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Abstract
Permission-based verification logics such as separation logic have led to the development of many
practical verification tools over the last decade. Verifiers employ the separating conjunction A∗B
to elegantly handle aliasing problems, framing, race conditions, etc.

Introduced along with the separating conjunction, the magic wand connective, written A−∗B,
can describe hypothetical modifications of the current state, and provide guarantees about the
results. Its formal semantics involves quantifying over states: as such, the connective is typically
not supported in automatic verification tools. Nonetheless, the magic wand has been shown to be
useful in by-hand and mechanised proofs, for example, for specifying loop invariants and partial
data structures.

In this paper, we show how to integrate support for the magic wand into an automatic verifier,
requiring low specification overhead from the tool user, due to a novel approach for choosing
footprints for magic wand formulas automatically. We show how to extend this technique to
interact elegantly with common specification features such as recursive predicates. Our solution
is designed to be compatible with a variety of logics and underlying implementation techniques.

We have implemented our approach, and a prototype verifier is available to download, along
with a collection of examples.
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1 Introduction

Permission-based verification logics, most notably separation logic [24], have been widely
developed in recent years, both to explore their theoretical properties and to serve as the
bases for a variety of practical tools. The most well-known feature of separation logic is its
separating conjunction connective, ∗. An assertion of the form A ∗B intuitively expresses
that the two conjuncts hold for separate portions of the program heap; such an assertion is
true in a program state σ, if we can split the state into two parts, σ = σ1 ⊎ σ2 such that A is
true in σ1 and B in σ2. Here, ⊎ denotes the combination of two compatible partial program
states; in particular, the two parts must describe disjoint heap locations. Support for this
connective has been used to handle aliasing, framing, race conditions etc., both in by-hand
proofs, and in a variety of tools.

The separating implication, or magic wand connective −∗ was originally introduced along
with the separating conjunction, in the first papers on separation logic. The semantics of
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this connective is defined as follows:

σ ⊧ A −∗B ⇔ ∀σ′ ⊥ σ ⋅ (σ′ ⊧ A ⇒ σ ⊎ σ′ ⊧ B)

Here, σ′ ⊥ σ expresses that the two states are compatible: neither do both require access to
the same heap location, nor do they disagree on the values of any local variables. Informally,
an assertion of the form A −∗B can be understood as describing the effect of a hypothetical
addition to the state σ, in the above: “if we add on any partial heap satisfying A, then
B will hold in the resulting state”. The ability to express guarantees about hypothetical
(future) additions to the state, makes the magic wand well-suited for concisely specifying
partial versions of data structures, e.g. for describing ongoing traversals of those structures
[34, 22], or for allowing clients to reason about “recombining” a view on the whole data
structure while hiding the internal definitions, which has been used for specifying protocols
that enforce orderly modifications of data structures [17, 10, 15]. Yang [35] employs the
magic wand for a by-hand proof of the Schorr-Waite graph marking algorithm, while Dodds
et al. employ it for specifying synchronisation barriers for deterministic parallelism [9].

Despite its history and this variety of applications, the magic wand connective is generally
not supported in automatic verifiers built upon separation logic (and related) theories
[1, 8, 14, 21]. The quantification over states in the wand’s semantics makes the connective
challenging. Recent developments in propositional separation logics [19, 13] show its proof
theory to be intricate. In the presence of variables and other logical features arising in
program verification, reasoning without any user guidance is known to be undecidable [5].

We address the problem of magic wand support in the context of a general-purpose
verifier, via lightweight user annotations and a novel approach for automatically choosing
suitable footprints for magic wand assertions. We describe our solution in the context of
imperative code annotated with generic user-defined predicate and function definitions (for
describing program data structures). Our technique is defined in terms of core operations
which most verification tools for separation logic (and similar permission-based logics) already
support; it is designed to be easily implementable as an extension to existing tools. The
specification language supported by our prototype implementation [29] is richer than the
fragment used in this paper, and includes fractional permissions [3], quantifiers and custom
domains such as mathematical sequences and sets.

Contributions

This paper shows how to support the magic wand connective in an automated verifier,
including the following specific contributions:

A design for the representation of wands in a verification state, and the provision of
suitable ghost operations for directing their use (Section 3.2).
An automatic strategy and algorithm for choosing suitable footprints for magic wand
instances, without additional user direction (Section 3.4).
A mechanism for integrating existing ghost operations (such as folding predicates) with our
automatic footprint computation, and a soundness argument for the presented algorithms.
(Section 4).
A set of additional heuristics, which aim to infer the magic-wand-related annotations
required by our approach (Section 5).
An implementation of our techniques [29], built as an extension of an existing verification
tool, along with examples demonstrating the conciseness and versatility of our approach
(Section 6).

ECOOP’15



616 Lightweight Support for Magic Wands in an Automatic Verifier

0 var val ∶ Int
1 var next ∶ Ref
2

3 predicate List(ys ∶ Ref) {
4 acc(ys.val) * acc(ys.next) * (ys.next ≠ null ⇒ List(ys.next ))
5 }
6

7 function sum_rec (ys ∶ Ref) ∶ Int
8 requires List(ys)
9 {

10 unfolding List(ys) in
11 (ys.val + (ys.next = null ? 0 ∶ sum_rec (ys.next ))) }
12

13 method sum_it (ys ∶ Ref) returns (sum ∶ Int)
14 requires ys ≠ null * List(ys)
15 ensures List(ys) * sum = old( sum_rec (ys ))
16 {
17 var xs ∶ = ys
18 sum ∶ = 0
19

20 while (xs ≠ null )
21 invariant (( xs ≠ null ) ⇒ List(xs )) *
22 sum = (old( sum_rec (ys )) - (xs = null ? 0 ∶ sum_rec (xs )))
23 {
24 unfold List(xs)
25 sum ∶ = sum + xs.val
26 xs ∶ = xs.next
27 }
28 // postcondition error ∶ no permission List (ys) available
29 }

Figure 1 Running sum example (with insufficient loop invariant).

Our work is agnostic as to the implementation of the underlying verifier, and is designed
to be easily adaptable to related verificaton logics (Section 3.1).

2 Background and Motivation

We present our work using implicit dynamic frames [30] as the specification logic. It provides
permission-based reasoning similar to separation logic (which can be encoded [26]), and
is suitable for verification both by tools based on verification-condition-generation [31, 21]
and verifiers built around symbolic execution [32, 16]. We present examples in the Silver
intermediate verification language [16]; our implementation extends the existing verifier
Silicon for this language.

2.1 Running Example
Figure 1 shows a simple example Silver program used as our running example: a straight-
forward iterative implementation to calculate the sum of the nodes in a linked list. In this
subsection, we give a high-level overview of the concepts involved in the specification and
attempted verification of this example.

Specifications (such as the precondition marked with requires or the declared loop
invariant) express not only the intended functional properties of the code, but also the
required permissions; it is a general requirement that heap (field) locations may only be
dereferenced if corresponding permissions are currently held. Permission to access a single
field location is denoted by assertions such as acc(ys.val), while permission to access an
unbounded number of field locations can be expressed using predicate instances such as
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0 var xs ∶ = ys;
1 sum ∶ = 0
2

3 define A (xs ≠ null ⇒ List(xs ))
4 define B List(ys)
5

6 package A −∗ B
7

8 while (xs ≠ null )
9 invariant (xs ≠ null ⇒ List(xs )) * (A −∗ B) *

10 sum = old( sum_rec (ys )) - (xs = null ? 0 ∶ sum_rec (xs ))
11 {
12 wand w ∶ = A −∗ B // give magic wand instance the name w
13

14 var zs ∶ = xs // value of xs at start of iteration
15 unfold List(xs)
16 sum ∶ = sum + xs.val
17 xs ∶ = xs.next;
18

19 package A −∗ ( folding List(zs) in ( applying w in B))
20 }
21 apply A −∗ B

Figure 2 Our verified version of the body of sum_rec, from Figure 1.

List(ys), which requires permission to all val and next fields of the linked-list beginning
from ys. For example, the precondition of the method sum_it requires an instance of the
List predicate, and its postcondition promises that such an instance will be returned to the
caller, along with the guarantee that the returned value is the sum of the values stored in
the list.

The verification of the while loop (line 20) relies on the provided loop invariant (line 21),
which also specifies which permissions are carried along in the invariant. At the beginning of
each iteration of the loop body, an unfold annotation (line 24) directs the verifier to unroll
the (recursive) definition of the List predicate instance. According to the definition of the
predicate (line 3), this makes available the permissions to access the fields of xs, which is
necessary for the verifier to allow the subsequent assignments (lines 25 and 26).

