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Abstract
Consider a sequence s1, . . . , sn of points in the plane. We want to find all maximal subse-
quences with a given hereditary property P: find for all indices i the largest index j∗(i) such
that si, . . . , sj∗(i) has property P. We provide a general methodology that leads to the following
specific results:

In O(n log2 n) time we can find all maximal subsequences with diameter at most 1.
In O(n logn log logn) time we can find all maximal subsequences whose convex hull has area
at most 1.
In O(n) time we can find all maximal subsequences that define monotone paths in some
(subpath-dependent) direction.

The same methodology works for graph planarity, as follows. Consider a sequence of edges
e1, . . . , en over a vertex set V . In O(n logn) time we can find, for all indices i, the largest index
j∗(i) such that (V, {ei, . . . , ej∗(i)}) is planar.
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1 Introduction

The increasing availability of massive amounts of data regarding the spatial movements of
smart phones, vehicles, tagged wild animals, ice sheets, etc., has led to an increasing interest
in geometric algorithms for trajectory analysis [1, 4–6, 9, 13, 16, 17]. Such problems are a
natural fit for the windowed geometry framework of Bannister et al. [2]: in this framework, a
trajectory can be described by a sequence S of points in the plane (the vertices of a polyline),
and we wish to develop data structures that can quickly answer queries about the shapes
formed by contiguous subsequences of S. These queries may in turn be used for exploratory
data analysis of a data set, or as subroutines for higher-level problems such as trajectory
segmentation, clustering, or simplification.

In this paper, we consider queries for which the answer is a Boolean value: given a
sequence S = s1, . . . , sn, and a query subsequence [i, j], does the queried subsequence of S
have property P or not? We only consider hereditary properties, i.e., whenever a sequence
has property P, so do all of its subsequences. For example, the property of having a convex
hull of area at most 1 is hereditary in this sense. For such problems, the issues of data
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structure representation and query time become trivial: we need only store, for each index i,
the largest index j∗(i) such that the subsequence si, . . . , sj∗(i) has property P. With this
information, the query reduces to a simple comparison of the endpoint j of the query interval
with the endpoint j∗(i) of the maximal interval starting at i with property P. However, the
preprocessing stage of this problem, in which we compute each of these values j∗(i), can be
highly nontrivial. That is the focus of our contribution: efficient algorithms for finding all of
the maximal contiguous subsequences of S with the prescribed property.

Analogous windowed query data structures can be considered as well for non-geometric
data, such as sequences of timestamped graph edges [3]. For such data, we may seek the
maximal subsequences that have some monotone graph property such as being disconnected,
being acyclic, being planar, etc.

1.1 New results
Let S = s1, . . . , sn be a sequence of points in the plane. We prove the following results:

In O(n logn log logn) time we can find, for all indices i, the largest index j∗(i) such that
the convex hull of si, . . . , sj∗(i) has at most unit area. In the trajectory problems, this
models subsequences in which the moving object is either not moving significantly or is
traveling close to a straight line.
In O(n log2 n) time we can find, for all indices i, the largest index j∗(i) such that
si, . . . , sj∗(i) has at most unit diameter. In the trajectory problem, this models subse-
quences in which the object is not moving significantly.
In O(n) time we can find, for all indices i, the largest index j∗(i) such that there exists
a direction for which the path defined by si, . . . , sj∗(i) is monotone. In the trajectory
problem, this models subsequences in which the object is moving in some particular
direction but may possibly be deviating from a straight line to avoid obstacles.

We develop a methodology, explained in Section 2, that should be useful for many other
problems. As another application of these techniques beyond geometry, we show the following
result about graph planarity. Let V be a vertex set and let e1, . . . en be a sequence of edges
with endpoints in V . We show how to compute in O(n logn) time, for all indices i, the
largest index j∗(i) such that the graph (V, {ei, . . . , ej∗(i)}) is planar.

For the geometric problems, we do not use any heavy machinery and the results are clearly
implementable. For graph planarity we use a deep result of Galil, Italiano, and Sarnak [15]
that makes our result purely of theoretical interest.

1.2 Comparison with dynamic data structures
For our problems of finding maximal subsequences with property P, there is a natural
alternative approach based on dynamic geometric data structures. Suppose we have a data
structure D that can maintain a dynamic set of points, subject to insertions and deletions,
and answer queries that ask whether the current set has property P . Then we may use D to
compute the sequence of values j∗(i), using a simple scan, as follows:

Augment S by a special flag value sn+1 that cannot be part of a set with property P.
Initialize D to an empty data structure, and set j = 0.
For i = 1, 2, 3, . . . do the following:

While the set in D has property P, increase j by one and insert sj into D.
Set j∗(i) = j − 1.
Delete si from D.
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This algorithm performs n insertions and deletions in D and computes all values j∗(i); its
time is bounded by O(n) times the time for a single insertion or deletion. However, for the
problems we consider, this would be slower than the time bounds we give.

For instance, consider the problem of finding maximal subsequences of points whose
convex hull has area at most 1. A natural approach is to use a dynamic data structure that
maintains the area of the convex hull under insertions and deletions of points. The data
structure by Overmars and van Leeuwen [20] can be easily extended to maintain the area of
the convex hull of n points in O(log2 n) time per update. We could use this data structure in
the scan algorithm above to compute all maximal subsequences in O(n log2 n); however, this
is slower by a logarithmic factor than our algorithms. Chan [7] has improved the Overmars
and van Leeuwen data structure but we are unsure whether this can be adapted to the convex
hull area property and it would still be somewhat slower than our algorithm.

