively we obtain the following
recursive relation for the number of colors needed for k buckets: T (k) ≥ T (k−2

2 ) + 1. This
recursive relation easily solves to T (k) ∈ Ω(log k) ⊆ Ω(logm1−ε) = Ω(logm). J

I Theorem 8. For simple orthogonal polygons χrcf (n) ∈ Ω(log logn).

Proof. We start with a conflict-free guarding of Sm, n = 2m+1 that uses a minimum number
of t colors. By Theorem 5 we have t ∈ O(log logn) = O(logm). Consider the corresponding
family F of guarding paths in T . We denote by U(v0) the set of all guarding paths from F
covering the root v0 of T with a unique color. Since |U(v0)| ≤ t there must be a vertex v1 at
depth blog tc+1 that is not part of any path from U(v0). Now we iterate starting from v1. We
take all guarding paths covering v1 with a unique color and we determine a node v2 at depth
2blog tc+ 2 missed by these paths, and so on. We call the vi’s checkpoints. The checkpoints
define a root-to-leaf path π with length m = logn− 1. Consider Fπ = {π∩πi|πi ∈ F} . Now
form a new family Uπ that consists of all maximal subpaths σ of members πi ∩ π ∈ Fπ such
that σ does not intersect any other member of the same color in Fπ. Let π′ ⊂ π and assume
πi ∈ F gives a unique color to π′. Then π′ ∩ πi is part of some path in Uπ. Thus Uπ is a
conflict-free guarding path family for π. By construction, paths in Uπ have length at most
2blog tc+ 1. Now we can apply Lemma 7. Since 2 log t+ 1 ∈ O(log logm) ⊆ O(m0.5) we get
t ∈ Ω(logm) = Ω(log logn). J

4.2 Blocks, stretched spike polygons, and multicolor tableaux

We now turn our attention to conflict-free chromatic guarding in the line visibility model.
The concepts needed in our lower bound proof are explained in this section.

Columns of Sm are numbered left to right by indices k ∈ [2m − 1], and cells in column
k top down by an additional index i ∈ [dm(k)] where dm(k) is the depth of column k in
Sm. Formally, we have dm(k) = m− π2(k), where π2(k) is the multiplicity of factor 2 in the
prime decomposition of k. Obviously, a column has maximal depth m iff its index is odd.
We introduce the notions of the left and right wing of column k in order to distinguish guard
positions: The left wing WL(k) is the set of all points strictly on the left side of the midline of
column k and the right wing is the complement WR(k) = Sm \WL(k) including the midline.
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Figure 7 Spike polygons S1 and S2 (left), left wing and right wing of column k = 6 in S3 (middle),
blocks and subblocks (right).

We define the block B(k) of column k as the interval of all neighboring columns of depth at
least dm(k), see Figure 7:

B(k) =
[
k −

(
2π2(k) − 1

)
, k +

(
2π2(k) − 1

)]
Geometrically, a block is nothing but a smaller spike polygon. Deleting its central column a
block splits into a left and a right subblock:

BL(k) =
[
k −

(
2π2(k) − 1

)
, k − 1

]
, BR(k) =

[
k + 1, k +

(
2π2(k) − 1

)]
For odd k we have B(k) = {k} and BL(k) = BR(k) = ∅. Later it will be necessary to
subdivide a left or right subblock again into its left and right subblocks. These quarter-
subblocks can be described making use of the definition above together with the central
column l(k) = k − 2π2(k)−1 in block BL(k) and column r(k) = k + 2π2(k)−1 in block BR(k):

BLL(k) = BL(l(k)) , BLR(k) = BR(l(k)) , BRL(k) = BL(r(k)) , BRR(k) = BR(r(k)).

Next we introduce a vertically stretched, but combinatorially equivalent version S↓m of Sm
with the following properties:
1. The width of each column is 1 and hence the total width of S↓m is again 2m − 1.
2. We will distinguish between combinatorial and geometric depth of a column: While

dm(k) = m− π2(k) is still the combinatorial depth, we want the geometric depth to be
d↓m(k) = 2(dm(k)−1)m. That means that the height of the first row is h1 = 1 and the
height of the i-th row hi = 2im − 2(i−1)m.

