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Abstract
The γ2 norm of a realm×n matrix A is the minimum number t such that the column vectors of A
are contained in a 0-centered ellipsoid E ⊆ Rm that in turn is contained in the hypercube [−t, t]m.
This classical quantity is polynomial-time computable and was proved by the second author
and Talwar to approximate the hereditary discrepancy herdiscA as follows: γ2(A)/O(logm) ≤
herdiscA ≤ γ2(A) · O(

√
logm). Here we provide a simplified proof of the first inequality and

show that both inequalities are asymptotically tight in the worst case.
We then demonstrate on several examples the power of the γ2 norm as a tool for proving

lower and upper bounds in discrepancy theory. Most notably, we prove a new lower bound of
Ω(logd−1 n) for the d-dimensional Tusnády problem, asking for the combinatorial discrepancy of
an n-point set in Rd with respect to axis-parallel boxes. For d > 2, this improves the previous best
lower bound, which was of order approximately log(d−1)/2 n, and it comes close to the best known
upper bound of O(logd+1/2 n), for which we also obtain a new, very simple proof. Applications
to lower bounds for dynamic range searching and lower bounds in differential privacy are given.
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1 Introduction

Discrepancy and hereditary discrepancy. Let V = [n] := {1, 2, . . . , n} be a ground set and
F = {F1, F2, . . . , Fm} be a system of subsets of V . The discrepancy of F is

discF := min
x∈{−1,1}n

disc(F , x),

where the minimum is over all choices of a vector x ∈ {−1,+1}n of signs for the points, and
disc(F , x) := maxi=1,2,...,m

∣∣∑
j∈Fi

xj
∣∣. (A vector x ∈ {−1, 1}n is usually called a coloring in

this context.)
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2 Combinatorial Discrepancy for Boxes via the γ2 Norm

This combinatorial notion of discrepancy originated in the classical theory of irregularities
of distribution, as treated, e.g., in [8, 20, 3], and more recently it has found remarkable
applications in computer science and elsewhere (see [43, 15, 31] for general introductions
and, e.g., [25] for a recent use).

For the subsequent discussion, we also need the notion of discrepancy for matrices: for
an m× n real matrix A we set discA := minx∈{−1,1}n ‖Ax‖∞. If A is the incidence matrix
of the set system F as above (with aij = 1 if j ∈ Fi and aij = 0 otherwise), then the matrix
definition coincides with the one for set systems.

A set system F with small, even zero, discrepancy may contain a set system with large
discrepancy. This phenomenon was exploited in [14] for showing that, assuming P 6=NP,
no polynomial-time algorithm can distinguish systems F with zero discrepancy from those
with discrepancy of order

√
n in the regime m = O(n), which practically means that discF

cannot be approximated at all in polynomial time.
A better behaved notion is the hereditary discrepancy of F , given by

herdiscF := max
J⊆V

disc(F|J),

were F|J denotes the restriction of the set system F to the ground set J , i.e., {F ∩J : F ∈ F}.
Similarly, for a matrix A, herdiscA := maxJ⊆[n] discAJ where AJ is the submatrix of A
consisting of the columns indexed by the set J .

At first sight, hereditary discrepancy may seem harder to deal with than discrepancy. For
example, while discF ≤ k has an obvious polynomial-time verifiable certificate, namely, a
suitable coloring x ∈ {−1, 1}n, it is not at all clear how one could certify either herdiscF ≤ k
or herdiscF > k in polynomial time.

However, hereditary discrepancy has turned out to have significant advantages over
discrepancy. Most of the classical upper bounds for discrepancy of various set systems
actually apply to hereditary discrepancy as well. A powerful tool, introduced by Lovász,
Spencer and Vesztergombi [28] and called the determinant lower bound, works for hereditary
discrepancy and not for discrepancy. The determinant lower bound for a matrix A is the
following algebraically defined quantity:

detlbA = max
k

max
B
| detB|1/k,

where B ranges over all k×k submatrices of A. Lovász et al. proved that herdiscA ≥ 1
2 detlbA

for all A. Later it was shown in [29] that detlbA also bounds herdiscA from above up to a
polylogarithmic factor; namely, herdiscA = O(detlb(A) log(mn)

√
logn ).

While the quantity detlbA enjoys some pleasant properties, there is no known polynomial-
time algorithm for computing it. Bansal [4] provided a polynomial-time algorithm that, given
a system F with herdiscF ≤ D, computes a coloring x witnessing discF = O(D log(mn)).
However, this is not an approximation algorithm for the hereditary discrepancy in the
usual sense, since it may find a low-discrepancy coloring even for F with large hereditary
discrepancy.