Chan [8] shows how to maintain the diameter dynamically in O(log8 n) expected amortized
time, improving a previous algorithm of Eppstein [11]. This implies that all maximal
subsequences of diameter 1 can be computed in O(n log8 n) expected time. This is significantly
slower than the algorithm we give.

The monotonicity problem depends on the sequence in which the input points are given so
it is not possible to express it using data structures based on dynamic point sets. Nevertheless,
a similar scan algorithm could be used together with a data structure that detects whether a
dynamic set of vectors (the differences of consecutive points in the input sequence) has the
property of lying within a halfspace through the origin. This data structural problem can be
solved by using a binary search tree (ordered radially around the origin) in logarithmic time
per update. However, again, this would be slower than our algorithm.

For graph planarity we would need a dynamic data structure that that maintains a
planar graph under insertion and deletion of edges. Moreover, we also need to be able to
query whether the addition of an edge violates planarity. The best data structure for this
takes O(

√
|V |) = O(

√
n) amortized time per query or operation [12]. Thus, we can find all

maximal planar graphs in O(n3/2) time, significantly slower than our algorithm. (There are
better semi-dynamic data structures for planarity [10], but deletions are costly.)

There has also been research on faster dynamic data structures with restrictions on the
update order, such as offline updates in which the entire sequence of updates is known
in advance. Here, we do know the order of insertions and deletions, but we do not know
how they interlace. In fact, the main substance of the problem is about figuring out when
deletions should take place.

1.3 Additional related work
Ła̧cki and Sankowski [19] considered a related windowed query framework for graph problems
with an offline sequence of edge updates. As in our problems, queries specify a window within
this sequence; however, the goal of a query is to determine whether some, all, or none of
the versions of the graph within the window have a given property P. For the geometric
problems that we consider, an analogous type of problem would involve a data set consisting
of a sequence of point insertions and deletions, and a query asking whether all, some, or
none of the versions of the point set within a window into the query sequence have a given
property. However, the graph properties considered by Ła̧cki and Sankowski are different
from the geometric and graph properties considered here.

A one-dimensional variant of the windowed diameter problem may be solved in constant
time per query, using a range minimum data structure [14] to determine the minimum and
maximum value within a query window. Applying this separately to each coordinate would
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allow us to determine the L∞ diameter of a query window. However, this approach does not
generalize to Euclidean diameter, and although it can be made to work for the monotone
direction problem, it would result in a more complicated solution than the one we give.

2 General strategy

We first review the notation we (ab)use. For any natural numbers a and b, we let [a, b] denote
the integer range {a, a+ 1, . . . , b}. Henceforth, n will be used to denote the length of the
input sequence. We write [n] instead of [1, n] and use U = {(i, j) ∈ [n]2 | i ≤ j}.

Consider a sequence S = s1, . . . , sn of points in the plane. For every pair of indices
(i, j) ∈ U we define the subsequence S[i, j] = si, . . . , sj . All subsequences considered in
this paper are contiguous subsequences. When j < i, S[i, j] is the empty sequence. With a
slight abuse of notation, we will sometimes treat S[i, j] as a set instead of as a sequence; for
example, we will talk about the diameter or the convex hull of S[i, j].

A property P for subsequences is hereditary if it is closed under taking subsequences: if
S[i, j] has property P , then S[i′, j′] also has property P for all i ≤ i′ ≤ j′ ≤ j. All properties
considered in this paper are hereditary.

Consider a fixed hereditary property P . We consider a n×n matrix AP = (AP(i, j))(i,j)∈U,
defined (only for pairs of indices in U) by

AP(i, j) =
{

1, if S[i, j] ∈ P,
0, otherwise.

Values in the bottom triangle {(i, j) | j < i} are undefined. We want to find for each row i

the last index j∗(i) with AP(i, j∗(i)) = 1. When the property P is clear from the context,
we drop the subscript and simply write A instead of AP .

A rectangle (of indices) is a subset of indices

[a, a+ h]× [b, b+ w] = {(i, j) ∈ [n]2 | a ≤ i ≤ a+ h, b ≤ j ≤ b+ w}.

For a rectangle R = [a, a+ h]× [b, b+ w], its height is height(R) = h+ 1 and its width is
width(R) = w + 1. By solving a rectangle R = [a, a+ h]× [b, b+ w] we mean finding, for
each index i ∈ [a, a+ h], the last nonzero of row i of matrix A that lies inside rectangle R.
In general, our algorithms will consider rectangles [a, a + h] × [b, b + h] with a + h ≤ b,
that is, contained in U. A rectangle is anchored at the diagonal if it is of the type
[a− h, a]× [a, a+ w], that is, its bottom left corner lies on the diagonal {(i, i) | i ∈ [n]}.

We will assume that A(i, i) = 1, for all i ∈ [n]; that is, any single point of S always
satisfies property P . (Otherwise j∗(i) is not defined.) Our algorithms will consider rectangles
R = [a, a+ h]× [b, b+w] with the property that, for all i ∈ [a, a+ h], j∗(i) ∈ [b, b+w]. That
is, these rectangles contain the last nonzero of A in each of their rows. We call a rectangle
with this property a frontier rectangle. Thus, solving a frontier rectangle is equivalent to
finding the values j∗(i) for all i ∈ [a, a+ h].

2.1 Decomposing into anchored rectangles
We are going to use a greedy procedure to reduce the problem to a search within disjoint
frontier rectangles anchored at the diagonal that together have O(n) height and width.