Consider the r-visibility(!) arrangement of S↓m with the rectangular r-visibility cells ri,k .
Next we discretize the conflict-free l-guarding problem. Let pi,k be the bottom side midpoint
of cell ri,k, that is the cell in row i and column k. If γ : G → [t] for a guard set G is a
conflict-free l-guarding of S↓m, then let Mi,k be the multiset of all colors of guards that see
point pi,k. By mi,k(c) we denote the multiplicity of color c in this multiset.
We callM(γ) = {Mi,k | k ∈ [2m − 1], i ∈ [dm(k)]} the corresponding multicolor tableau. The
set of unique guard colors for point pi,k is defined by Ui,k := {c ∈ [t] |mi,k(c) = 1} and the
standard inclusion relation Mi,k ⊆Mj,l for multisets by: ∀c ∈ [t] mi,k(c) ≤ mj,l(c).
The next two lemmata state simple l-visibility properties in stretched spike polygons.

I Lemma 9. Let g be an l-guard in S↓m and k a column of this polygon with combinatorial
depth d = dm(k) and geometric depth d↓m(k) = 2(d−1)m. If g ∈ WR(k) (g ∈ WL(k)) then g
cannot see any point p at depth d↓(p) ≥ 2dm in the left (right) block of k. In particular, g
cannot see any point pi,j with j ∈ BL(k) (j ∈ BR(k)) and i > d.

Proof. By symmetry it is sufficient to study the first case with g ∈WR(k), d↓(p) ≥ 2dm and
p a point in the subpolygon BL(k). Let qL be the left vertex of the horizontal polygon edge
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k
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Figure 8 Possible guard positions with respect to the point pi,k. Note that it is impossible to
display the exponential growth of the row heights in the drawing.

in column k and consider the slopes s1 and s2 of the lines pqL and qLg. Since the width of
BL(k) is 2m−d − 1 and d↓(p)− d↓(qL) ≥ 2dm − 2(d−1)m = (2m − 1) · 2(d−1)m we get

s1 ≥
(2m − 1) · 2(d−1)m

2m−d − 1 = (2m − 1) · 2(d−1)m

2−d(2m − 2d) >
2(d−1)m

2−d = 2(d−1)m+d

Since g is in the right wing of k it is at least one half unit right of qL and it is at most
d↓m(k) = 2(d−1)m units higher than qL. We get

s2 ≤
2(d−1)m

1/2 = 2(d−1)m+1 ≤ 2(d−1)m+d

Thus s1 > s2, which shows that vertex ql blocks the l-visibility between pi,j and g. J

I Lemma 10. Let g be an l-guard watching a point pi,k ∈ S↓m. Then, for all i′ ≤ i and for
all j ∈ BL(k) or for all j ∈ BR(k), g sees also pi′,j.

Proof. Let d↓(g) be the geometric depth of g in S↓m.
Case 1: (Fig. 8, left) If g is even an r-guard for pi,k then the rectangle spanned by g and

pi,k can be horizontally extended over the whole block B(k) as well as upwards to the
top of S↓m. Thus the claim holds for all j ∈ B(k).
Otherwise there are two more cases, namely that d↓(g) is strictly smaller or strictly larger
than 2(i−1)m.

Case 2: (Fig. 8, middle) d↓(g) < 2(i−1)m, i.e., g sees pi,k from above. If g ∈WR(k) then g
can see all pi,j with j ∈ BL(k) because the line segments pi,jpi,k and pi,kg are contained
in S↓m and they form a chain that is convex from above. If g ∈WL(k) then g can see all
pi,j with j ∈ BR(k) beause the line segments gpi,k and pi,kpij are contained in S↓m and
they form a chain that is convex from above. Moreover it is clear that in S↓m any guard
that sees a point pi,j will see also all points directly above, especially the points pi′,j with
i′ < i.