After the loop (line 28) the verifier will have a copy of the state described by the loop
invariant, as well as the assumption that the loop condition is false. Unfortunately, in this
case, the provided loop invariant provides no permissions; essentially, the List predicate
instance has been totally unfolded during traversal of the list, and the left-over permissions
were not retained in the loop invariant. As a consequence, the postcondition (line 15) will
fail to verify, since the required predicate instance cannot be found.

2.2 Overview of Magic Wand Support
Figure 2 shows the body of the sum_it method, specified using our magic wand support. The
loop invariant has been strengthened (line 9) to include an additional magic wand instance1
(xs ≠ null ⇒ List(xs)) −∗ List(ys).

Informally, this magic wand instance represents the following promise: “if you give up
permission to the remainder of the list (starting from xs), I will give you back permission to
the entire list structure (starting from ys)”. This assertion plays the role of representing the

1 We have used syntactic abbreviations (lines 3 and 4) to make the code more readable, and to save
repetition of these assertions; they are also supported in our tool.

ECOOP’15



618 Lightweight Support for Magic Wands in an Automatic Verifier

permissions to the partial list inspected so far by the loop; we say these permissions make
up the footprint of the magic wand.

The footprint of a magic wand must include enough permissions to make this informal
promise justified. We can direct the verifier to create a new magic wand instance (and choose
a suitable such footprint) using a package statement, such as that on line 6, which creates
the wand instance necessary for showing that the loop invariant holds on entry. An empty
footprint suffices on line 6, since xs and ys are equal at this point (line 0).

During verification of the loop body, we need to maintain the magic wand instance in the
loop invariant; this is achieved by the package statement on line 19, which produces a new
suitable magic wand instance to represent the current left-over permissions to the already-
inspected portion of the list. Apart from the assertions A and B, the extra annotations on
this line explain to the verifier how, given the left-hand-side assertion, the right-hand-side
assertion can be obtained2. Given these annotations, the calculation of the extra permissions
which must be associated with this new wand instance (i.e. its footprint) is performed
automatically; our techniques for achieving this are an important contribution of this paper.

A wand instance can be combined with its left-hand-side (LHS) assertion, and the
combination exchanged for the right-hand-side (RHS) assertion; this is called applying the
magic wand instance. For example, after the loop body in our example, the magic wand
instance from the loop invariant is applied (on line 21); its LHS must be given up, and its
RHS List(ys) is added to the state, providing the method’s postcondition.

In the rest of the paper, we use this simple example to help explain the details of our
general magic wand support: the representation of magic wands, related annotations, and
our automatic footprint computation algorithm (Section 3); the integration of other ghost
operations such as folding on line 19 (Section 4); and a set of heuristics used to infer
magic-wand-related annotations (Section 5). In the remainder of this section, we provide
more-detailed background and foundational definitions.

2.3 Assertion Language
The assertion language used in this paper consists of the following constructs:

A ∶∶= e ∣ acc(e.f) ∣ P (e) ∣ A ∗A ∣ e⇒ A ∣ A −∗A

This is a core fragment of the assertions employed in the Silver language, extended (in the last
case) with magic wand assertions; A denotes assertions, e denotes side-effect-free expressions.
Permissions are managed in the logic via accessibility predicates acc(e.f), which denote the
exclusive permission to access a heap location e.f . For example, see line 4 of Figure 1. The
conjunction ∗ behaves as the separating conjunction in separation logics; in particular, an
assertion acc(x.f) ∗ acc(y.f) requires the disjoint union of the permissions required by the
two conjuncts; this implicitly requires that x ≠ y, otherwise the same (exclusive) permission
would be required twice (this is analogous to the meaning of the assertion x.f ↦ _ ∗ y.f ↦ _
in separation logic). The grammar above imposes the standard restriction [1] that accessibility
predicates (as well as predicate and magic wand instances) may not occur on the left of
conditional assertions: the value of the condition e is therefore independent of the current
permissions held.

2 Variable zs records the node that xs pointed to at the beginning of the current loop iteration, while w
gives a name to the magic wand instance belonging to the loop invariant at the start of the iteration.
Both are not strictly necessary, but make the annotations on line 19 succinct.
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In contrast to separation logic, implicit dynamic frames allows heap-dependent expressions
such as x.f1.f2 > 0 to be used in assertions. In particular, heap-dependent functions can
be defined and used in expressions, such as the sum_rec function in Figure 1 (line 7).
Heap-dependent expressions are only guaranteed a meaningful semantics when they are
framed by the permissions held in the state in which they are evaluated, meaning that
for any heap location dereferenced by the expression, a corresponding permission must
currently be held. Accessing heap locations in program statements is similarly restricted;
e.g. a field read such as xs.val on line 25 of Figure 1 is allowed only in states in which a
permission to the location xs.val is held. An assertion is said to be self-framing if it requires
at least permissions to those locations on which the expressions it mentions depend. For
example, the assertion xs.val > 0 is not self-framing, whereas acc(xs.val) ∗ xs.val >
0 is self-framing. Invocations of functions such as sum_rec must analogously occur in states
in which their preconditions (e.g. line 8) hold. Only self-framing assertions can be used in
specifications. As a technical simplification of this check, we assume that the permission to
access a heap location comes syntactically before any expressions depending on the value at
that location (this is analogous to the restriction in some separation-logic-based tools that
logical variables must be bound to heap locations before their use). In [26], Parkinson and
Summers have shown that separation logic assertions can be encoded into implicit dynamic
frames, and that the resulting assertions are self-framing by construction.

To simplify the presentation of our algorithms, we restrict ourselves in this paper to unary
predicates P (e) and functions g(e) (the details of which will be discussed in Section 2.5),
but this arity restriction is not relevant for the techniques presented in this paper. Our
implementation [29] supports unrestricted predicate and function definitions, as well as
fractional permissions [3].

2.4 Verification via Exhale and Inhale Operations
From a verification perspective, proof obligations can be expressed in Silver via exhaling and
inhaling assertions [21], which are permission-aware analogues of traditional assume/assert
statements used to express verification conditions. Analogous operations are used internally
in other verification tools (e.g. for separation logic); in tools based on symbolic execution,
these operations are typically called consume and produce.

An operation exhale A (where A is an assertion) can be understood to assert all of the
logical properties described by A, and to give away all of the permissions described by the
assertion. Once permissions have been given away, the verifier may no longer retain (or
frame) facts about the values of these heap locations, even if permission is regained later.
For example, before the while loop in our running example, the loop invariant is exhaled; the
giving up of permissions reflects the fact that the loop may modify the locations to which
the loop invariant requires access. The loop invariant must also be exhaled at the end of the
loop body, reflecting the usual requirement that the invariant is preserved.

In terms of the state maintained by a verifier, an exhale operation can be understood as
requiring the current verification state σ to be split into a part σ1 satisfying the assertion A,
and a remainder state σ2, which is the result of the operation. From a soundness perspective,
it is fine for a verifier to overapproximate σ1, effectively giving more permissions away than
is necessary; the precision of these operations depends on the completeness of the underlying
tool. If such a split cannot be found (the assertion A could not be shown to hold in the
original state), then this operation causes a verification error, similar to an assertion failure
in first-order tools.

inhale A is the dual operation: it assumes the logical properties described by A, and

ECOOP’15



620 Lightweight Support for Magic Wands in an Automatic Verifier

adds the permissions to the current state. As an operation on states, this can be regarded as
combining an arbitrary state satisfying A with the current state. The verification of high-level
programming features can typically be modelled using combinations of these operations: for
example, a method call can be modelled by exhaling the method’s precondition, and inhaling
its postcondition. In terms of Figure 2, the loop invariant (line 9) is inhaled at the beginning
of checking the loop body (line 11) as well as after the loop, for verifying the subsequent
code (line 21).

2.5 Recursive Definitions and Ghost Operations
In Silver, unbounded data structures can be specified via recursive predicates [25], such as
List. An instance of this predicate (written e.g. List(xs)) represents permissions to all
directly and transitively (via next) reachable fields3. A predicate definition can have any
number of parameters, and its body may be any self-framing assertion; in particular, it
may include instances of the same or other predicates, and express conditions over arbitrary
combinations of the parameter and heap values accessed.