The γ2 factorization norm. The first polynomial-time approximation algorithm with a
polylogarithmic approximation factor for hereditary discrepancy was found by the second
author, Talwar, and Zhang [37]. Their result was further strengthened and streamlined by
the second author and Talwar [35], who showed that hereditary discrepancy is approximated
by geometrically defined quantity which turns out to be equivalent to the γ2 factorization
norm from Banach space theory.1 This connection was implicit in [37].

1 This equivalence was pointed out to us by Noga Alon and Assaf Naor.
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Let the `∞ norm ‖E‖∞ of an ellipsoid E be defined as the largest `∞ norm of any point in
E. The geometric quantity studied in [35] is the minimum `∞ norm of a 0-centered ellipsoid
E that contains all column vectors of A. As noticed by several experts, this quantity is equal
to the γ2 norm of A, taken as a linear operator from `n1 to `m∞, which is also defined as

γ2(A) := min{‖B‖2→∞‖C‖1→2 : A = BC}.

Above, ‖ · ‖p→q stands for the `p → `q operator norm, and B,C range over linear operators.
Treating B and C as matrices, it is easy to see that ‖B‖2→∞ is equal to the largest Euclidean
norm of row vectors of B, and ‖C‖1→2 is equal to the largest Euclidean norm of column
vectors of C. We will use both the definition in terms of ellipsoids and the one in terms of a
factorization of A. We use the notation γ2(F) for a set system F to mean the γ2 norm of
the incidence matrix of F .

In [35] it was shown that γ2(A) can be approximated to any desired accuracy in polynomial
time, and the following two inequalities relating γ2(A) to herdiscA were proved: for every
matrix A with m rows,

herdiscA ≥ γ2(A)
O(logm) , and (1)

herdiscA ≤ γ2(A) ·O(
√

logm ) (2)

These results together provide an O(log3/2 m)-approximation algorithm for herdiscA. (As
we will see in Section 4.1 below, (1) is actually valid with log min{m,n} instead of logm.)

The upper bounds guaranteed by inequality (2) are not constructive, in the sense that
we do not know of a polynomial-time algorithm that computes a coloring achieving the
upper bound. Nevertheless, the algorithms of Bansal [4] or Rothvoss [40] can be used to find
colorings with discrepancy γ2(A) ·O(logm) in polynomial time.

Results on the γ2 norm. A number of useful properties of γ2 are known, such as the non-
obvious fact that it is indeed a norm [46] (we give an example of how the triangle inequality
fails for detlb), and the fact that it is is multiplicative under the Kronecker product (or tensor
product) of matrices [26]. We further prove a stronger form of the triangle inequality for
matrices supported on disjoint subsets of the columns.

Linial, Mendelson, Schechtman and Shraibman [27] observed that for sign matrices A,
γ2(A) can be formulated as the optimal value of a semidefinite program. Lee, Shraibman,
and Špalek used generalized the semidefinite program to arbitrary real matrices, and used
it to derive a dual characterization of γ2. We use this characterization to give a simplified
proof of inequality (1). We also prove that γ2(A) is between detlbA and O(detlb(A) logm).

We show that both inequalities (1) and (2) are asymptotically tight in the worst case.
For (1), the asymptotic tightness is demonstrated on the following simple example: for the
system In of initial segments of {1, 2, . . . , n}, whose incidence matrix is the lower triangular
matrix Tn with 1s on the main diagonal and below it, we prove that the γ2 norm is of order
logn, while the hereditary discrepancy is well known to be 1.

Applications in discrepancy theory. In the second part of the paper we apply the γ2 norm
to prove new results on combinatorial discrepancy, as well as to give simple new proofs of
known results.

The most significant result is a new lower bound for the d-dimensional Tusnády’s problem;
before stating it, let us give some background.

SoCG’15



4 Combinatorial Discrepancy for Boxes via the γ2 Norm

The “great open problem.” Discrepancy theory started with a result conjectured by Van
der Corput [18, 19] and first proved by Van Aardenne-Ehrenfest [1, 2], stating that every
infinite sequence (u1, u2, . . .) of real numbers in [0, 1] must have a significant deviation from a
“perfectly uniform” distribution. Roth [39] found a simpler proof of a stronger bound, and he
re-cast the problem in the following setting, dealing with finite point sets in the unit square
[0, 1]2 instead of infinite sequences in [0, 1]:

Given an n-point set P ⊂ [0, 1]2, the discrepancy of P is defined as

D(P,R2) := sup
{∣∣∣|P ∩R| − nλ2(R ∩ [0, 1]d)

∣∣∣ : R ∈ R2

}
,

where R2 denotes the set of all 2-dimensional axis-parallel rectangles (or 2-dimensional
intervals), of the form R = [a1, b1]× [a2, b2], and λ2 is the area (2-dimensional Lebesgue mea-
sure). More precisely, D(P,R2) is the Lebesgue-measure discrepancy of P w.r.t. axis-parallel
rectangles. Further let D(n,R2) = infP :|P |=nD(P,R2) be the best possible discrepancy of
an n-point set.