Take a sequence of indices α = a1, a2, . . . , n such that a1 = 1 and ak = j∗(ak−1), that is,
ak is the largest index with A(ak−1, ak) = 1. (In the special case that ak = ak−1, we redefine
ak to ak−1 + 1.) This is a greedy decomposition of the sequence into subsequences with
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Figure 1 Schema showing the greedy procedure to decompose the problem into (red) frontier
rectangles anchored at the diagonal. The blue region denotes entries of matrix A with value 1.

property P . The subsequences are disjoint, except for the starting and ending points ak, and
maximal with respect to this almost-disjoint property. For each index ak in α, define the
rectangle Rk = [ak + 1, ak+1]× [ak+1, ak+2]. A schematic view is offered in Figure 1.

Each index i ∈ [n] appears at most once as a first coordinate and at most twice in the
second coordinate of rectangles R1, R2, . . . . Therefore∑

k

(
height(Rk) + width(Rk)

)
= O(n).

By construction, each Rk is a frontier rectangle anchored at the diagonal. Solving the
rectangles R1, R2 . . . we readily obtain all maximal subsequences with property P. We
summarize.

I Lemma 2.1. Assume that we have the following two subroutines for sequence S and
property P:
(a) Given an index a ∈ [n], find the largest index j∗(a) such that S[a, j∗(a)] ∈ P. This takes

Tgreedy(j∗(a)− a) time for a certain convex function Tgreedy(·).
(b) Given a frontier rectangle R of indices anchored at the diagonal, solve R. This takes

Trect(height(R) + width(R)) time for a certain convex function Trect(·).
Then we can find all maximal subsequences with property P in O(n) + Tgreedy(O(n)) +
Trect(O(n)) time. J

2.2 Solving an anchored rectangle
To solve a frontier rectangle anchored at the diagonal, we are going to use a recursive
divide-and-conquer method. The subproblems of this method will be defined by frontier
rectangles contained in U, but not necessarily anchored at the diagonal.

Consider a frontier rectangle [a, a+ h]× [b, b+w] contained in U. We use a methodology
similar to binary search. See Figure 2 for an schematic view. We select an index m halving
the interval [a, a+ h]. Then we find the largest index c such that A(m, c) = 1. With this, we
infer the following information:

In the rectangle [m, a+ h]× [b, c], all the values of A are 1.
In the rectangle [a,m]× [c+ 1, b+ w], all the values of A are 0.

We then recurse in the frontier rectangle [a,m− 1]× [b, c] and in the frontier rectangle
[m+ 1, a+ h]× [c, b+w]. Since in each step we halve the area where we continue the search,
we have a recursion of depth O(log(wh)).

However, the subproblems do not really get smaller: to solve the rectangle R = [a, a+h]×
[b, b+w], we have to consider the subsequence S[a, b+w], which has size w+ b− a. For late
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Figure 2 Schema showing the strategy to solve a frontier rectangle. The blue region denotes
entries known to have value 1. The red region denotes entries known to have value 0.

subproblems, this may be larger than w + h or wh. However, any of the subsequences S[i, j],
where (i, j) ∈ R, can be decomposed into S[i, a + h], S[a + h, b] and S[b, j]. The middle
sequence S[a+ h, b] may be arbitrarily large, but it is a “common factor” to all subsequences
S[i, j], (i, j) ∈ R. We replace the subsequence S[a+ h, b] by a sketch of size O(w + h). The
definition of sketch depends on the problem at hand, but the idea is that it should encode
the role of S[a+ h, b] in the subsequences S[i, j], for all (i, j) ∈ R. In fact, such sketches are
also important to find efficiently the index c that controls the division for recursive calls.

To analyze such algorithm, the following technical result will be useful.

I Lemma 2.2. The recursion

T (h,w) =
{
O(h+ w) + T (bh/2c, w′) + T (bh/2c, w − w′) if h ≥ 2,
O(w) if h = 0 or 1,

where 0 ≤ w′ ≤ w, implies that T (h,w) = O((h+ w) log h). J

3 Directional monotonicity

In this section, we will regard the subsequence S[i, j] as a polygonal path. Consider the unit
circle S1. For a direction ~u ∈ S1, the path S[i, j] is ~u-monotone, if it is always increasing in
the direction ~u, that is, the scalar product of −−−−→sksk+1 and ~u is positive for each k ∈ [i, j − 1].
The path S[i, j] is monotone if it is ~u-monotone for some direction ~u ∈ S1. Let Θ(i, j) ⊂ S1

be the set of directions ~u such that S[i, j] is ~u-monotone.

I Lemma 3.1. Given an index a ∈ [n], we can find the largest index j∗(a) ∈ [n] such that
the path S[a, j∗(a)] is monotone in O(j∗(a)− a) time.

Proof. Starting with j = a+ 1, we increment j until we get that j = n+ 1 or S[a, j] is not
monotone, and then return j − 1. At each step, we compute the interval Θ(a, j) in constant
time using that Θ(a, j) = Θ(a, j − 1) ∩

{
~u ∈ S1 | 〈−−−−→sj−1sj , ~u〉 > 0

}
. J

Lemma 3.1 provides the subroutine needed in Lemma 2.1(a). The next result provides
the subroutine needed in Lemma 2.1(b).

I Lemma 3.2. Consider a frontier rectangle R of indices anchored at the diagonal. We can
solve the rectangle R in O(height(R) + width(R)) time.