Complete reasoning in the presence of such predicates is undecidable; consequently, many
automatic verifiers do not treat a predicate instance as simply a direct short-hand for its body
(the equi-recursive interpretation [33]). Instead, tools typically differentiate between holding
an instance of a predicate and holding the assertion defined by its body, while allowing the
two to be exchanged via unfold and fold operations (the iso-recursive interpretation). An
unfold operation directs that a currently-held predicate instance should be exchanged for its
body, while a fold operation exchanges the body for a predicate instance. Until an unfold
is specified, predicate instances are treated as opaque, in the sense that the permissions and
logical facts entailed by their definitions are not directly available to the verifier. We call
such operations (which rewrite the verification state to guide the tool, but do not involve
changes to the program state) ghost operations.

In some tools, ghost operations must be explicitly specified within the program code,
while other tools may attempt to infer these via heuristics/static analyses. For the purposes
of this paper, we will include ghost operations as explicit statements in the program text4.

As alluded to above, Silver also supports recursive side-effect-free functions in specifica-
tions. In our example, the function sum_rec returns the sum of the integer values stored in
the linked-list. A Silver function’s body is an expression; the function’s precondition must
require enough permissions to guarantee that the function’s body is framed (in the case of
sum_rec, it requires an instance of the List predicate). The body of the sum_rec function
computes the sum in the natural recursive manner; the only non-standard feature is the
unfolding. This construct does not affect the value returned by the function: its role is to
tell the verifier to temporarily apply an unfold ghost operation before evaluating the nested
expression (after the “in”), explaining how to find the necessary permissions.

2.6 Revisiting the Running Example
Armed with the above background, we can explain the usage of magic wands in Figure 2
more clearly. In particular, the magic wand in the loop invariant retains the appropriate

3 Technically, recursive predicate definitions should be understood via their least fixpoint interpretations.
We do not concern ourselves with well-definedness details regarding recursive definitions, which are not
the main focus of our paper.

4 However, in Section 5 we will show how we can indeed infer these in many cases.
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ys xs null 

List(xs) --* List(ys) List(xs) 

var zs := xs;  unfold List(xs);  sum := sum + xs.val;  xs := xs.next 

ys zs xs null 

List(zs) --* List(ys) List(xs) 
acc(zs.val) 
acc(zs.next) 

package List(xs) --* folding List(zs) in 
                     applying List(zs) --* List(ys) in 
                     List(ys) 

ys zs xs null 

List(xs) --* List(ys) List(xs) 

Figure 3 Illustration of the organisation of permissions in the loop invariant from Figure 2, via
magic wand and predicate instances. The magic wand instance covers permissions to the prefix of
the list (starting at ys) that has already been traversed by the loop. For simplicity, the cases of
xs/xs.next being null have been ignored.

permissions to the already-inspected nodes in the original list, such that rather than these
being lost after the loop terminates, they can be recovered by simply applying the wand (line
21). This enables the verification of the postcondition of sum_it (Figure 1, line 15), which
expresses that a List predicate will be returned to the caller, along with the knowledge that
this iterative code computes the same value as the function sum_rec5.

Figure 3 conceptually illustrates the permissions that the magic wand instance in our loop
invariant represents, by stepping through the important stages of verifying the loop body (for
simplicity, the cases of xs/xs.next being null have been ignored). At the beginning of the
loop body, the magic wand’s footprint includes the permissions (to fields val and next) from
the head of the linked list ys all the way down to – but excluding – the current node xs. The
remaining permissions, i.e. those to the current node and the tail of the list, are contained
in the predicate instance List(xs). The latter is then unfolded, providing permissions to
the fields of xs, i.e. to acc(xs.val) and acc(xs.next), and xs is then advanced such that
it points to the next node (i.e. to zs.next). In order to reestablish the loop invariant, in
particular, to reestablish that the wand instance includes the permissions to the already
visited prefix of the list, we therefore need to add the permissions to zs.val and zs.next to
the wand instance. This is (conceptually) achieved by the final package-statement: the ghost
operations on the RHS of the wand force the wand’s footprint to include the footprint of the
wand held so far, plus the permissions to zs.val and zs.next (necessary for the folding
ghost operation specified). Ghost operations will be explained in Section 4.

5 The old construct specifies that the nested expression should be evaluated in the heap of the method’s
prestate; the evaluation of program variables is not affected by old.
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622 Lightweight Support for Magic Wands in an Automatic Verifier

As we show in this paper, our support for the magic wand connective allows a natural
specification of these “left-over” parts of data structures, in a way which requires few
annotations, and applies equally well to other data structures and predicates. This is an
important use-case for our work, but (as discussed in the introduction) the magic wand has
various other known applications (e.g. [17, 10, 15, 35, 9]); the possibility of practical tool
support via the contributions of this paper will likely also lead to further applications being
explored.

3 Magic Wand Support with Automatic Footprints

We present our solution for supporting the magic wand without relying on any particular
implementation strategy for the underlying verification tool. For example, we are agnostic
as to whether the verifier is based on symbolic execution, verification condition generation,
or some other technique, so long as the modelled program state admits a number of basic
operations presented in the next subsection. Moreover, although we present our approach in
the context of implicit dynamic frames, it is straightforward to adapt it to a separation-logic-
based tool or to other permission-based verification logics.

3.1 Basic Operations
We use σ to range over program states as modelled in the verifier. We do not prescribe a
particular representation for these states; in a tool based on symbolic execution, they could
be sets of heap chunks along with path conditions, while in a tool based on verification
condition generation, they could consist of maps representing the heap and permissions held.
States must be able to record assumptions, permissions and magic wand instances (see the
next subsection). Figure 4 defines the interface we expect to be implemented by the states.
We represent these interface operations as functions on (and producing) immutable states.
In practice, the operations could be implemented by generating a corresponding program in
an intermediate language, or by directly updating internal (potentially mutable) state in a
verification tool.

The state operations hasAcc, addAcc and removeAcc are used respectively to check that
a state holds permissions to a field, to add and to remove such permission from a state.
Analogous operations are included for predicate and magic wand instances. With respect
to our running example (Figure 2), addPred will be, for example, used to add an instance
of List(xs) to the state when inhaling the loop invariant at the beginning of the loop
body, and removePred will be used at the end of the loop body when exhaling the loop
invariant. The unfold operation on line 15 would typically use (amongst other operations)
removePred to remove the predicate instance List(xs) that is to be unfolded, and addAcc
to add permissions to xs.val to the state. In line 16, hasAcc would be used to assert that
reading the field xs.val is permitted, i.e. that the state holds permissions to the field.

Depending on the implementation approach taken for a particular verifier, the imple-
mentation of these operations will vary. In a verifier which translates to an intermediate
language such as Boogie [20], operations such as addAcc and removeAcc would typically be
implemented by generating modifications of the Boogie program state (used to model e.g.
permissions held), while in a symbolic execution tool these operations would typically involve
mutation of a collection maintained by the verification tool to represent the make up of the
current state.

The idea behind equate is to be able to communicate information (i.e. logical constraints)
from one state to another. In particular, we use this operation to model adding the information
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σ.eval(e) ≈ evaluates expression e in state σ, yielding a value v

σ.assume(e) ≈ assume that e holds in σ
σ.assert(e) ≈ assert that e holds in σ

σ.hasAcc(v, f) ≈ true iff σ contains access to v.f
σ.addAcc(v, f) ≈ add access to v.f to σ
σ.removeAcc(v, f) ≈ remove access to v.f from σ

σ.hasPred(P, v) ≈ true iff σ contains P (v)
σ.addPred(P, v) ≈ add P (v) to σ
σ.removePred(P, v) ≈ remove P (v) from σ

σ.hasWand(A −∗B) ≈ true iff σ contains A −∗B

σ.addWand(A −∗B) ≈ add A −∗B to σ
σ.removeWand(A −∗B) ≈ remove A −∗B from σ

σ.onlyvars() ≈ returns a state σ′ that is empty, except for local variables
≈ declared in σ, and all assumptions σ has about them

σ1.equate(σ2, v, f) ≈ update σ1 s.t. it contains all assumptions from σ2 about v.f
if (. . . ) . . . else . . . ≈ conditional operation

Figure 4 Basic state operations. e denotes an expression, σ a state, and v denotes a value
(of appropriate type), i.e. the result of evaluating an e in a σ. All operations except eval,
hasAcc/hasPred/hasWand, onlyvars and if return an updated state.

that the value of an expression in σ1 is the same as in σ2. We expect σ1.equate(σ2, v, f) to
produce a modified version of σ1, in which information known about the value of v.f in σ2 has
been copied/made available. In practice, this operation often has a simple implementation;
it could amount simply to equating the symbolic values of v.f in the two states, or (in a tool
based on verification condition generation) simply adding the assumption that the value of
the expression is the same in the two states. In implementations in which logical constraints
(path conditions) are not stored globally, the operation might require selectively copying
such constraints.