Roth proved that D(n,R2) = Ω(
√

logn), while earlier work of Van der Corput yields
D(n,R2) = O(logn). Later Schmidt [41] improved the lower bound to Ω(logn).

Roth’s setting immediately raises the question about a higher-dimensional analog of the
problem: letting Rd stand for the system of all axis-parallel boxes (or d-dimensional intervals)
in [0, 1]d, what is the order of magnitude of D(n,Rd)? There are many ways of showing
an upper bound of O(logd−1 n), the first one being the Halton–Hammersley construction
[24, 23], and Roth’s lower bound method yields D(n,Rd) = Ω(log(d−1)/2 n). In these bounds,
d is considered fixed and the implicit constants in the O(.) and Ω(.) notation may depend on
it.

Now, over 50 years later, the upper bound is still the best known, and Roth’s lower bound
has been improved only a little: first for d = 3 by Beck [7] and by Bilyk and Lacey [10], and
then for all d by Bilyk, Lacey, and Vagharshakyan [11]. The lower bound from [11] has the
form Ω((logn)(d−1)/2+η(d)), where η(d) > 0 is a constant depending on d, with η(d) ≥ c/d2

for an absolute constant c > 0. Thus, the upper bound for d ≥ 3 is still about the square of
the lower bound, and closing this significant gap is called the “great open problem” in the
book [8].

Tusnády’s problem. Here we essentially solve a combinatorial analog of this problem. In
the 1980s Tusnády raised a question which, in our terminology, can be stated as follows. Let
P ⊂ R2 be an n-point set, and let R2(P ) := {R ∩ P : R ∈ R2} be the system of all subsets
of P induced by axis-parallel rectangles R ∈ R2. What can be said about the discrepancy of
such a set system for the worst possible n-point P? In other words, what is

disc(n,R2) = max{discR2(P ) : |P | = n}?

We stress that for the Lebesgue-measure discrepancy D(n,Rd) we ask for the best
placement of n points so that each rectangle contains approximately the right number of
points, while for disc(n,R2) the point set P is given by an adversary, and we seek a ±1
coloring so that the points in each rectangle are approximately balanced.

Tusnády actually asked if disc(n,R2) could be bounded by a constant independent of n.
This was answered negatively by Beck [5], who also proved an upper bound of O(log4 n). His
lower bound argument uses a “transference principle,” showing that the function disc(n,R2)
in Tusnády’s problem cannot be asymptotically smaller than the smallest achievable Lebesgue-
measure discrepancy of n points with respect to axis-aligned boxes. (This principle is actually
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simple to prove and quite general; Simonovits attributes the idea to V.T. Sós.) The upper
bound was improved to O((logn)3.5+ε) by Beck [6], to O(log3 n) by Bohus [12], and to the
current best bound of O(log2.5 n) by Srinivasan [44].

The obvious d-dimensional generalization of Tusnády’s problem was attacked by similar
methods. All known lower bounds so far relied on the transference principle mentioned above.
The current best upper bound for d ≥ 3 is O(logd+1/2 n) due to Larsen [25], which is a a
slight strengthening of a previous bound of O(logd+1/2 n

√
log logn ) from [30].

Here we improve on the lower bound for the d-dimensional Tusnády’s problem significantly;
while up until now the uncertainty in the exponent of logn was roughly between (d− 1)/2
and d+ 1/2, we reduce it to d− 1 versus d+ 1/2.

I Theorem 1. For every fixed d ≥ 2 and for infinitely many values of n, there exists an
n-point set P ⊂ Rd with

discRd(P ) = Ω(logd−1 n),

where the constant of proportionality depends only on d.

From the point of view of the “great open problem,” this result is perhaps somewhat
disappointing, since it shows that, in order to determine the asymptotics of the Lebesgue-
measure discrepancy D(n,Rd), one has to use some special properties of the Lebesgue
measure—combinatorial discrepancy cannot help, at least for improving the upper bound.

Using the γ2 norm as the main tool, our proof of Theorem 1 is surprisingly simple. In
a nutshell, first we observe that, since the target bound is polylogarithmic in n, instead
of estimating the discrepancy for some cleverly constructed n-point set P , we can bound
from below the hereditary discrepancy of the regular d-dimensional grid [n]d, where [n] =
{1, 2, . . . , n}. By a standard and well known reduction, instead of all d-dimensional intervals
in Rd, it suffices to consider only “anchored” intervals, of the form [0, b1]× · · · × [0, bd]. Now
the main observation is that the set system Gd,n induced on [n]d by anchored intervals is
a d-fold product of the system In of one-dimensional intervals mentioned earlier, and its
incidence matrix is the d-fold Kronecker product of the matrix Tn.