Proof. Let R be the rectangle [a−h, a]×[a, a+w]. We compute for each index j ∈ [a+1, a+w]
the set of directions Θ(a, j). This is done incrementally in O(w) time. We compute for each
index i ∈ [a− h, a− 1] the set of directions Θ(i, a). This is done by tracing the reverse of
the path S[a− h, a] and using the fact that a path is ~u-monotone if and only if its reversal is
(−~u)-monotone.
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a− h
a a+ w

a

a− h
a a+ w

a

Figure 3 Path followed by (i, j) in the algorithm of Lemma 3.2 to solve a frontier rectangle
anchored to the diagonal. The blue region describes query windows that form monotone paths.

Now we just walk along the boundary between monotone and not-monotone in the
rectangle R. See Figure 3. Set i = a−h and j = a+ 1. At each iteration, we compute Θ(i, j)
in constant time using the fact that Θ(i, j) = Θ(i, a)∩Θ(a, j). If Θ(i, j) 6= ∅, we increment j
and go to the next iteration. If Θ(i, j) = ∅, we deduce that j∗(i) = j − 1, increment i, and
go to the next iteration. We finish when the pair (i, j) is outside the rectangle R. In this
case, we deduce that j∗(i′) = a+ w for i′ = i, . . . , a.

The running time is O(h + w) because at each iteration we spend constant time and
increment either i or j. J

I Theorem 3.3. Let S = s1, . . . , sn be a polygonal path in the plane. In O(n) time we
can compute, for all indices i ∈ [n], the largest index j∗(i) such that the polygonal path
si, . . . , sj∗(i) is monotone.

Proof. Lemmas 3.1 and 3.2 give the subroutines required in the hypothesis of Lemma 2.1,
with running times Tgreedy(n) = O(n) and Trect(n) = O(n). Lemma 2.1 implies that we can
find all maximal subsequences in O(n) time. J

Note that in this problem, we did not need the recursive approach discussed in Section 2.2.
This is because Θ(i, j), which plays the role of a sketch, has a constant-size description.

4 Diameter of point sets

For a set of points P in the Euclidean plane, its diameter diam(P ) is the maximum distance
between any two points: diam(P ) = maxp,p′∈P ‖p− p′‖. The diameter of n points can be
computed in O(n logn) time; see for example [21, Chapter 4].

4.1 Sketches
Let P and S be sets of points in the Euclidean plane. A subset Q ⊂ P is a diam-sketch of
P with respect to S if
(i) for each T ⊂ S we have diam(P ∪ T ) = diam(Q ∪ T ), and

(ii) |Q| = O(|S|).
Diam-sketches can be constructed using standard tools and have a certain composition

property, as the following lemma explains. See Figure 4 for an example of the construction.
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CH(P )

Figure 4 Example of diam-sketch. Left: the dotted black points correspond to P , the squared
red points to S. A diametral pair of P and points furthest away from each point of S are shown with
dashed segments. Right: the resulting diam-sketch, as constructed in the proof of Lemma 4.1(a).

I Lemma 4.1. Diam-sketches have the following properties.
(a) Given sets P and S of cardinality at most n, we can compute a diam-sketch of P with

respect to S in O(n logn) time.
(b) Let Q be a diam-sketch of P with respect to S, X be a diam-sketch of Q∪S1 with respect

to S2, and S1 ∪ S2 ⊂ S. Then X is a diam-sketch of P ∪ S1 with respect to S2.

Proof Sketch. We show (a) giving an explicit construction. We set Q = ∅, add to Q a
diametral pair of P and, for each point s ∈ S, add a point of P that is furthest from s. Such
a set Q can be constructed in O((|P |+ |S|) log(|P |)) = O(n logn) time using standard tools:
we compute the diameter of P , build the furthest-point Voronoi diagram V D of P , and
locate each point of S in V D. The details are standard. See Figure 4 for an example of the
construction. A small case analysis shows that Q is indeed a diam-sketch.

To show (b), consider any T ⊂ S2. We have to show that diam(P ∪S1∪T ) = diam(X∪T ).
Since Q is a diam-sketch of P with respect to S ⊃ S1 ∪ T and X is a diam-sketch of Q ∪ S1
with respect to S2 ⊃ T , we have

diam(P ∪ S1 ∪ T ) = diam(P ∪ (S1 ∪ T )) = diam(Q ∪ (S1 ∪ T ))
= diam((Q ∪ S1) ∪ T ) = diam(X ∪ T ). J

4.2 Algorithms
I Lemma 4.2. Let P be a set of points and S = s1, . . . , sn a sequence of points. Assume
that we have a diam-sketch Q of P with respect to S. In O(n logn) time, we can find the
largest index j∗ such that diam(P ∪ S[1, j∗]) ≤ 1.

Proof. We proceed with a binary search. We initialize the search with ` = 0, r = n, and
X = Q. Through the binary search, we maintain the invariant that ` ≤ j∗ ≤ r and X is a
diam-sketch of P ∪ S[1, `] with respect to S[`+ 1, r]. In an iteration, we set m = d(`+ r)/2e
and check whether diam(X ∪S[`+ 1,m]) ≤ 1. If the diameter is at most 1, then we continue
the search with ` = m, and set X to be a diam-sketch of X ∪ S[`,m] with respect to
S[m+ 1, r]. If, on the other hand, the diameter is larger than 1, then we continue the search
with r = m − 1, and set X to be a diam-sketch of X with respect to S[` + 1,m − 1]. We
finish the search when ` = r by returning `.