The if conditional can be implemented differently in different tools: those which translate
to another language for verification (such as Boogie) may represent this as an actual
conditional, whereas a symbolic-execution-based verifier would typically branch (that is,
split the proof of the program) at this point. We overload if such that it can be used with
(boolean) state values v, e.g. if σ.eval(e), and with (boolean) return values of operations
on state, e.g. if σ.hasAcc(v, f).

We can now define the inhale and exhale operations as functions of states (Figure 5),
in terms of the basic operations above. We use the ↝ symbol to denote the desugar-
ing/compilation of an operation into simpler ones. For example, σ.inhale(a1 ∗ a2) ↝
σ.inhale(a1).inhale(a2) represents that inhaling a conjunction is defined as inhaling the
second conjunct in the state resulting from inhaling the first conjunct.
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σ.exhale(a) ↝ σ.exhale(σ, a)
σ.exhale(σ̃, e) ↝ σ̃.assert(e)
σ.exhale(σ̃, a1 ∗ a2) ↝ σ.exhale(σ̃, a1).exhale(σ̃, a2)

σ.exhale(σ̃, e⇒ a) ↝ if σ̃.eval(e) σ.exhale(σ̃, a) else σ
σ.exhale(σ̃,acc(e.f)) ↝

v := σ̃.eval(e)
if σ.hasAcc(v, f) σ.removeAcc(v, f) else fail

σ.inhale(e) ↝ σ.assume(e)
σ.inhale(a1 ∗ a2) ↝ σ.inhale(a1).inhale(a2)

σ.inhale(e⇒ a) ↝ if σ.eval(e) σ.inhale(a) else σ
σ.inhale(acc(e.f)) ↝ v := σ.eval(e); σ.addAcc(v, f)

Figure 5 The interesting cases for the definitions of exhaling and inhaling assertions (see also [21]).
The second state parameter σ̃ for exhale is used to carry a copy of the original state, used when
checking boolean expressions (to avoid any loss of information due to removed permissions). The cases
for inhaling/exhaling predicate and wand instances are analogous to the case of inhaling/exhaling
acc(e.f). fail is a short-hand for σ.assert(false).

3.2 Representing, Applying and Packaging Wands
Our approach to supporting magic wands can be related to the handling of recursive definitions
via ghost operations (cf. Section 2.5) as follows: Just as for predicates, we wish to be able to
derive new magic wand assertions, and to apply their meanings while verifying code, but
tackling this problem automatically without any direction from the user is known to be
undecidable, even for much more restricted assertion logics than those we wish to support [5].

Analogous to predicate instances, we treat instances of magic wands as opaque; when
one is available in a verification state, the verifier need not attempt to deduce anything that
follows from the wand’s meaning, without direction to do so. The choice to use such a magic
wand instance must be directed by a ghost statement apply A −∗B (see, for example, line 21
of Figure 2). Recall the formal semantics of a magic wand assertion from Section 1:

σfoot ⊧ A −∗B ⇔ ∀σA ⊥ σfoot ⋅ (σA ⊧ A ⇒ σfoot ⊎ σA ⊧ B)
This semantics intuitively says that A −∗B is true in a state σfoot if it is guaranteed that the
state created by combining this state with some additional state σA satisfying A, satisfies B.
One can see this as a definition in terms of what can be deduced from a magic wand, according
to the following Modus-Ponens-like inference rule from separation logic: A ∗ (A −∗B) ⊧ B,
and we analogously define the operation of applying a wand instance in a state σ as follows:

σ.apply(A −∗B) ↝ σ.exhale(A −∗B).exhale(A).inhale(B)
Just as for predicate instances, the opaque treatment of magic wand instances requires for
soundness that the state σfoot in the semantics above must notionally belong to the magic
wand instance, in the sense that the program is not allowed to modify that part of the state
up until the wand instance is applied. We call such a state the footprint of the magic wand
instance. Whenever a new magic wand instance is to be added to the state, we need to
compute some suitable part σfoot of the current state σ, that will suffice to guarantee the
wand’s semantics, and then remove σfoot from the current state, and add the new magic
wand instance. We call this operation (of choosing a suitable footprint for a magic wand
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instance, and exchanging the footprint for the wand instance) packaging the magic wand
instance, and use a ghost command package A −∗B to indicate that this operation should
be performed.

Unlike the folding of a predicate instance, a suitable choice of footprint for a magic wand
instance is not directly determined by its definition. As discussed, such a footprint must
be some state guaranteeing the semantics of the wand, but this doesn’t indicate how this
state should be chosen. The key contribution which keeps our approach lightweight is that
we have defined a useful strategy (and corresponding algorithm) for automatically choosing
footprint states.

3.3 Strategy for Choosing Footprints
Automatically choosing a suitable footprint for a magic wand instance is challenging. Accord-
ing to the approach outlined in the previous subsection, a package operation package A −∗ B
must attempt to choose a footprint σfoot, which can be any portion of the current state so
long as it satisfies the wand’s semantics. In checking this criterion, it would be unsound to
use any facts from the current state which are not framed by permissions that we choose to
put into the footprint, since these might no longer be true by the time the wand instance is
applied6. For example, when proving acc(x.f) −∗ acc(x.f) ∗ x.f = 3 in a state where
x.f = 3, we may only use this fact if we store permission to x.f in the footprint; otherwise,
the value of x.f could have been changed by the time the wand instance is applied.

In deciding on a strategy for choosing footprints, we could soundly restrict the choice of
a wand instance’s footprint state to be any portion of the current state, so long as we then
check that this choice indeed guarantees the wand’s semantics. Certain strategies for choosing
a footprint are, however, more useful than others. For example, we could always choose the
empty state as a footprint, and therefore not use up any permissions at a package statement;
the check of the wand’s semantics (with σfoot = ∅) would typically then fail: effectively we
would only support wands where A logically entails B, which, for example, would not be
sufficient to specify our running example. Alternatively, we could always choose the entire
current state to be the new wand instance’s footprint. This would allow many wands to
be proven, but would mean that the remaining program would be almost certain not to
verify, since all permissions from the current state would have been lost to the wand instance.
Although either of these approaches would be sound, they would not be useful in practice.

Intuitively, it makes sense to choose a footprint which is as small as possible, while still
guaranteeing enough information for the wand’s semantics. However, the notion of “as
small as possible” is not straightforward to define precisely. For example, we can satisfy the
semantics of a wand A −∗B by choosing a footprint state which includes enough permissions
such that a state satisfying A can never again be obtained; this would yield a true wand
instance (the inability to find a suitable σA state makes the semantics of the wand vacuously
true), but one which could never be applied, which is not useful as a verification construct.

Recall the previous example, in which acc(x.f) −∗ acc(x.f) ∗ x.f = 3 is to be pack-
aged in a state in which x.f = 3. As discussed, this fact may only be soundly used when
proving the RHS of the wand if permission to x.f goes into the wand’s footprint. Although
this extra logical fact is useful in proving the right-hand-side, such a decision would again
yield a wand instance which cannot be applied, since the LHS of this wand requires this

6 We handle only magic wand assertions A −∗B in which the assertions A and B are self-framing. Thus,
we disallow awkward assertions such as true −∗ x.f = 3. This is not a strong restriction in practice;
indeed, in standard separation logics, all assertions are self-framing [26].
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transfer(σi ⋅ σ,σused,acc(e.f)) ↝
v := σused.eval(e)
if σ.hasAcc(v, f) {

σ′used := σused.addAcc(v, f)
σ′′used := σ′used.equate(σ, v, f)
σ′ := σ.removeAcc(v, f)
return (σi ⋅ σ′, σ′′used)

} else {
(σ′i, σ′used) := transfer(σi, σused,acc(e.f))
return (σ′i ⋅ σ,σ′used)

}

transfer(ε, σused,acc(e.f)) ↝ fail

Figure 6 σi denotes a (potentially empty) stack of states, and σi ⋅ σ denotes a stack created by
pushing a single state σ onto a stack of states σi. Function transfer descends a stack of states and
tries to find permissions to location e.f . If successful, the permissions are transferred into σused. The
cases for P (e) and A −∗B are defined analogously.

permission to be provided when applying the wand instance. Essentially, any permissions
which we choose to take from the current state when they are already provided by the LHS
of the wand, are leaked at the point of packaging an instance of that wand, which is not
typically useful for verifying the rest of the program.