Thus, by the properties of the γ2 norm established earlier, we get that γ2(Gd,n) is of order
logd n, and inequality (1) finishes the proof of Theorem 1.

At the same time, using the other inequality (2), we obtain a new proof of the best known
upper bound disc(n,Rd) = O(logd+1/2 n), with no extra effort. This proof is very different
from the previously known ones and relatively simple.

The same method also gives a surprisingly precise upper bound on the discrepancy of
the set system of all subcubes of the d-dimensional cube {0, 1}d, where this time d is a
variable parameter, not a constant as before. This discrepancy has previously been studied in
[16, 17, 36], and it was known that it is between 2c1d and 2c2d for some constants c2 > c1 > 0.
In Section 5.1 we show that it is 2(c0+o(1))d, for c0 = log2(2/

√
3) ≈ 0.2075.

Immediate applications in computer science. Our lower bound for Tusnády’s problem
implies a lower bound of √tutq = Ω(logd n) on the update time tu and query time tq
of constant multiplicity oblivious data structures for orthogonal range searching in Rd in
the group model. This lower bound is tight up to a constant. The relationship between
hereditary discrepancy and differential privacy from [33] and the lower bound for Tusnády’s
problem imply that the necessary error for computing orthogonal range counting queries
under differential privacy is Ω(logd−1 n), which is best possible up to a factor of logn.

SoCG’15



6 Combinatorial Discrepancy for Boxes via the γ2 Norm

Our lower and upper bounds on the discrepancy of subcubes of the Boolean cube {0, 1}d
and the results from [37] imply that the necessary and sufficient error for computing marginal
queries on d-attribute databases under differential privacy is (2/

√
3)d+o(d).

General theorems on discrepancy. Transferring the various properties of the γ2 norm into
the setting of hereditary discrepancy via inequalities (1), (2), we obtain general results about
the behavior of discrepancy under operations on set systems. In particular, we get a sharper
version of a result of [29] concerning the discrepancy of the union of several set systems, and
a new bound on the discrepancy of a set system F in which every set F ∈ F is a disjoint
union F1∪ · · ·∪Ft, where F1, . . . ,Ft are given set systems and Fi ∈ Fi, i = 1, 2, . . . , t. These
consequences are presented in the full version of the paper.

Other problems in combinatorial discrepancy: new simple proofs. In the full version
we also we revisit two set systems for which discrepancy has been studied extensively:
arithmetic progressions in [n] and intervals in k permutations of [n]. In both of these cases,
asymptotically tight bounds have been known. Using the γ2 norm we recover almost tight
upper bounds, up to a factor of

√
logn, with very short proofs.

2 Properties of the γ2 norm

2.1 Known properties of γ2

The γ2 norm has various favorable properties, which make it a very convenient and powerful
tool in studying hereditary discrepancy, as we will illustrate later on. We begin by recalling
some classical facts. It is clear that γ2(A) is monotone non-increasing under removing rows
or columns of A. From the definition of γ2(A) in terms of factorization of matrices, we also
see that γ2(A) = γ2(AT ). Moreover, it is well-known (see e.g. [46]) that γ2 is indeed a norm
and therefore satisfies the triangle inequality, i.e. for any two m× n matrices A and B we
have

γ2(A+B) ≤ γ2(A) + γ2(B). (3)

Remark on the determinant lower bound. Here is an example showing that the determinant
lower bound of Lovász et al. does not satisfy the (exact) triangle inequality: for

A =
(

1 1
0 1

)
, B =

(
1 0
−1 1

)
,

we have detlbA = detlbB = 1, but detlb(A+B) =
√

5.
It may still be that the determinant lower bound satisfies an approximate triangle

inequality, say in the following sense: detlb(A1 + · · ·+At)
?
≤ O(t) ·maxi detlbAi. However,

at present we can only prove this kind of inequality with O(t3/2) instead of O(t).

On ellipsoids. An ellipsoid E in Rm is often defined as {x ∈ Rm : xTAx ≤ 1}, where A is
a positive definite matrix. Here we will mostly work with the dual matrix D = A−1. Using
this dual matrix we have (see, e.g., [42])

E = E(D) = {z ∈ Rm : zTx ≤
√
xTDx for all x ∈ Rm}. (4)

This definition can also be used for D only positive semidefinite; if D is singular, then E(D)
is a flat (lower-dimensional) ellipsoid.
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2.2 Putting matrices side-by-side
I Lemma 2. Let A,B be matrices, each with m rows, and let C be a matrix in which each
column is a column of A or of B. Then

γ2(C)2 ≤ γ2(A)2 + γ2(B)2.

Proof. After possibly reordering the columns of C, we can write C = Ã+ B̃, where the first
k columns of Ã are among the columns of A and the remaining ` columns are zeros, and the
last ` columns of B̃ are among the columns of B and the first k are zeros.