Case 3: (Fig. 8, right) d↓(g) > 2(i−1)m, i.e., g sees pi,k from below. We can additionally
assume d↓(g) > d↓m(k) = 2(dm(k)−1)m since otherwise we are in Case 1 again. By
Lemma 9 (with the roles of guard and guarded point exchanged) we know that g is in row
i′′ = dm(k) + 1 in some cell ri′′,j with j ∈ BL(k) or j ∈ BR(k). It follows that, depending
on whether g lies in BL(k) or BR(k), g sees all pi′′,j′ with j′ ∈ BL(k) or j′ ∈ BR(k) and
all points above. J

A multicolor tableauM(γ) has standard size if it consists of m rows and N = 2m − 1
columns. But by various constructions, for example restricting it to a single block, one
creates a new tableau having m rows and N ′ = 2m′ − 1 columns for some m′ < m.
The following central definition of t-conformity specifies some necessary, but not sufficient
conditions a multicolor tableau has if it stems from a conflict-free t-chromatic l-guarding of a
stretched spike polygon. Later we will show that t-conformity is preserved when acting on
the tableau with various combinatorial operations defined below.
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I Definition 11. Let m′ ≤ m be natural numbers and N ′ = 2m′ − 1. A combinatorial
scheme of multisets over the ground set [t] of the formM = (Mi,k | k ∈ [N ′], i ∈ [dm(k)]) is
called a t-conform m×N ′ multicolor tableaux if the following properties hold:
1. cf-Property: ∀k∈[N ′] ∀i∈[dm(k)] Ui,k 6= ∅.
2. Monotonicity: ∀k∈[N ′] ∀1≤i<i′≤dm(k) Mi′,k ⊆Mi,k.
3. LR-quarter-block property: If c is a unique color for some point pi,k in column k then

there exists a quarter-subblock BXY (k) with XY ∈ {LL,LR,RL,RR} such that for all
columns j ∈ BXY (k) the following predicate Q(j) holds. Q(j) is the conjunction of three
conditions:
a. c ∈Mi,j

b. c ∈ Ui,j → c 6∈Mdm(k)+2,j
c. c 6∈ Ui,j → ∃Z∈{L,R} ∀j′∈BZ (j) c 6∈ Ui,j′ .

I Proposition 12. The multicolor tableauM(γ) for a conflict-free l-guarding γ of the polygon
S↓m with t colors is t-conform.

Proof. There is nothing to prove for the cf-property and the monotonicity. Now let us
assume c ∈ Ui,k with a corresponding guard g. By symmetry we may suppose g ∈WR(k).
Again, there are three cases to distinguish (see Figure 8):
1. pi,k is r-visible from g.
2. pi,k is not r-visible from g and pi,k is deeper than g.
3. pi,k is not r-visible from g and g is deeper than pi,k.

In Case 1 and Case 2 we choose XY = LL (but XY = LR would also work – the gray
points). In Case 3 the choice depends on the position of g relative to the central column r(k)
of the block BR(k):

XY =
{
RL if g ∈WR(r(k))
RR if g ∈WL(r(k)).

It remains to establish the three conditions of Q(j) for all j ∈ BXY (k). Condition (a) is
obvious in Case 1 and Case 2. In Case 3 it follows from the fact that g cannot be deeper
than d↓m(r(k)), see the proof of Lemma 9.

For condition (b) suppose that c ∈ Ui,j . This implies that g is the only guard with color c
that sees pi,j . However, in all three cases g is in the wing opposite to block BXY (k) and then
g cannot see any point of combinatorial depth dm(k) + 2 in BXY (k) by Lemma 9. It is worth
observing that depth dm(k) + 1 = dm(r(k)) does not suffice in Case 3. Any other c-colored
guard watching pdm(k)+2,j would also watch pi,j and therefore contradicts the uniqueness of
g. Thus c 6∈Mdm(k)+2,j .

Finally, let us suppose c 6∈ Ui,j , then there is a second c-colored guard g′ for pi,j . Now
we can conclude from Lemma 10 that g′ watches all points pi,j′ for j′ ∈ BL(j) or for all
j′ ∈ BR(j). This proves condition (c). J

4.3 The lower bound proof for l-visibility
We start with describing operations on t-conform multicolor tableaux that maintain this
property. In Figure 9 the three operations are geometrically illustrated, however, the
operations themselves are defined for the combinatorial tableaux.