Motivated by these observations, our strategy for choosing wand footprints is: include
all permissions required by the wand’s RHS, which we cannot prove to be provided by the
wand’s LHS. We observe that restricting the choice of footprint to only these permissions
is not really a restriction in practice. If the tool user intends to include extra permissions
from the current state to in a wand’s footprint, they can achieve it by writing a RHS which
requires more permission than the LHS provides. In the next subsection, we explain how
this high-level strategy can be realised in practice.

3.4 Footprint Computation Algorithm
The idea of our strategy is simple, but writing an algorithm that implements it is still
challenging: there is a technical circularity to the problem. The footprint for a wand is
determined in terms of the permissions required by its RHS. Exactly which permissions are
required by the RHS can (due to implications/conditionals) depend on properties of heap
values. Properties known about heap values in the current state may be soundly used if and
only if permissions to those heap locations are included in the wand’s footprint (which we
are trying to compute).

To break this circularity, we devised an algorithm called exhale_ext to simultaneously
evaluate the wand’s RHS to determine the permissions it requires, and construct a new state
σused, containing these required permissions. These permissions are taken from the current
state if they cannot be proved to be provided by the wand’s LHS; thus, we implicitly carve
out a suitable footprint for the wand from the current state.

Our algorithm is shown in Figure 7, and works as follows: Let σ be the current state
in which a package A −∗B operation takes place. We first construct a hypothetical extra
state σA representing the information provided by the wand’s LHS (by inhaling the LHS into
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σ.package(A −∗B) ↝
σemp := σ.onlyvars()
σA := σemp.inhale(A)
(σ′ ⋅ σ′A, σ′used) := exhale_ext(σ ⋅ σA, σemp,B)
return σ′.addWand(A −∗B)

exhale_ext(σi, σused,acc(e.f)) ↝
return transfer(σi, σused,acc(e.f))

exhale_ext(σi, σused,A1 ∗A2) ↝
(σ′i, σ′used) := exhale_ext(σi, σused,A1)
(σ′′i , σ′′used) := exhale_ext(σ′i, σ′used,A2)
return (σ′′i , σ′′used)

exhale_ext(σi, σused, e) ↝
σused.assert(e)
return (σi, σused)

Figure 7 Packaging a wand instance. σemp is empty except for local variables and assumptions
about those from σ. Permissions transferred into σused contribute to the footprint. exhale_ext
of P (e) and A −∗B is defined analogous to the case of acc(e.f). Other cases of exhale_ext are
analogous to exhale, but expressions are evaluated in σused, as in the e case, above.

an empty state σemp). We then use exhale_ext to attempt to compute a state σ′used that
satisfies the wand’s RHS, i.e. such that σ′used ⊧ B. State σ′used is constructed by successively
transferring permissions from the stack of states σ ⋅σA into σemp. As motivated in Section 3.4,
the algorithm tries to minimise the computed footprint by taking permissions preferentially
from σA and only from σ when needed7.

Our exhale_ext algorithm computes a footprint only implicitly; the state σused is not
the footprint itself, but (if the algorithm terminates successfully) corresponds to (a part of)
σA combined with a part of the input state σ which has been removed from the resulting
state σ′; the removed part corresponds to the chosen footprint. At at any point during the
execution of exhale_ext, the current σused satisfies the prefix of the wand’s RHS that has
been processed so far. Recall that both sides of a wand have to be self-framing; in particular,
on a wand’s RHS the permission to access a heap location occurs before any expressions
that depend on the location’s value. This is why expressions can be evaluated in σused; any
necessary permissions (and assumptions about the location’s value) will already have been
transferred into this state by our algorithm.

The separation of the two initial states σ and σA in our algorithm is essential for a correct
footprint computation. A naïve algorithm which simply combined the hypothetical extra
state with the current state before trying to exhale the wand’s RHS would be unsound: this
combination might be inconsistent (due to holding too many permissions, or to conflicting
value facts), which would trivialise the check of the wand’s RHS assertion.

7 In the context of Figure 7 the stack of states making up the first argument to exhale_ext will always
consist of two states, corresponding to the input σ ⋅ σA, but our algorithm is defined to take a stack
of states of any length. This generalisation will be shown to be necessary in Section 4 for supporting
nested magic wand assertions.
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σ.package(A −∗G) ↝
σemp := σ.onlyvars()
σA := σemp.inhale(A)
(σ′ ⋅ σ′A, σ′used) := exec(σ ⋅ σA, σemp,G)
return σ′.addWand(A −∗ nested(G))

exec(σi, σops,foldingP (e)inG) ↝
σemp := σops.onlyvars()
v ∶= σops.eval(e)
(σ′i ⋅ σ′ops, σ

′

used) := exhale_ext(σi ⋅ σops, σemp,Body(P )[param↦ v])
σ′′used := σ′used.fold(P, v)
return exec(σ′i, σ′ops ⊍ σ′′used,G)

exec(σi, σops,unfoldingP (e)inG) ↝
σemp := σops.onlyvars()
v ∶= σops.eval(e)
(σ′i ⋅ σ′ops, σ

′

used) := exhale_ext(σi ⋅ σops, σemp, P (e))
σ′′used := σ′used.unfold(P, v)
return exec(σ′i, σ′ops ⊍ σ′′used,G)

exec(σi, σops,applyingA −∗B inG) ↝
σemp := σops.onlyvars()
(σ′i ⋅ σ′ops, σ

′

used) := exhale_ext(σi ⋅ σops, σemp,A ∗ (A −∗B))
σ′′used := σ′used.apply(A −∗B)
return exec(σ′i, σ′ops ⊍ σ′′used,G)

exec(σi, σops,packagingA −∗G1 inG2) ↝
σemp := σops.onlyvars()
σA := σemp.inhale(A)
(σ′i ⋅ σ′ops ⋅ σ′A, σ′used) := exec(σi ⋅ σops ⋅ σA, σemp,G1)
σ′′ops := σ′ops.addWand(A −∗ nested(G1))
return exec(σ′i, σ′′ops,G2)

exec(σi, σops,A) ↝
σemp := σops.onlyvars()
return exhale_ext(σi ⋅ σops, σemp,A)

Figure 8 Executing ghost operations. The first three exhibit the same structure: 1. exhale_ext
determines the footprint of the operation and transfers it from σi ⋅ σops into σemp, yielding σ′i ⋅ σ

′

ops
and σ′used; 2. the actual operation is performed, rewriting σ′used into σ′′used; 3. the execution continues
in updated states. The packaging ghost operation proceeds analogous to the package statement.
The last case, exec(_,A), handles assertions with no further ghost operations.

For example, suppose that σ holds permission to fields x.f and y.f, with values 1, re-
spectively, 2. The operation package (acc(x.f) ∗ x.f = 2) −∗ (acc(x.f) ∗ acc(y.f)
∗ x.f = y.f) will succeed, and the footprint acc(y.f) will be removed from the current
state. The fact y.f = 2 from the original state will be used for checking the wand’s RHS
(which is justified, since the permission acc(y.f) is taken from the current state for the
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wand’s footprint). But importantly, the fact x.f = 1 (which contradicts the wand’s LHS)
will not be used when checking the wand’s RHS, since permission to this location is not taken
from the current state. For this reason, packaging the alternative wand package (acc(x.f)
∗ x.f = 2) −∗ (acc(x.f) ∗ acc(y.f) ∗ false ) will fail, as it should.

For simplicity, our presentation in Figure 7 does not include cases for handling permissions
under conditionals, i.e. when wands such as true −∗ (b ? acc(x.f) : acc(x.g)) are
to be packaged. Effectively, the footprint calculation must branch on the condition b, finding
an appropriate footprint for when b is true, and another for when b is false. The tool can
then either overapproximate, by removing at least as much as is taken in each branch, or
(as in our implementation), can record the removal of the footprint information as being
conditional on the value of b.

For example, assume that the current state satisfies acc(x.f) ∗ acc(x.g). Packaging
an instance of the wand above succeeds, resulting in a state satisfying (!b ? acc(x.f) :
acc(x.g)) ∗ (true −∗ (b ? acc(x.f) : acc(x.g))).
Consequently, trying to assert acc(x.f) will fail in that state (and likewise for acc(x.g)),
but assert (b ⇒ acc(x.g)) will succeed. Moreover, after applying the wand instance,
assert acc(x.f) ∗ acc(x.g) will succeed. We illustrate this handling of conditionals in
one of our online examples (cf. Section 6).