Since the γ2 norm is, by definition, monotone under the removal of columns, we have
a := γ2(Ã) ≤ γ2(A), b := γ2(B̃) ≤ γ2(B).

Let E1 = E(D1) and E2 = E(D2) be ellipsoids witnessing γ2(Ã) and γ2(B̃), respectively.
We claim that the ellipsoid E(D1 +D2) contains all columns of Ã and also all columns of B̃.
This is clear from the definition of the ellipsoid E(D) = {z : zTx ≤

√
xTDx for all x}, since

for every x, we have xT (D1 +D2)x = xTD1x+xTD2x ≥ xTD1x by positive semidefiniteness
of D2. All the diagonal entries of D1 are bounded above by a2, those of D2 are at most b2,
and hence ‖E‖∞ ≤

√
a2 + b2. J

I Lemma 3. If C is a block-diagonal matrix with blocks A and B on the diagonal, then
γ2(C) = max(γ2(A), γ2(B)).

Proof. If D1 is the dual matrix of the ellipsoid witnessing γ2(A) and similarly for D2 and B,
then the block-diagonal matrix D with blocks D1 and D2 on the diagonal defines an ellipsoid
containing all columns of C. This is easy to check using the formula (4) defining E(D) and
the fact that a sum of positive definite matrices is positive definite. J

2.3 Dual formulation
Let ‖A‖∗ denote the nuclear norm of a matrix A, which is the sum of the singular values
of A (other names for ‖A‖∗ are Schatten 1-norm, trace norm, or Ky Fan n-norm; see the
text by Bhatia [9] for general background on symmetric matrix norms). Using a semidefinite
formulation of γ2, and the duality theory for semidefinite programming, Lee, Shraibman and
Špalek [26] derived a dual characterization of the γ2 norm as a maximization problem.

I Theorem 4 ([26, Thm. 9]). We have

γ2(A) = max{‖P 1/2AQ1/2‖∗ : P,Q diagonal,nonnegative,TrP = TrQ = 1}.

Several times we will use this theorem with A a square matrix and P = Q = 1
nIn, in

which case it gives γ2(A) ≥ 1
n‖A‖∗.

2.4 Kronecker product
Let A be an m×n matrix and B a p× q matrix. We recall that the Kronecker product A⊗B
is the following mp× nq matrix, consisting of m× n blocks of size p× q each:a11B a12B . . . a1nB

...
...

...
...

am1B am2B . . . amnB


In [26] it was shown that γ2 is multiplicative with respect to the Kronecker product:

I Theorem 5 ([26, Thm. 17]). For every two matrices A,B we have

γ2(A⊗B) = γ2(A) · γ2(B).

SoCG’15



8 Combinatorial Discrepancy for Boxes via the γ2 Norm

3 The γ2 norm for intervals

In this section we deal with a particular example: the system In of all initial segments
{1, 2, . . . , i}, i = 1, 2, . . . , n, of {1, 2, . . . , n}. Its incidence matrix is Tn, the n × n matrix
with 0s above the main diagonal and 1s everywhere else.

It is well known, and easy to see, that herdiscTn = 1. We will prove that γ2(Tn) is of
order logn. This shows that the γ2 norm can be logn times larger than the hereditary
discrepancy, and thus the inequality (1) is asymptotically tight.

Moreover, this example is one of the key ingredients in the proof of the lower bound on
the d-dimensional Tusnády problem.

I Proposition 6. We have γ2(Tn) = Θ(logn).

The upper bound follows from the observation herdiscTn = 1 and the inequality (1)
relating γ2 to herdisc. It can also be proved directly using, for example, a decomposition
into dyadic intervals. In the next section we prove the lower bound.

3.1 Lower bound on γ2(Tn)
Proof of the lower bound in Proposition 6. The nuclear norm ‖Tn‖∗ can be computed
exactly (we are indebted to Alan Edelman and Gil Strang for this fact); namely, the singular
values of Tn are

1
2 sin (2j−1)π

4n+2

, j = 1, 2, . . . , n.

Using the inequality sin x ≤ x for x ≥ 0, we get

γ2(Tn) ≥ 1
n
‖Tn‖∗ ≥

2n+ 1
πn

n∑
j=1

1
2j − 1 = Ω(logn),

as needed.
The singular values of Tn can be obtained from the eigenvalues of the matrix Sn :=

(TnTTn )−1 which, as is not difficult to check, has the following simple tridiagonal form:

2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . −1 2 −1
0 0 0 0 . . . 0 −1 1


(the 1 in the lower right corner is exceptional; the rest of the main diagonal are 2s). By
general properties of eigenvalues and singular values, if λ1, . . . , λn are the eigenvalues of Sn,
then the singular values of Tn are λ−1/2

1 , . . . , λ
−1/2
n . The eigenvalues of Sn are computed, as

a part of more general theory, in Strang and MacNamara [45, Sec. 9]; the calculation is not
hard to verify since they also give the eigenvectors explicitly.