I Proposition 13. IfM = (Mi,k |k ∈ [N ′], i ∈ [dm(k)]) is a t-conform m×N ′ tableau with
N ′ = 2m′ − 1 for some m′ ≤ m, then the following three constructions yield new t-conform
tableauxM1,M2,M3:
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Figure 9 Illustrating horizonal (red), vertical (lower left), and selective (blue-green) truncation
of a 6 × 15 multicolor tableau.

1. Horizontal truncation: M1 results from restrictingM to a block B(k);
2. Vertical truncation: M2 results from deleting the top m−m′ rows ofM;
3. Selective truncation: M3 results from selecting 2m∗ − 1 columns for some m∗ < m′ with

respect to the following rules:
For all even k ∈ [2m∗ − 1] choose column k · 2m′−m∗ ofM as column k ofM3.
For all odd k ∈ [2m∗ − 1] choose any column j of M with (k − 1) · 2m′−m∗ < j <

(k + 1) · 2m′−m∗ , delete from that column all entries of depth d > m∗ +m−m′ and
use this truncated column as column k ofM3.

Proof. Recall, the width of B(k) is N ′′ = 2m′′ − 1 where m′′ = 2π2(k). So the only
thing that one has to do forM1 is shifting the column indexing from the interval B(k) =
[k − 2π2(k) + 1, k + 2π2(k) − 1] to [N ′′]. ThenM1 is t-conform.

For the second construction it is sufficient to shift down by m −m′ the index of each
row that is not deleted. Then M2 is an m′ × N ′ tableau. Note that an old row index
dm(k) = m − π2(k) becomes dm′(k). Having that in mind, it is also trivial that M2 is
t-conform.

The construction ofM3 already contains the renumbering of indices. Again, it is not
hard to conclude the t-conformity because the construction preserves the relation of being a
column in the left (or right) subblock of another column. J

I Theorem 14. χlcf (n) ∈ Ω
(

log logn
log log logn

)
.

Proof. We define a recursive function m(t) by m(1) = 3 and m(t) = 1 + t · (m(t− 1) + 1) for
t ≥ 2.
The inequality m(t) ≤ (t+ 1)! holds for all t ≥ 5 by induction. In fact, m(5) = 651 < 720 =
(5 + 1)! and the induction step works for any t ≥ 6 as follows:

m(t) = t · (m(t− 1) + 1) + 1 ≤ t(t! + 1) + 1 = t · t! + (t+ 1) ≤ t · t! + t! = (t+ 1)!

Claim: An m(t)× (2m(t) − 1) tableau cannot be t-conform.
Before proving this claim we first show how it implies the Theorem. By Proposition 12

and the Claim we have χlcf (n) > t for all t ≥ 5 and some n ≤ 2(t+1)!+1, since 2(t+1)!+1 is
an upper bound on the number of vertices in S↓m(t). This implies log logn ∈ O(t log t) and

finally t ∈ Ω
(

log logn
log log logn

)
.

The proof of the Claim is by induction on t. The induction base is for t = 1. We show it
by contradiction. Any 1-conform 3× 7 tableau requires to set Ui,k = {1} for all k ∈ [7] and
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all i ∈ [d3(k)]. However, looking at the LR-quarter-block property for the situation 1 ∈ U1,4
yields a contradiction with condition (b).

The induction step is also proved by contradiction. Assume that there are no (t − 1)-
conform m′ ×N ′ tableaux with m′ = m(t− 1) and N ′ = 2m′ − 1, but there is a t-conform
m×N tableauM for m = m(t) and N = 2m − 1.

The following reasoning is a bit involved, so we first give an overview.