4 Integrating Ghost Operations

The magic wand support described in the previous section forms the core of our solution,
but it is not yet expressive enough to integrate well with features of the full logic such as
predicates. In particular, in the proof (packaging) of a new magic wand instance, it is often
necessary to be able to specify ghost operations between the hypothetical addition of the
wand’s LHS, and the proof of the RHS, for example, because the wand’s RHS is a predicate
instance that can only be folded once the state described by the wand’s LHS is provided.

Our running example (Figure 2) exhibits an instance of this situation on line 19, when
re-establishing the magic wand in the loop invariant. Recall that the wand (xs ≠ null
⇒ List(xs)) −∗ List(ys) expresses that we can obtain a predicate instance describing
the complete list if we give up the “remainder list” starting from xs. Consider how we can
re-establish this invariant at the end of the loop body: in particular, the state at line 18.
In this state, we have permissions to the fields zs.val and zs.next of the current node
(obtained from the unfold at line 15). We also have the magic wand instance w from the loop
invariant at the beginning of the iteration (line 12), which has the same RHS, but requires
List(zs) on its LHS. We don’t directly hold enough permissions to package the wand
instance needed in our new loop invariant; conceptually, those missing are in the footprint
of the wand instance w. However, given the LHS assertion (xs ≠ null ⇒ List(xs)), we
can obtain the RHS if we first fold the predicate instance List(zs), and then apply the
wand instance w. These ghost operations explain how, given the LHS, we can rearrange
the permissions in our state to obtain the desired RHS, which requires in the process the
additional permissions acc(zs.val) and acc(zs.next) and the wand instance w (these
constitute the footprint of the new wand instance).

In order to allow such ghost operations to be expressed when packaging wand instances,
we generalise the package statement to the form package A −∗G, where G is an assertion A
possibly nested inside ghost operations, as defined by:

G ∶∶= A ∣ foldingP (e)inG ∣ unfoldingP (e)inG
∣ packagingA −∗GinG ∣ applyingA −∗AinG
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Note that we include syntax for nesting an assertion inside a ghost operation for each
ghost operation that we support in statement position ((un)fold, package, apply; in other
verifiers, more could be added). The difference is that the syntax here indicates that the ghost
operation should be applied during the footprint computation for the new wand instance,
rather than in the current state.

A successful package A −∗G operation does not add a wand instance of the form A −∗G
to the state (which is not an assertion according to Section 2.3), but rather A −∗A′ where
A′ is the assertion nested in the ghost operations. The role of the ghost operations is to
indicate only how the wand’s semantics can be achieved, but they do not affect what the
resulting wand instance represents. We write nested(G) to denote the assertion nested inside
the ghost operations. For example, nested(foldingList(zs)inapplyingwinList(xs)) =
List(xs).

Our automatic footprint computation is extended to support these ghost operations, as
shown in the rules in Figure 8. These rules specify a modified definition of package, as well
as rules for executing the ghost operations. Such execution requires finding and transferring
suitable permissions from the (stack of) input states, such that the specified ghost operation
can be executed; for example, in order to execute a folding, we must find the permissions
required by the body of the corresponding predicate instance. The state resulting from the
successfully-executed ghost operations is maintained as the separate parameter σops (which is
initially empty apart from assumptions about local variables). In effect, each ghost operation
rewrites already existing permissions into a different representation, which is then available
to subsequent ghost operations or the eventual call to exhale_ext, once all ghost operations
have been handled.

As an example, consider the package statement on line 19 of Figure 2, and assume that σ
denotes the state before the package statement. Hence, line 19 corresponds to performing an
operation σ.package(A −∗ foldingList(zs)in . . .). Following Figure 7, this will result in
exec(σ ⋅ σA, σemp,foldingList(zs)in . . .), which means that all permissions necessary for
executing the ghost operations must come from either the current state σ or the hypothetical
LHS state σA.

The rules for executing the first three ghost operations shown in Figure 8 ((un)folding
and applying) exhibit the same structure: First, exhale_ext is used to find the necessary
state for executing the ghost operation at hand (including checking that all necessary boolean
assertions are true), and to transfer that state from σi ⋅ σops into σemp, which yields σ′i ⋅ σ′ops
(the remainders of the input states) and σ′used. Next, the actual ghost operation is performed
on σ′used, which is thereby rewritten into σ′′used. Note that this operation is guaranteed to
succeed because of the preceding exhale_ext. This rewriting of the state does not change
which assertions are satisfied by the state in terms of the ideal (equirecursive) semantics
of assertions, but for a verifier which differentiates between predicate instances and their
bodies (and between wand instances and their footprints), the ghost operation can affect
what the tool can show about the resulting state. Finally, the execution continues in the
updated states.

In the context of the operations in line 19 of our running example, the execution
of the ghost operation folding List(zs) in . . . proceeds by invoking exhale_ext(σ ⋅
σA ⋅ σemp, σemp,Body(List(zs))), which transfers the footprint of the body of List(zs)
(see Figure 1) to σemp (the second argument). The footprint comprises the permissions
corresponding to acc(zs.val) and acc(zs.next), and, assuming zs ≠ null, the predicate
instance List(zs). The algorithm tries to take as many permissions as possible from the
state on top of the stack (σA in our example), but since σA only provides List(zs.next),
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the other permissions are taken from σ. The resulting stack of states is σ′ ⋅ σ′A ⋅ σemp (where
σ′A is also essentially σemp), along with the single state σ′used which is a state sufficient to
satisfy Body(List(zs)), i.e. σ′used ⊧ Body(List(zs)).

In the next step, σ′used is rewritten into σ′′used by folding List(zs), which replaces the
footprint of the predicate body by an instance of the predicate8.

Finally, the execution of the package statement from line 19 continues by invoking
exec(σ′ ⋅σ′A, σemp ⊍σ′′used,applyingwinList(ys)): executing the applying ghost operation
proceeds by transferring List(zs) (the LHS of w) and the wand instance w itself from
σ′ ⋅σ′A ⋅σ′′usedto another fresh σemp. In particular, List(zs) is taken from σ′′used, and w is taken
from σ′. Afterwards, apply is used to rewrite the state that now contains List(zs) and w
such that it contains the RHS of w, i.e. List(ys). Finally, List(ys) itself is transferred into
a fresh σemp (see the last rule of Figure 8). The execution returns to the package rule from
the start of the figure, in which the σ′used is essentially a state satisfying exactly List(ys) –
and as such, satisfies the RHS of the wand instance we set off to package. The remainder
of the LHS state, σ′A, is discarded (it is essentially empty in our case anyway), and the
remainder of the current state, σ′, is extended with an instance of A −∗ List(ys) before it is
used for the verification of the rest of the program. The permissions taken from σ′ compared
with σ (i.e. acc(zs.val) and acc(zs.next), as well as the wand instance w) conceptually
belong to the newly-added wand’s footprint.

Two cases from Figure 8 remain to explain: The ghost operation packaging A −∗ G
(representing a recursive packaging of a wand instance, necessary for example for packaging
nested magic wands of the form A−∗ (B −∗C)) works similarly to the package statement, i.e.
it creates an extra LHS state σA satisfying A, pushes it onto the stack of already existing
states, and executes ghost operations potentially occurring in G (to which σA is available).
Finally, it adds the magic wand A −∗ nested(G) to the state, and continues the execution.

The last case, executing a ghost-operation-free assertion A, only applies to the inner-most
assertion nested inside a chain of ghost operations (i.e. A is nested(G) for some G). At this
point, the footprint computation falls back to the exhale_ext algorithm of Figure 7.

Note that automatic footprint computation in the presence of ghost operations is especially
challenging in the case of nested package operations; one has to track the various hypothetical
states carefully, and ideally remove permissions from these states preferentially, since any
removal from the original state σ can affect the further verification of the rest of the program.
The precise details of the algorithms are quite complex, but specifying them at the level of
abstraction shown here helped to guide our original implementation and avoid soundness
issues. We give a soundness argument in the following subsection.