S o C G ’ 1 5
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Validity of the invariant ` ≤ j∗ ≤ r follows from the standard argument used for binary
search. Validity of the property that X is a diam-sketch of P ∪ S[1, `] with respect to
S[` + 1, r] follows by induction and Lemma 4.1(b). When we continue on the right side
(setting ` = m), we apply Lemma 4.1(b) with S1 = S[`,m] and S2 = S[m + 1, r]. When
we continue on the left side (setting r = m− 1), we apply Lemma 4.1(b) with S1 = ∅ and
S2 = S[`+ 1,m− 1].

Correctness of the method follows from the invariant because at the end, when r = `, we
have diam(P ∪ S[1, `]) = diam(X) ≤ 1 and r = j∗ = `.

For the running time, note that at each step, we handle O(|X|+ r− `) points. Since X is
always a diam-sketch with respect to S[`+1, r], we have |X| = O(r−`). At each iteration, we
compute the diameter of O(r− `) points and the diam-sketch of O(r− `) points with respect
to a set of size O(r− `) using Lemma 4.1(a). This means that we spend O((r− `) log(r− `))
at each iteration. Since at each iteration the value r− ` decreases geometrically, we conclude
that the total running time is O(n logn). J

I Lemma 4.3. Consider a frontier rectangle R anchored at the diagonal with height h and
width w. We can solve R in O((h+ w) log2(h+ w)) time.

Proof. We give a recursive algorithm. A recursive subproblem is described by a frontier
rectangle [a, a+h]× [b, b+w] contained in U, and a diam-sketch Q of S[a+h, b] with respect
to S[a, a+ h− 1] ∪ S[b+ 1, b+ w]. The original problem is a problem of such type, where
a+ h = b and S[a+ h, b] = Q = {sb}.

If h = 1, we use Lemma 4.2 twice, once for each row, to find j∗(a) and j∗(a + 1). For
the row a+ 1 we use Q and the sequence S[b+ 1, b+ w]. For the row a we use Q and the
sequence sa, S[b+ 1, b+w]. In this case, we need O(w logw) time. The case h = 0 is similar.

Let us now consider the case when h ≥ 2 and thus the rectangle has at least three
rows. We use the divide-and-conquer approach discussed in Section 2.2. Set m = a+ bh/2c.
We find the last index c ∈ [b, b + w] such that diam(S[m, c]) ≤ 1. (Here we are using
the property of being a frontier rectangle to infer that c ≥ b and thus (m, c) ∈ R.) We
have obtained that j∗(m) = c. We then recurse on the rectangles R1 = [a,m − 1] × [b, c]
and R2 = [m + 1, a + h] × [c, b + w]. Note that R1 and R2 are frontier rectangles; see
Figure 2. To recurse in the rectangle R1, we use a diam-sketch Q1 of Q ∪ S[m, a+ h] with
respect to S[a,m − 1] ∪ S[b, c]. Note that Q1 is a diam-sketch of S[m, b] with respect to
S[a,m− 1] ∪ S[b, c] because of Lemma 4.1(b), and thus it is the appropriate diam-sketch for
the recursive call. Similarly, for the recursion on the rectangle R2, we use a diam-sketch Q2
of Q ∪ S[b, c− 1] with respect to S[m+ 1, a+ h] ∪ S[c, b+w]. Again, Q2 is a diam-sketch of
S[a+ h, c− 1] with respect to S[m+ 1, a+ h] ∪ S[c, b+ w] because of Lemma 4.1(b), and it
provides appropriate ground for recursion. This finishes the description of the algorithm.

To analyze the running time, note that Q has size O(h+ w) because it is a diam-sketch
with respect to h+ w points. If h ≤ 1, we spend O(w logw) time. Let us now look at the
case h > 1. The index c can be found in O((h+ w) log(h+ w)) time using Lemma 4.2 with
Q and the sequence S[m, a+ h− 1], S[b+ 1, b+w]. The sets Q1 and Q2 can be computed in
O((h+ w) log(h+ w)) time using Lemma 4.1(a) and noting that Q has size O(h+ w). Thus
we spend O((h + w) log(h + w)) time plus the time for recursive calls in R1 and R2. Let
w′ = c− b. The rectangle R1 has m− a ≤ bh/2c rows and c− b+ 1 = w′ + 1 columns, while
the rectangle R2 has a+ h−m ≤ bh/2c+ 1 rows and b+ w − c+ 1 = w − w′ + 1 columns.
Therefore, denoting by T (h,w) the running time for a rectangle with h+ 1 rows and w + 1
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columns, we have

T (h,w) =
{
O((h+ w) log(h+ w)) + T (bh/2c, w′) + T (bh/2c, w − w′) if h ≥ 2,
O(w log(h+ w)) if h ≤ 1.

Taking the factor O(log(h+ w)) out, Lemma 2.2 implies that T (h,w) = O((h+ w) log2(h+
w)). J

Buchin et al. [6] give the subroutine needed in Lemma 2.1(a) with Tgreedy(n) = O(n logn).
An exponential search and Lemma 4.2 can also be used to obtain the same result. Lemma 4.3
gives the subroutine needed in Lemma 2.1(b) with Trect(n) = O(n log2 n). Then Lemma 2.1
implies the following.

I Theorem 4.4. Let S = s1, . . . , sn be a sequence of points in the plane. In O(n log2 n) time,
we can compute, for all indices i ∈ [n], the largest index j∗(i) with diam(si, . . . , sj∗(i)) ≤ 1.

5 Area of the convex hull

In this section, we will for simplicity assume general position: no two points have the same
x-coordinate and no three points are collinear.