Outline: The proof by contradiction consists of s stages, for some 1 ≤ s ≤ t. The
precondition of stage s is the existence of a t-conform m × Ns−1 tableau where Ns−1 =
2m−(s−1)(m′+1) − 1 such that the following additional property holds. There is a color set
Cs−1 ⊆ [t] consisting of s − 1 colors, such that for all these c ∈ Cs−1 and for all columns
k ∈ [Ns] holds c 6∈ U1,k. The precondition for the first stage is given by the tableauM with
N0 = N and C0 = ∅. The tableauM will change after every stage. The postcondition of
the s-th stage is either a contradiction obtained by constructing a (t− 1)-conform m′ ×N ′
tableau (this is Case 1: the stop condition) or the validation of the precondition for the next
stage (this is Case 2). This will work in such a way that if the stop condition does not occur
even after the t-th stage, then the derived condition also yields a contradiction. We would
then have Ct = [t] and Nt = 21 − 1 = 1, i.e., it results in a t-conform m× 1 tableau (i.e., a
single column) such that no color can be unique in M1,1.

Proof details: Suppose that an m × Ns−1 tableau M with a color set Cs−1 fulfills the
precondition for stage s with 1 ≤ s ≤ t. Let k = Ns−1+1

2 be the central column ofM and
cs ∈ U1,k. Note that the precondition implies cs 6∈ Cs−1. By the LR-quarter-block property
of t-conform tableaux there is some XY ∈ {LL,LR,RL,RR} such that predicate Q(j) is
true for all j ∈ BXY (k). We subdivide the block BXY (k) into K = 2m′−1 subblocks of
equal width. These subblocks are defined by their central columns jl, where l ∈ [K]. Note
that their width just fits to the precondition of the next stage because BXY (k) has width
Ns−1+1

4 − 1 and, consequently, all B(jl) have width:

Ns−1 + 1
4 · 2m′−1 − 1 = 2m−(s−1)(m′+1)

4 · 2m′−1 − 1 = 2m−(s−1)(m′+1)

2m′+1 − 1 = 2m−s(m′+1) − 1

Due to the conditions encoded in predicate Q(j) for a given color c = cs and column k we
make the following case distinction:
Case 1: ∀l∈[K] ∃j′∈B(jl) cs ∈ U1,j′

Case 2: ∃l∈[K] ∀j′∈B(jl) cs 6∈ U1,j′

In Case 1 we can immediately derive a contradiction using the constructions of Proposition 13:
First we horizontally truncate the current tableauM to the block BXY (k), then we use a
selective truncation with m∗ = m′, where the even columns (indexed by 2l for l ∈ [K]) of
the new tableau are the ones that separate in M the subblocks Bjl

and Bjl+1 from each
other and the odd columns (indexed 2l − 1) are chosen from Bjl

with respect to fulfilling
the property cs ∈ U1,j′ . We show that cs is also unique in the top set of an even column.
Supposing that c = cs is not unique in that set contradicts condition (c) of predicate Q(j).
Thus cs is unique everywhere in the first row of the new tableau. With respect to condition
(b) it does not occur at all in the third row or deeper. Each column of this new tableau
M′ has depth d ≥ 3 because all columns ofM′ have been selected from a quarter subblock
BXY (k). Next we apply a vertical truncation (deletion of top rows) to M′ to obtain an
m′ ×N ′ tableauM∗. This way at least the two top rows ofM′ are deleted and thus color
cs does not occur anymore inM∗. As a resultM∗ is a (t− 1)-conform m′ ×N ′ tableau.
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Case 2 is the easier one because horizontally truncatingM to a block B(jl) such that
∀j′∈B(jl) cs 6∈ U1,j′ yields the precondition for the next stage with Cs = Cs−1 ∪ {cs}. J

5 Conclusion

We have shown tight bounds for the chromatic AGP for orthogonal simple polygons if based
on r-visibility. While the upper bound proofs use known techniques, we consider our lower
bound techniques to be the main technical contribution of the paper. The multicolor tableau
technique used for l-visibility can also directly be applied to the r-visibility version of the
problem, but does not result in a tight bound, see [8]. Our lower bound technique for
r-visibility, however, does not easily generalize to the l-visibility version of the problem, as
it relies on the bijection with monotone paths in the spine tree, which does not exist in
that case. It would therefore be of interest to combine both techniques to obtain a stronger
Ω(log logn) lower bound for χlcf (n) as well. We conjecture that this is indeed the lower
bound for stretched spike polygons. But one cannot hope for more, since O(log logn) is also
an upper bound for the conflict-free guarding of stretched spike polygons using line visibility.
To improve this lower bound one has to look for other polygons.
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