4.1 Soundness of the Footprint Computation
In this subsection we sketch a soundness argument for the core of our magic wand support: the
soundness of our approach depends essentially on the correctness of our footprint computation.
We focus on showing that the state removed by a package operation satisfies the properties
that: it was a part of the original state, and it satisfies the semantics of the newly-packaged
wand (thus, any future apply of the wand instance will be justified). We formulate similar
results for each of our transfer, exhale_ext and exec definitions, which we then instantiate
to show the desired property for package. By convention, we use unprimed σ variables

8 One way of implementing σ′used.fold(⋅) is to exhale the predicate body and inhale the predicate instance.
However, some verifiers might choose to implement folding predicate instances in a custom way which
preserves extra information [11]; we leave the precise implementation up to the particular verifier.
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to denote input states, primed versions σ′ to indicate corresponding output states, and
σ̂ versions to indicate the “removed parts” of the input state. We also use an “inclusion”
relation ⊑ on states, which has the meaning: σ ⊑ σ′ iff ∀A.(σ ⊧ A ⇒ σ′ ⊧ A).
I Theorem 1. If transfer(σi, σused,acc(e.f)) succeeds with result (σ′i, σ′used), then there
exist σ̂i, such that:

(P1) σ′i ⊍ σ̂i ⊑ σi

(P2) σ′used ⊑ (⊍σ̂i) ⊍ σused

(P3) ∀A.(σused ⊧ A ⇒ σ′used ⊧ A ∗ acc(e.f))
The first two properties of Theorem 1 state that transfer does not add permissions (and

assumptions) when it rewrites (σi, σused) into (σ′i, σ′used). Essentially, the original states σi

are each split into a σ̂i part (which is removed from the state and makes up part of σ′used)
and a remaining σ′i. The output σ′used consists of these removed parts, plus anything that
was originally in σused. The third property of Theorem 1 essentially expresses that it is
the extra parts of σ′used that satisfy acc(e.f)). In particular, repeated (successful) calls to
transfer build up a state which satisfies the conjunction of all transferred permissions.

Proof of Theorem 1. The proof proceeds by induction on the input stack. In case of the
empty stack ε, transfer fails, which contradicts the assumption made in Theorem 1. In case
of a non-empty input stack σi ⋅ σ, let us consider the if-branch first: σi remains unchanged,
hence, we choose σ̂i to be a stack of empty states ∅. In addition, let σ̂ be ∅.addAcc(v, f).
Given these choices, σ̂i ⋅ σ̂ satisfies (P1) and (P2). The output state σ′′used is the input state
σused with exactly one extra permission added (along with any assumptions about that
location’s value), corresponding to acc(e.f). Thus, (P3) also holds.

In the else-branch, the induction hypothesis yields appropriate σ̂i for all states but the
last; choosing σ̂ to be ∅ yields the desired properties. J

I Theorem 2. If exhale_ext(σi, σused,A) succeeds with result (σ′i, σ′used), then there exist
σ̂i, such that (P1) and (P2) from Theorem 1 hold. Moreover:
(P3) ∀A′.(σused ⊧ A′ ⇒ σ′used ⊧ A′ ∗A) holds.

Proof of Theorem 2. The proof proceeds by induction on the structure of the assertion A.
In case of acc(e.f), the desired results follow directly from transfer; in case of e, it suffices
to choose σ̂i to be a stack of empty states. The only interesting case is that of A1 ∗A2: Let
σ̂i
′ and σ̂i

′′ be the states whose existence follows from applying the induction hypothesis to
the first and second recursive invocations of exhale_ext, respectively. Choosing σ̂i to be
σ̂i
′ ⊍ σ̂i

′′, it is straight-forward to combine the assumptions about σ̂i
′ and σ̂i

′′ to show that
(P1), (P2) and (P3) hold for σ̂i. J

Theorem 2 is essentially a generalisation of Theorem 1: the first two properties of
Theorem 2 are identical to those of Theorem 1; the third differs since the algorithm finds
suitable substates to satisfy a general assertion A, instead of only a single required permission.
We can use this result to reason about exec:

I Theorem 3. If exec(σi, σops,G) succeeds with result (σ′i, σ′ops), then there exist σ̂i, such
that:

(P1) σ′i ⊍ σ̂i ⊑ σi

(P2) σ′ops ⊑ (⊍σ̂i
′) ⊍ σops

(P3) σ′ops ⊧ nested(G)
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Proof of Theorem 3. The proof proceeds by induction on the structure of the (ghost oper-
ations in) the assertion G. The cases of folding, unfolding and applying are all similar
to each other: From Theorem 2 and from the induction hypothesis applied to exec, the
existence of σ̂i

′ and σ̂i
′′ satisfying the appropriate conditions follows. Choosing σ̂i to be

σ̂i
′ ⊍ σ̂i

′′, it suffices to combine the assumptions about σ̂i
′ and σ̂i

′′, as well as to observe
that the particular ghost operation applied does not (with respect to the semantics of the
logic) increase the true assertions in the resulting state, to show that P1 and P2 hold for
σ̂i. Since σ′ops (the state returned) is the second component of the result of the recursive
invocation of exec, the assumptions gained for this call from the induction hypothesis suffice
to show that (P3) holds. The case of packaging is similar to the above cases, but showing
P2 is more involved (similarly to our argument about package in Section 4.1): it is necessary
to observe that: (i) the call to exec(. . . ,G1) removes a suitable footprint of A −∗G1 from
σi ⋅ σops ⋅ σemp (by similar argument to that for package in Section 4.1), and (ii) that any
footprint of A −∗G1 is at least as expressive (in terms of which assertions can be deduced
from it) as the wand A −∗ nested(G1) which is added to the state in its place. In case of an
assertion A without ghost operations, all properties follow directly from Theorem 2 applied
to the call of exhale_ext. J

In Theorem 3, the first two properties are similar to those for our other results, essentially
expressing that we remove parts of the input states to obtain σ′ops. The third property differs;
in general, executing the ghost operations involves rewriting the original state σops (and
pulling in extra parts of the stack of input states which are found to be missing). This is
different from exhale_ext, which seeks to add everything in the required assertion to the
pre-existing σused, which gives us the stronger third property in Theorem 1 and Theorem 2.

Nonetheless, if we consider the definition of package in Figure 8, we can see that these
properties are sufficient to guarantee that the call to exec removes a correct footprint. In
particular, instantiating Theorem 3 for this call, we obtain that there exist σ̂, σ̂A such that
(σ′ ⊍ σ̂) ⊑ σ, and, (combining the three properties from the theorem) σ̂ ⊍ σ̂A ⊧ nested(G)
(note that σops is σemp for this call). From this, we obtain σ̂ ⊍ σA ⊧ nested(G). Since σA

is an arbitrary state satisfying A, σ̂ is an appropriate footprint state for the wand. This
state is removed from σ (resulting in the returned σ′), thus (assuming our algorithm reaches
this point without failure) adding the wand instance in its place is justified, according to its
semantics.

5 Inferring Annotations

In order to reduce the annotation overhead involved in specifying magic-wand-related ghost
operations, we have extended the approach presented so far with a set of simple (and optional)
heuristics, which attempt to insert additional package and apply operations into an input
program. As described in Section 4, a package operation may also require nested ghost
operations in order to succeed; our heuristics also attempt to infer these appropriately.

Our heuristics are failure-directed: if exhaling an assertion A, (e.g. a loop invariant),
fails due to insufficient permissions (to a field, a predicate or a wand), then we apply the
heuristics to search for ghost operations that avoid the failure. The heuristics search (in a
depth-first manner) for a sequence of ghost operations that would rewrite the state such that
the initially missing permissions can be found. The width of the search tree is bounded by
the number of predicate and magic wand instances held in the current state (which is finite
and typically small). The depth of the search is bounded by a configurable threshold. We
also order the candidate ghost operations according to a number of syntactic criteria on the
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0 var xs ∶ = ys;
1 sum ∶ = 0
2

3 define A
4 define B List(ys)
5

6 while (xs ≠ null )
7 invariant (xs ≠ null ⇒ List(xs )) *
8 (( xs ≠ null ⇒ List(xs )) −∗ List(ys )) *
9 sum = old( sum_rec (ys )) - (xs = null ? 0 ∶ sum_rec (xs ))

10 {
11 unfold List(xs)
12 sum ∶ = sum + xs.val
13 xs ∶ = xs.next;
14 }

Figure 9 Verified version of the body of sum_rec (Figure 1), with heuristics enabled.

symbolic state and program text, as a coarse estimate of which operations are “likely” to be
successful, for example by preferentially unfolding predicate instances whose bodies appear
to contain a suitable permission.