For a point set P , we denote by CH (P ) its convex hull. For each point s outside CH (P ),
let τ(s, P ) be the two points on the boundary of CH (P ) that support the tangents to CH (P )
through s.

5.1 Sketches
Let P be a set of points and let S = s1, . . . , sn be a sequence of points. Let pmax and pmin
be the points of P with largest and smallest x-coordinates, respectively. The CH-sketch
of P with respect to the sequence S is the point set

{pmax, pmin} ∪

 ⋃
i∈[n]

τ(si, P ∪ S[1, i− 1]) ∩ P

 .

An example is given in Figure 5. The intuition is that the CH-sketch should contain the
points of P that support some tangent during the iterative construction of CH (P ∪ S[1, i]),
for i = 1, . . . , n. We add pmax and pmin for convenience: we will later maintain the area of
the upper hulls of P and the CH-sketch, and it is slightly simpler if their starting and ending
points match.

Note that we define CH-sketches with respect to sequences, while sketches in the previous
section were with respect to sets. We do this to achieve better efficiency.

Let Q denote the CH-sketch of P with respect to S. We have the following straightforward
consequences of the definition:
(i) |Q| = O(|S|) because each point of S contributes at most two points to Q.

(ii) Each point of Q is a vertex of CH (P ) because it is in P and supports a tangent to
CH (P ∪X) for some X.

(iii) For each i ∈ [n], we have τ(si, P ∪S[1, i−1]) = τ(si, Q∪S[1, i−1]), as a point supporting
a tangent to CH (P ∪ S[1, i− 1]) through si is either in Q by definition or in S[1, i− 1].

We next discuss some properties about composition of CH-sketches. In our algorithm, we
are going to keep two CH-sketches, each with respect to a different sequence. Because of
this, some statements become cumbersome.
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s1

s2

s3

s4

s5

s6

q

q′∆(qq′, P )

Figure 5 Left: A set P of points (black dots) with its convex hull and the sequence S = s1, . . . , s6

(red squares). Center: the sequence of convex hulls CH (P ∪ S[1, i]) for i = 1, . . . , 6. The points of
the CH-sketch Q of P with respect to S are marked in solid blue. Right: CH (Q) for the CH-sketch
of P and the clipped region ∆(qq′, P ) for an edge qq′ of CH (Q).

I Lemma 5.1. Let Q1 be a CH-sketch of P with respect to a sequence S1[1, n1]. Let Q2 be a
CH-sketch of P with respect to a sequence S2[1, n2]. Consider indices c1 and c2 such that
1 ≤ c1 ≤ n1 and 1 ≤ c2 ≤ n2.
(a) If Q′ is a CH-sketch of Q1∪S1[1, c1] with respect to S1[c1 +1, n1], then Q′ is a CH-sketch

of P ∪ S1[1, c1] with respect to S1[c1 + 1, n1].
(b) If Q′ is a CH-sketch of Q2 ∪ S1[1, c1] with respect to S2[1, c2], then Q′ is a CH-sketch of

P ∪ S1[1, c1] with respect to S2[1, c2].

5.2 Clipped regions
Let P be a set of points and let Q be a subset of the vertices of CH (P ). Each edge qq′
of CH (Q) separates a portion of CH (P ) \ CH (Q) from CH (Q). We denote such a region
by ∆(qq′, P ). See Figure 5, right. We use ∆(Q,P ) for the family of clipped regions
{∆(qq′, P )}qq′ , where qq′ iterates over all edges of CH (Q).

Let Q be a CH-sketch of P with respect to S. Consequence (iii) of the definition of CH-
sketch is important to easily obtain the area of CH (P ∪S[1, i]) from the area of CH (Q∪S[1, i])
and the area of each of the clipped regions ∆(Q,P ). Indeed, for every index i, a clipped
region of ∆(Q,P ) is contained either in CH (Q ∪ S[1, i]) or in the closure of its complement.
Therefore

area(CH (P ∪ S[1, i])) = area(CH (Q ∪ S[1, i])) +
∑
qq′

area(∆(qq′, P )),

where the sum is taken over all edges qq′ of CH (Q) that are also edges of CH (Q ∪ S[1, i]).
See Figure 5 for an example. We use clipped regions to keep track of area difference between
CH (P ) and CH (Q) though the addition of points of S.

5.3 Algorithms
We are going to keep point sets sorted by their x-coordinates. The sequence S is also
going to be kept sorted by x-coordinates. This does not mean that the x-coordinates of
s1, s2, . . . , sn are increasing when these points are given in sequence order. This means that,
besides the sequence S, we have another list where the elements appearing in S are sorted
by x-coordinates. For a set or sequence S, we will use Lx(S) to denote the list containing S
sorted by x-coordinate.
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γ(e)
e

Σ(e) Σ(e)

eγ− γ+

Figure 6 Data maintained during the incremental algorithm in the proof of Lemma 5.2.

I Lemma 5.2. Let P be a set and S a sequence of points, both of cardinality at most n.
Assume that we have the corresponding lists Lx(P ) and Lx(S). We can compute a CH-sketch
of P with respect to S in O(n log logn) time. Moreover, the CH-sketch is obtained sorted by
x-coordinate.

Proof Sketch. We iteratively add the points s1, . . . , sn of S, maintain CH (P ∪ S[1, i]), and
mark the points τ(si, P ∪ S[1, i − 1]) ∩ P to be added to the CH-sketch. We maintain
separately the upper and the lower hull of P ∪ S[1, i]. We discuss only the upper hull.