One can also calculate the characteristic polynomial pn(x) of Sn: it satisfies the recurrence
pn+1 = (2− x)pn − pn−1 with initial conditions p1 = 1− x and p0 = 1, from which one can
check that pn(x) = Un

( 2−x
2
)
− Un−1

( 2−x
2
)
, where Un is the degree-n Chebyshev polynomial

of the second kind. The claimed roots of pn can then be verified using the trigonometric
representation of Un. J
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4 Deviation of the γ2 norm from the hereditary discrepancy

Here we consider the inequalities (1) and (2) relating γ2 and herdisc. For the first one we
provide a simplified and elementary proof, and for the second one we briefly recall the proof
and prove asymptotic optimality.

We have already seen in Section 3 that (1) is asymptotically tight. Let us first mention a
simple but perhaps useful observation, which gives a somewhat weaker result.

There are examples of set systems F1,F2 on an n-point set X such that |F1|, |F2| = O(n),
herdiscF1 and herdiscF2 are bounded by a constant (actually by 1), and herdisc(F1 ∪F2) =
Ω(logn) [38, 34]. Therefore, no quantity obeying the triangle inequality (possibly up to a
constant), such as the γ2 norm, can approximate herdisc with a factor better than logn.

4.1 The γ2 norm is at most logm times the determinant lower bound
We establish the following inequalities relating the γ2 norm to the determinant lower bound.

I Theorem 7. For any m× n matrix A of rank r,

detlbA ≤ γ2(A) ≤ O(log r) · detlbA.

Inequality (1) is an immediate consequence of the second inequality in the theorem (and
of r ≤ min{m,n}):

γ2(A) ≤ O(log min{m,n}) · detlbA ≤ O(log min{m,n}) herdiscA,

where the last inequality uses the Lovász–Spencer–Vesztergombi bound herdiscA ≥ 1
2 detlbA.

In [35], inequality (1) was proved by using a sophisticated tool, the restricted invertibility
principle of Bourgain and Tzafriri; see [13, 47]. Our proof of Theorem 7 is based only on
elementary linear algebra and the determinant lower bound.

Before we prove Theorem 7, we need a lemma similar to an argument in [29].

I Lemma 8. Let A be an k × n matrix, and let W be a nonnegative diagonal unit-trace
n× n matrix. Then there exists a k-element set J ⊆ [n] such that

|detAJ |1/k ≥
√
k/e · | detAWAT |1/2k.

Proof of Theorem 7. For the inequality detlbA ≤ γ2(A), we first observe that if B is a
k × k matrix, then

|detB|1/k ≤ 1
k
‖B‖∗ (5)

Indeed, the left-hand side is the geometric mean of the singular values of B, while the
right-hand side is the arithmetic mean.

Now let B be a k × k submatrix of A with detlbA = | detB|1/k; then

detlbA = | detB|1/k ≤ 1
k
‖B‖∗ ≤ γ2(B) ≤ γ2(A).

For the second inequality γ2(A) ≤ O(logm) · detlbA, we compare detBBT and the
nuclear norm of B for a carefully chosen (rectangular) matrix B. First let P0 and Q0 be
diagonal unit-trace matrices with γ2(A) = ‖P 1/2

0 AQ
1/2
0 ‖ as in Theorem 4. For brevity, let us

write Ã := P
1/2
0 AQ

1/2
0 , and let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be the nonzero singular values of Ã.
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By a standard bucketing argument (see, e.g., [29, Lemma 7]), there is some t > 0 such
that if we set K := {i ∈ [m] : t ≤ σi < 2t}, then

∑
i∈K

σi ≥ Ω( 1
log r )

m∑
i=1

σi.

Let us set k := |K|.
Next, we define a suitable k × n matrix with singular values σi, i ∈ K. Let Ã = UΣV T

be the singular-value decomposition of Ã, with U and V orthogonal and Σ having σ1, . . . , σr
on the main diagonal.

Let ΠK be the k ×m matrix corresponding to the projection on the coordinates indexed
by K; that is, ΠK has 1s in positions (1, i1), . . . , (k, ik), where i1 < . . . < ik are the elements
of K. The matrix ΠKΣ = ΠKU

T ÃV = UTKÃV has singular values σi, i ∈ K, and so does
the matrix UTKÃ, since right multiplication by the orthogonal matrix V T does not change
the singular values.

This k×m matrix UTKÃ is going to be the matrix B alluded to in the sketch of the proof
idea above. We have

|detBBT |1/2k =
(∏
i∈K

σi

)1/k
≥ 1

2k
∑
i∈K

σi = Ω
( 1
k log r

)
γ2(A).