As an example, consider the loop body from our running example (Figure 2), and assume
that the package statement in line 19 were removed, which would prevent the verifier from
(immediately) showing that the invariant is preserved by the loop body. In particular,
the verifier would fail to find the wand instance A −∗ List(ys) in the current state. This
would trigger the heuristics, which would first detect that there is no predicate (or wand)
instance in the current state that could be unfolded (or applied) to get a suitable wand
instance. The heuristics would then try to package A −∗ List(ys), which would fail because
the desired predicate instance List(ys) would not be found either in the current state or the
hypothetical state from the wand’s left-hand-side. This would trigger the heuristics again,
and result in an attempt to apply the wand instance w (which mentions List(ys)). Applying
w would fail as well - because this wand’s left-hand-side List(zs) is missing. The heuristics
would be triggered once again, and try to fold List(zs), which succeeds. The previously
failing operations are then retried: that is, applying w and exhaling List(ys), both of which
succeed now. With these nested ghost operations, the initially triggered packaging of A
−∗ List(ys) also succeeds, which enables the verifier to find the previously missing wand
instance, and therefore, to show that the loop invariant is preserved.

Our heuristics allow us to remove all package and apply statements from the examples
listed in Section 6. We can also remove w and zs (which were only used to facilitate writing
a package statement) declared on line 12 and line 14, respectively, of Figure 2. The code
shown in Figure 9 is verified by our implementation [29] when heuristics are enabled.

6 Implementation

Our implementation [29]9 includes the examples listed below (as well as a number of regression
tests), all of which have been verified on a Intel Core i7-2600K 3.40GHz machine running
Windows 7 x64 from an SSD. For each example we also include a version with the suffix
_heuristics.sil, which is the example with heuristics activated and with all magic-wand-
related annotations removed. The reported runtimes are averaged over ten runs per example

9 In Silver, the separating conjunction is denoted by &&; for simplicity, we used * in this paper
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(the standard deviations were always less than 0.1s). We state two (averaged) runtimes
per example: the first figure is the overall runtime, which includes time for parsing and
type-checking the example, starting-up the prover (i.e. Z3), and the verification time; the
second records the verification time only.

list_sum.sil is the running example from our paper. It verifies in 2.2s/0.7s, both with
and without heuristics enabled (to infer the necessary magic-wand-related annotations).
list_insert.sil is an encoding of an iterative algorithm for inserting a value into a
sorted linked list. It verifies in 3.0s/1.5s (3.5s/2.0s with activated heuristics).
tree_delete_min.sil is an encoding of challenge 3 from the VerifyThis verification
competition at Formal Methods 2012, which was to verify an iterative implementation
removing the minimal element from a binary search tree. The example verifies in 2.6s/1.1
(2.8s/1.4s with activated heuristics). VerCors [2] (the only comparable tool we are aware
of with magic wand support) requires substantially more annotations to specify this
example, and takes 6 minutes (on a comparable machine).
un_currying.sil demonstrates how nested ghost operations can be used to prove the
standard “currying” and “uncurrying” property of magic wands: A∗B−∗C⇔ A−∗(B−∗C).
The “⇒” case is especially interesting since it requires nested packaging operations. The
example verifies in 1.6s/0.3s (both with and without heuristics).
conditionals.sil illustrates and explains how our tool handles magic wands where the
footprint is affected by conditionals whose guards depend on locations that are provided
by the LHS of the wand. It verifies in 1.8s/0.4s. (We do not provide a version with
activated heuristics because adding assertions that trigger packaging and applying the
involved wands turned out to be more overhead than explicitly packaging/applying them.)

7 Conclusions and Related Work

We have presented a novel technique enabling the support of magic wands in automatic
verification tools. Our approach requires moderate additional specification overhead and
is still expressive enough to encode general uses of the logical connective. Most important
is our ability to compute suitable footprints for magic wands automatically, which greatly
simplifies the annotation effort required. We have implemented the described support as
an extension of the verification tool Silicon [16], which supports implicit dynamic frames
assertions. Our work makes few assumptions about the underlying verifier and specific logic,
and should be easy to apply in other tools, such as verifiers for separation logics.

Lee and Park have recently developed a proof system for a separation logic supporting
the magic wand connective [19], which also provides a decision procedure for propositional
separation logic (i.e. without variables). In a richer logic such as ours, however, the magic
wand is known to be undecidable [5]. Our work addresses this difficulty with the combination
of apply and package annotations (which can often be inferred by our heuristics), along
with novel algorithms for computing appropriate magic wand footprints automatically.

In parallel with our work, Blom and Huisman [2] have developed support for magic
wands in their VerCors verifier. VerCors translates Java programs with separation-logic-style
specifications into Chalice programs [21], and magic wands are eliminated during the transla-
tion by a clever encoding into additional Chalice classes whose instances (“witness objects”)
represent magic wand instances. This translation is automatic, but similar annotations to
our approach are needed to direct the creation and use of magic wands. In contrast to our
approach, the user must also manually specify annotations defining the permissions and
logical facts to be used from the current state for each wand’s footprint, which are then

ECOOP’15



636 Lightweight Support for Magic Wands in an Automatic Verifier

combined to show the wand’s RHS via arbitrary user-defined ghost code. The ability to
use arbitrary code is potentially more flexible than the ghost operations our tool supports
(for example, ghost methods could be employed), but the resulting annotation overhead is
significantly higher than with the automatic footprint computation presented in this paper
(even comparing without the additional heuristics described in Section 5). Moreover, their
translation does not support nested wands such as A −∗ (B −∗C) or wands inside predicate
definitions (although we believe it could be extended to handle the latter).

In the context of a permission-based type system, Boyland [4] has defined a “sceptre”
operator to represent “borrowing” of permission. This connective is more restricted than
the general magic wand, but is sufficient for many loop invariants, such as the one in our
example. The PhD thesis of Retert [28] provides an abstract-interpretation-based approach
supporting this connective.

The specific problem of rewriting and maintaining appropriate predicate definitions during
data structure traversals has already received much attention. Without an alternative to
simple fold/unfold annotations, one needs to define a new predicate type to represent
“partial” versions of the data structure, and write ghost methods to “append” to this partial
version, as well as to rewrite it into the original predicate once the traversal is completed.
The problems of tracking suitable permissions in loop invariants are discussed in detail by
Tuerk [34], who proposed alternative pre/postcondition specifications for loops. A magic
wand of the form: prerest ∗ (postrest −∗ postall) gives an alternate expression of his idea (where
“rest” refers to the remaining loop iteration, and “all” the entire loop). Making use of magic
wand support is more general than Tuerk’s proof rule, for example when further code after
the loop is needed before restoring the overall predicate, as in the tree-min-delete challenge
(Section 6).

A variety of existing work aims to reduce the annotation overhead associated with
managing and rewriting predicate definitions with explicit fold and unfold operations. For
example, Smallfoot [1] and Grasshopper [27] achieve concise specifications without user
direction by building in specific support for list and tree predicates. Lee et al. [18] provide a
static analysis capable of identifying when objects participate in many such data structures
simultaneously. Nguyen and Chin [23] and Brotherston et al. [6] provide techniques for
proving and applying user-supplied lemmas automatically. Chin et al. [7] provide support for
a wider class of predicate definitions, including functional abstractions of data structures,
provided that one reference parameter is traversed in the predicate’s definition. Their
entailment checker “carves out” a suitable portion of the input state, which (for one input
state) is similar to the operation of our footprint computation algorithm.

These techniques improve the usability of recursive predicate reasoning, and can com-
plement our work in a practical tool. Each comes with limitations: they cannot be applied
equally to fully general predicates. One consequence of available magic wand support is that
iterative code (such as our running example) can be specified without the need for extra
predicate types to represent “partial” versions of data structures. These extra predicates do
not describe structures which the program operates on, and are cumbersome to define for
structures more complex than linked lists; loop invariants employing magic wands can be
defined analogously for other data structures, and also support the specification of functional
properties (e.g. the use of sum_rec in our example).

VeriFast [14] is a mature and expressive verifier for programs annotated with separation
logic. We believe it is possible to partly work around the absence of magic wands using
lemma function pointers and predicates. One can encode a wand A−∗B, using a predicate F
(representing the wand’s footprint), and a pointer to a lemma function with precondition
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F ∗A and postcondition B, whose body shows how to rewrite the state. The need to define
the footprint manually, however, entails substantial additional overhead (to define a predicate
for each footprint, and the appropriate lemma methods for manipulating them) for the user
compared with our technique of automatic footprint computation.

As future work, we are interested to investigate other applications of our magic wand
support, such as reasoning about closures, for which it is useful to be able to reason about
connecting calls of closures together without knowing their specifications concretely. We are
also interested in encoding existing by-hand proofs using our prototype implementation, e.g.
parts of the proofs from [10, 9, 12]. The developers of the Viper verification tools also plan
to incorporate our magic wand support into their tool infrastructure.
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