Through the iterative procedure, we use a list UH that stores the edges of the upper hull
of P ∪ S[1, i]. For each segment e of UH, let Σ(e) be the vertical slab contained between
the two vertical lines through the endpoints of e. For each edge e in UH, we have a list
γ(e) of the points of S[i + 1, n] contained in Σ(e), sorted by x-coordinate. We have two
additional lists, γ− and γ+, that contain the points of S[i+ 1, n] to the left and to the right
of UH, respectively, also sorted by x-coordinate. See Figure 6. We also maintain a van Emde
Boas tree [22] for the vertices of UH. Its purpose is to find, at the time of inserting si, the
segment e of UH whose slab Σ(e) contains si. Using the order given by x-coordinates, this
is a predecessor query in UH. We can identify each point of P ∪ S with its rank in the order
given by x-coordinates, and use those ranks as keys for the van Emde Boas tree. Thus, we
have an universe of |P ∪ S| = O(n) elements and each operation takes O(log logn) time.

The data can be initialized in O(n) time computing CH (P ) from Lx(P ) and with a
simultaneous scanning of UH and Lx(S). The insertion of a point si of S starts locating the
edge e such that γ(e) contains si and the appearance of si in γ(e). We then have to update
the convex hull UH and update the lists making some local operations. The insertion of si

takes O(log logn+ |ki−1 − ki|) time, where ki denotes the number of vertices in the upper
hull of P ∪ S[1, i]. At the end of the insertion, we can obtain the points τ(si, P ∪ S[1, i− 1])
of the upper hull and mark them for addition to the CH-sketch. Since each point of P ∪ S
can be deleted at most once, the time over all insertions is O(n log logn).

When we have inserted all the points of S, we construct the CH-sketch going through
Lx(P ) and selecting those marked for addition to the CH-sketch. We also insert the first
and last point of Lx(P ), since they have smallest and largest x-coordinate. J

An approach similar to the one used in the proof of Lemma 5.2 can be used to incrementally
maintain the area of CH (Q ∪ S[1, i]), for i = 1, . . . , n. If Q is a CH-sketch of P with respect
to S, we can then use the area of the clipped regions ∆(Q,P ) to compute the area of

S o C G ’ 1 5
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CH (P ∪ S[1, i]), for i = 1, . . . , n. We just have to notice that, for each i ∈ [n], a clipped
region of ∆(Q,P ) is contained in CH (P ∪ S[1, i]) or in its complement. This leads to the
following.

I Lemma 5.3. Let P be a set of points and let S = s1, . . . , sn be a sequence of points.
Assume that we have a CH-sketch Q of P with respect to S and, for each edge qq′ of
CH (Q), the area of ∆(qq′, P ). Furthermore, assume that we have the corresponding lists
Lx(Q) and Lx(S). In O(n log logn) time, we can find the largest index j∗ ∈ [n] such that
area(CH (P ∪ S[1, j∗])) ≤ 1. J

I Lemma 5.4. Consider a frontier rectangle R anchored at the diagonal with height h and
width w. We can solve R in O((h+ w) log(h+ w) log log(h+ w)) time.

Proof. (Sketch) We follow very closely the proof of Lemma 4.3. However, the description of
a recursive subproblem is given by:
(i) a frontier rectangle [a, a+ h]× [b, b+ w] contained in U;

(ii) a CH-sketch Qver of S[a+ h, b] with respect to the reversal of S[a, a+ h− 1];
(iii) a CH-sketch Qhor of S[a+ h, b] with respect to S[b+ 1, b+ w];
(iv) lists Lx(Qver), Lx(Qhor), Lx(S[a, a+ h− 1]), and Lx(S[b+ 1, b+ w]);
(v) the convex hull CH (Q), where Q = Qhor ∪Qver; and

(vi) the area of each of the clipped regions ∆(Q,S[a+ h, b]).
Note that the description of such a subproblem has size O(h+ w).

We construct the base problem, to start the recursion, in O((h+ w) log(h+ w)) time as
follows. The rectangle [a, a+ h]× [b, b+ w] is given as the input, with a+ h = b. We have
Qver = Qhor = {sb}. The lists Lx(Qver) and Lx(Qhor) have only one element. The lists
Lx(S[a, a+ h− 1]) and Lx(S[b+ 1, b+ w]) can be constructed in O(h log h) and O(w logw)
time, respectively, by just sorting the points from scratch. The remaining data is trivial.

Let us now discuss how we solve a subproblem appearing in the recursion. The case h ≤ 1
is easier, takes O(w log logw) time, and we omit it.

Consider now the case when h ≥ 2 and thus the rectangle has at least three rows. We use
the divide-and-conquer approach discussed in Section 2.2 and already used in Lemma 4.3.
Set m = a+ bh/2c, find the last index c ∈ [b, b+ w] such that area(CH (S[m, c])) ≤ 1, and
recurse on the rectangles R1 = [a,m− 1]× [b, c] and R2 = [m+ 1, a+ h]× [c, b+ w]. Recall
Figure 2.