It remains to relate detBBT to the determinant of a square submatrix of A, and this is
where Lemma 8 is applied—actually applied twice, once for columns, and once for rows.

First we set C := UTKP
1/2
0 A; then B = CQ

1/2
0 . Applying Lemma 8 with C in the role of

A and Q0 in the role of W , we obtain a k-element index set J ⊆ [n] such that

|detCJ |1/k ≥
√
k/e · | detBBT |1/2k.

Next, we set D := P
1/2
0 AJ , and we claim that detDTD ≥ (detCJ)2. Indeed, we have

CJ = UTKD, and, since U is an orthogonal transformation, (UTD)T (UTD) = DTD. Then,
by the Binet–Cauchy formula,

detDTD = det(UTD)T (UTD) =
∑
L

(detUTLD)2

≥ (detUTKD)2 = (detCJ)2.

The next (and last) step is analogous. We have DT = ATJP
1/2
0 , and so we apply Lemma 8

with ATJ in the role of A and P0 in the role of W , obtaining a k-element subset I ⊆ [m] with
|detAI,J |1/k ≥

√
k/e · | detDTD|1/2k (where AI,J is the submatrix of A with rows indexed

by I and columns by J).
Following the chain of inequalities backwards, we have

detlbA ≥ |detAI,J |1/k ≥
√
k/e · | detDTD|1/2k ≥

√
k/e · | detCJ |1/k

≥ (k/e)|detBBT |1/2k = Ω
( 1

log r
)
γ2(A),

and the theorem is proved. J

4.2 The hereditary discrepancy can be
√

logm times larger than γ2

Next, we show that
√

logm in inequality (2) cannot be replaced by any asymptotically
smaller factor.
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I Theorem 9. For all m, there are m× n matrices A, with n = Θ(logm), such that

herdiscA ≥ Ω(
√

logm ) · γ2(A).

Proof. A very simple example is the incidence matrix A of the system of all subsets of [n],
with m = 2n, whose discrepancy is n/2 = Θ(logm). Indeed, the characteristic vectors of all
sets fit into the ball of radius

√
n, and hence γ2(A) = γ2(AT ) ≤

√
n = O(

√
logm), where we

used the fact that γ2 is invariant under transposition. J

5 On Tusnády’s problem

Proof of Theorem 1. The proof was already sketched in the introduction, so here we just
present it slightly more formally. Let Ad ⊆ Rd be the set of all anchored axis-parallel boxes,
of the form [0, b1] × · · · × [0, bd]. Clearly disc(n,Ad) ≤ disc(n,Rd), and since every box
R ∈ Rd can be expressed as a signed combination of at most 2d anchored boxes, we have
disc(n,Rd) ≤ 2d disc(n,Ad).

Let us consider the d-dimensional grid [n]d ⊂ Rd (with nd points), and let Gd,n = Ad([n]d)
be the subsets induced on it by anchored boxes. It suffices to prove that herdiscGd,n =
Ω(logd−1 n), and for this, in view of inequality (1), it is enough to show that γ2(Gd,n) =
Ω(logd n).

Now Gd,n is (isomorphic to) the d-fold product Idn of the system of initial segments in
{1, 2, . . . , n}, and so γ2(Gd,n) = γ2(Tn)d = Θ(logd n) (Theorem 5 and Proposition 6).

This finishes the proof of the lower bound. To prove the upper bound disc(n,Rd) =
O(logd+1/2 n), we consider an arbitrary n-point set P ⊂ Rd. Since the set system Ad(P )
is not changed by a monotone transformation of each of the coordinates, we may assume
P ⊆ [n]d. Hence

disc(Ad(P )) ≤ herdiscGd,n ≤ O(γ2(Gd,n)
√

lognd ) = O(logd+1/2 n).

J

5.1 Discrepancy of boxes in high dimension
Chazelle and Lvov [16, 17] investigated the hereditary discrepancy of the set system Cd :=
Rd({0, 1}d), the set system induced by axis-parallel boxes on the d-dimensional Boolean cube
{0, 1}d. In other words, the sets in Cd are subcubes of {0, 1}d. Unlike for Tusnády’s problem
where d was considered fixed, here one is interested in the asymptotic behavior as d→∞.

Chazelle and Lvov proved herdisc Cd = Ω(2cd) for an absolute constant c ≈ 0.0477,
which was later improved to c = 0.0625 in [36] (in relation to the hereditary discrepancy of
homogeneous arithmetic progressions). Here we obtain an optimal value of the constant c:

I Theorem 10. The system Cd of subcubes of the d-dimensional Boolean cube satisfies

herdisc Cd = 2c0d+o(d),

where c0 = log2(2/
√

3) ≈ 0.2075. The same bound holds for the system Ad({0, 1}d) of all
subsets of the cube induced by anchored boxes.