The value c can be found in O((h+w) log log(h+w)) time using Lemma 5.3, as follows. We
compute the CH-sketch Qm of Qhor ∪S[m, a+h−1]) with respect to S[b+ 1, b+w]. Because
of Lemma 5.2 and since the input can be obtained sorted by x-coordinate from Lx(Qhor),
Lx(S[a, a+ h− 1]), and Lx(S[b+ 1, b+ w]), this can be done in O((h+ w) log log(h+ w))
time. Because of Lemma 5.1(b), where S1 is the reversal of S[a, a + h − 1] and S2 =
S[b + 1, b + w], Qm is a CH-sketch of S[a + h, b] ∪ S[m, a + h − 1]) = S[m, b] with respect
to S[b + 1, b + w]. We can show that the area of the clipped regions ∆(Qm, S[m, b]) can
be obtained in O((h + w) log log(h + w)) time. Thus Qm and S[b + 1, b + w] satisfy the
hypothesis of Lemma 5.3, as needed to find c.

In O((h+w) log log(h+w)) time, we can collect the data for the recursive calls. For this,
we use Lemma 5.2 to compute CH-sketches of CH-sketches with respect to subsequences.
Lemma 5.1 is then used to argue that we are indeed computing the CH-sketches required for
the recursive call. We omit the detailed arguments.

Thus, we can construct the recursive subproblems in O((h+ w) log log(h+ w)) time. It
follows that the time T (h,w) to solve a recursive subproblem with h+ 1 rows and w+ 1 rows
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is given by

T (h,w) =
{
O((h+ w) log log(h+ w)) + T (bh/2c, w′) + T (bh/2c, w − w′) if h ≥ 2,
O(w log logw) if h ≤ 1.

Lemma 2.2 implies that T (h,w) = O((h+ w) log(h+ w) log log(h+ w)). Thus, we can solve
all recursive subproblems in O((h+w) log(h+w) log log(h+w)), and the result follows. J

There are incremental algorithms to maintain the convex hull explicitly in amortized
time O(logn) per insertion; see for example [21, Chapter 3]. Such a procedure gives the
subroutine needed in Lemma 2.1(a) with Tgreedy(n) = O(n logn). An exponential search and
Lemma 5.3 can also be used to obtain the same result. Lemma 5.4 gives the subroutine
needed in Lemma 2.1(b) with Trect(n) = O(n logn). Then Lemma 2.1 implies the following.

I Theorem 5.5. Let S = s1, . . . , sn be a sequence of planar points. In O(n logn log logn)
time, we can compute, for all i ∈ [n], the largest index j∗(i) such that CH ({si, . . . , sj∗(i)}))
has area at most 1.

6 Planar graphs

In this section, we move away from geometry to discuss graph planarity. This problem
provides a neat use of the methodology we presented and an important improvement over
the use of dynamic data structures. We only provide a very high-level overview.

Let G be a planar graph and let X be a subset of its vertices. A graph H is a planar-
sketch of G with respect to X if it satisfies the following conditions:

X ⊆ V (H),
H has size O(|X|), and
for each edge set F with endpoints in X, G+ F is planar if and only if H + F is planar.

Galil, Italiano, and Sarnak [15] have shown that such planar-sketches exist and can be
computed in linear time. Note that they defined the sketch property for the addition of a
single edge (|F | = 1). However, Eppstein et al. [12] noted that the same construction works
for multiple edges and referred to the sketches as compressed certificates for planarity.

The fact that planar-sketches can be computed in linear time is parallel to Lemma 4.1(a)
in this context. One can prove a statement analogous to Lemma 4.1(b) for planar sketches,
as follows. If H is a planar-sketch of G with respect to X, F is a set of edges with endpoints
in X, H + F is planar, and H ′ is a planar-sketch of H + F with respect to Y ⊂ X, then H ′
is a planar sketch of G+ F with respect to Y .

Equipped with linear-time planarity testing [18] and the aforementioned linear-time
computation of planar-sketches, we can follow the same methodology as in Section 4.2,
shaving off a logarithmic factor. Thus, we obtain the subroutine needed in Lemma 2.1(a)
with running time Tgreedy(n) = O(n), and the subroutine needed in Lemma 2.1(b) with
Trect(n) = O(n logn). Then Lemma 2.1 implies the following.

I Theorem 6.1. Let E = e1, . . . , en be a sequence of edges. In O(n logn) time, we can
compute, for all indices i ∈ [n], the largest index j∗(i) such that the graph defined by
ei + · · ·+ ej∗(i) is planar. J
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ola Wenk, and Lionov Wiratma. Median trajectories. Algorithmica, 66(3):595–614, 2013.

5 Kevin Buchin, Maike Buchin, Marc van Kreveld, and Jun Luo. Finding long and similar
parts of trajectories. Comput. Geom., 44(9):465–476, 2011.

6 Maike Buchin, Anne Driemel, Marc J. van Kreveld, and Vera Sacristan. Segmenting trajec-
tories: A framework and algorithms using spatiotemporal criteria. J. Spatial Information
Science, 3(1):33–63, 2011.

7 Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmic amortized
time. J. ACM, 48(1):1–12, 2001.

8 Timothy M. Chan. A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor
queries. J. ACM, 57(3), 2010.

9 Chen Chen, Hao Su, Qixing Huang, Lin Zhang, and Leonidas Guibas. Pathlet learning for
compressing and planning trajectories. In SIGSPATIAL’13, pages 392–395, 2013.

10 Giuseppe Di Battista and Roberto Tamassia. On-Line planarity testing. SIAM J. Comput.,
25(5):956–997, 1996.

11 David Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary func-
tions. Discrete Comput. Geom., 13:111–122, 1995.

12 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification. I. Planary testing and minimum spanning trees. J. Comput. Syst. Sci.,
52(1):3–27, 1996.

13 David Eppstein, Michael T. Goodrich, and Maarten Löffler. Tracking moving objects with
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