Proof. The number of sets in Cd is 3d, and so in view of inequalities (1) and (2) it suffices to
prove γ2(Cd) = γ2(Ad({0, 1}d)) = 2c0d.

SoCG’15



12 Combinatorial Discrepancy for Boxes via the γ2 Norm

The system Cd is the d-fold product Cd1 , and so by Theorem 5, γ2(Cd) = γ2(C1)d. The
incidence matrix of C1 is

A =

1 1
1 0
0 1

 .

To get an upper bound on γ2(A), we exhibit an appropriate ellipsoid; it is more convenient
to do it for AT , since this is a planar problem. The optimal ellipse containing the rows of A
is {x ∈ R2 : x2

1 + x2
2 − x1x2 ≤ 1}; here are a picture and the dual matrix:

D =
(

4
3

1
3

1
3

4
3

)
.

Hence γ2(A) ≤ 2/
√

3. The same ellipse also works for the incidence matrix of the system
A1({0, 1}), which is the familiar lower triangular matrix T2.

There are several ways of bounding γ2(T2) ≤ γ2(A) from below. For example, we can use
Theorem 4 with

P =
(

1
3 0
0 2

3

)
, Q =

(
2
3 0
0 1

3

)
.

With some effort (or a computer algebra system) one can check that the singular values of
P 1/2T2Q

1/2 are 1√
3 ±

1
3 , and hence the nuclear norm is 2/

√
3 as needed.

Alternatively, one can also check the optimality of the ellipse above by elementary
geometry, or exhibit an optimal solution of the dual semidefinite program for γ2(T2). J

Other set systems. In the full version of the paper we use the properties of γ2 to give
new simple proofs of other upper and lower bounds in discrepancy theory. In particular, we
revisit two set systems that have been studied extensively: arithmetic progressions in [n] and
intervals of k permutations on [n]. While the bounds we get are slightly suboptimal, the
proofs are very short.

6 Applications in Computer Science

Range searching in the oblivious group model. A range searching problem is defined by
a system F of subsets of a set P ⊆ Rd. The input is an assignment of weights to P , where
each weight is an element of a commutative group; a query is specified by a range F ∈ F
may ask, for example, whether for the sum of the weights of points in F or whether it is
non-zero. The goal is to maintain a data structure that supports fast queries. One of the best
studied special cases is orthogonal range searching, in which F is induced by axis-aligned
boxes, i.e. F = Rd(P ).

Following Fredman [22] and Larsen [25], we define an oblivious data structure for a
range searching problem given by F as a factorization A = BC, where A ∈ {0, 1}m×n is
the incidence matrix of F , and B, C are integer matrices. The update time tu is defined
as the maximum number of non-zero entries of a column of C, and the query time tq is the
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maximum number of non-zero entries of a row of B. The multiplicity ∆ is the maximum
absolute value of an entry in B or C. The motivation is that the actual data structure kept
in memory is y = Cx, where x are the weights assigned to P , and queries are answered by
computing the appropriate entry of By. Then, updating a single weight requires updating at
most tu cells in the data structure, and answering a query requires reading at most tq cells.

By the factorization definition of γ2, we have that for any oblivious data structure for F ,
γ2(F) ≤ |∆|√tutq. In the proof of Theorem 1 we showed that for Gd,n = Ad([n]d) (recall
Ad is the set of axis-aligned boxes anchored at 0), γ2(Gd,n) = Θ((logn)d). Therefore, for
any oblivious data structure for orthogonal range searching on P with constant multiplicity,
tutq = Ω((logn)d). This lower bound is tight up to constants. The best previous lower bound
was due to Larsen [25] and was on the order of (logn)(d−1)/2.

Differential Privacy. Differential privacy is a popular definition of privacy for data analysis
algorithms. Informally, it states that an algorithm is private if its output distribution is
almost the same when we add or remove one person’s data from the input; see the book [21]
for the formal definition. A class of problems of general interest in differential privacy are
counting problems, in which a database is a multiset of elements of a universe U , and a
family of queries is specified by a system F of subsets of U . A query given by a set F ∈ F
asks for the number of elements of F that are in the database D (counted with multiplicity).
In [37] it was shown that, up to factors logarithmic in |F|, the optimal worst-case error for
answering the queries specified by F is equal to γ2(F). A query set of special interest is
the one given by the set system Cd of subcubes of the d-dimensional boolean cube, which
corresponds to the set of marginal queries on a d-dimensional database. For these queries,
Theorem 10 shows that the optimal worst-case error is on the order of 2c0d±o(d), where
c0 = log2(2/

√
3). The best previous upper bound was 2d/2+o(d).
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