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Abstract
The numbers and sizes of JavaScript applications are ever growing but static analysis techniques
for analyzing large-scale JavaScript applications are not yet ready in a scalable and precise man-
ner. Even when building complex software like compilers and operating systems in JavaScript,
developers do not get much benefits from existing static analyzers, which suffer from mutually
intermingled problems of scalability and imprecision.

In this paper, we present Loop-Sensitive Analysis (LSA) that improves the analysis scalability
by enhancing the analysis precision in loops. LSA distinguishes loop iterations as many as needed
by automatically choosing loop unrolling numbers during analysis. We formalize LSA in the
abstract interpretation framework and prove its soundness and precision theorems using Coq.
We evaluate our implementation of LSA using the analysis results of main web pages in the 5
most popular websites and those of the programs that use top 5 JavaScript libraries, and show
that it outperforms the state-of-the-art JavaScript static analyzers in terms of analysis scalability.
Our mechanization and implementation of LSA are both publicly available.
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1 Introduction

The popularity of JavaScript has extended its application areas beyond simple scripts,
but analyzing JavaScript applications statically is still a challenging problem. While web
application developers use JavaScript to build large-scale software including games, compilers,
and even operating systems, tool supports for developing them are still in a primitive stage
compared to those for statically typed languages such as C and Java. Building development
tools that aid programmers understand and debug programs often requires scalable and precise
static analysis techniques, but extremely functional and dynamic features of JavaScript make
static analysis impractical. For a function call “o[e]()”, for example, because JavaScript
provides first-class functions and dynamic property accesses in objects, statically estimating
possible values of e often leads to an imprecise result, which in turn results in many false-
positive function calls. Imprecise analysis produces false execution flows to analyze incurring
much performance overhead, which makes analysis results even more imprecise.

Researchers have proposed various techniques to improve analysis precision for JavaScript
web applications such as specializing specific programming patterns [23], using run-time
information for determinate values [20], and combining multiple heuristic specialization
methods [1]. They show that improving analysis precision significantly improves analysis
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performance as well. However, their static analyzers are not yet scalable enough to analyze
simple applications using major libraries while they do not have any soundness proofs. Simply
loading one of major libraries such as jQuery1, Mootools2, and Prototype3 involves many
dynamic features of JavaScript, and thus existing static analysis techniques suffer from the
scalability problem due to imprecise analysis results.

In this paper, we present a novel analysis technique, Loop-Sensitive Analysis (LSA), which
dramatically improves the analysis scalability of JavaScript applications by enhancing the
analysis precision in loops. LSA distinguishes each iteration of loops with determinate loop
conditions using loop contexts during analysis. It may look similar to the traditional loop
unrolling but it selectively unrolls loops with determinate loop conditions and it decides the
unrolling number for each loop differently and automatically during analysis. While existing
loop specialization techniques [1, 23] are applicable to only special forms of loops, LSA is
applicable to any forms of loops.

We formalize LSA in the abstract interpretation framework [7, 8], prove its soundness
and precision theorems, and evaluate its implementation with top 5 JavaScript libraries and
main web pages in the 5 most popular websites. While loop-sensitivity can be used with
any form of context-sensitivity, we formally present LSA as an extension of k-CFA (Control
Flow Analysis) [21] to show their relationship rigorously for language-independent programs
represented by Control Flow Graphs (CFGs). We prove that LSA is sound if its base k-CFA
is sound and that LSA provides more precise than or at least as precise as the analysis
results of k-CFA using the proof assistant tool Coq [5]; the mechanized proofs are publicly
available [12]. We implement LSA on top of an open-source JavaScript analysis framework,
SAFE [13, 15]. The LSA implementation demonstrates that LSA significantly improves
the analysis scalability and precision so that it can analyze all versions of jQuery, the most
widely used JavaScript library, 4 of top 5 libraries, and 3 of the 5 main web pages of the
most popular websites in a reasonable practical time, which outperforms the state-of-the-art
JavaScript static analyzers, TAJS [1] and WALA [20], in terms of scalability.

The contributions of this paper are as follows:
We present a novel analysis technique, LSA, which improves analysis precision by dis-
tinguishing each iteration of loops as many as needed during analysis. The technique is
language independent and it is applicable to analysis of programs in other languages than
JavaScript.
We formalize LSA in the abstract interpretation framework and show how to extend
k-CFA to use the technique. The formalization specifies the technical details of LSA and
it is usable for formal proofs and verification.
We provide mechanized proofs of the soundness and precision of LSA using the proof
assistant tool, Coq [12].
We make an LSA implementation publicly available; the artifact endorsed by the Artifact
Evaluation Committee is available free of charge on the Dagstuhl Research Online
Publication Server (DROPS). Using the implementation, we demonstrate that LSA
outperforms the state-of-the-art JavaScript static analyzers in analyzing top 5 JavaScript
libraries and the main web pages of the 5 most popular websites in a scalable way by
improving analysis precision.

1 http://jquery.com
2 http://mootools.net
3 http://prototypejs.org

http://jquery.com
http://mootools.net
http://prototypejs.org
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1 jQuery.extend = function() {
2 var options, name, copy, ...
3 target = arguments[0] ...
4 i=1, length = arguments.length ...
5 if(i === length) {
6 target = this;
7 i--;
8 } ...
9 for(; i < length; i ++) { ...
10 options = arguments[i] ...
11 for (name in options) { ...
12 copy = options[name] ...
13 target[name] = copy ...
14 } ...
15 }
16 }
17 jQuery.extend({expendo: ... ,
18 each: ... });
19 jQuery.each(...);

Figure 1 An excerpt from jQuery 2.1.0.

The rest of the paper is organized as follows. In Section 2, we provide a high-level idea of
LSA using a motivating example. Sections 3 and 4 formally describe the concrete collecting
semantics of our target programs and k-CFA, respectively. In Section 5, we present LSA
as an extension of k-CFA and show its soundness and precision theorems. We evaluate a
prototype implementation of LSA in terms of scalability and precision in Section 6, discuss
related work in Section 7, and conclude in Section 8.

2 Motivation

In this section, after showing a running example that represents typical code patterns in
JavaScript applications, we describe the scalability and precision problems in statically
analyzing them. Then, we present a high-level idea of our solution, LSA.

Figure 1 shows our running example, an excerpt from the latest jQuery 2.1.0 library
omitting irrelevant parts for presentation brevity. It first defines the method jQuery.extend
(line 1) and calls it (line 17) with one object argument that has 25 properties: 4 fields and
21 methods including the method each. At this call site, the extend method extends the
jQuery object with new properties in the argument object. Note that, in JavaScript, the
value of the arguments object in a callee is an array object including the arguments passed
by a caller [9]. In this case, because arguments.length is 1, the value of target becomes
the value of this, the jQuery object, (line 6) and i becomes 0 (line 7) before getting into
the for loops. Then, the subsequent loops extend the jQuery object by copying all the
properties in the argument object one by one, and the subsequent call of jQuery.each (line
19) calls the function added by the jQuery.extend function.

While jQuery is the most widely used JavaScript library with a market share of more

ECOOP’15
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Figure 2 Control flow graph for a loop.

than 90%4, we found that the state-of-the-art static analyzers for JavaScript applications
such as SAFE [13], TAJS [18], and WALA [11] are not capable of analyzing all versions of
jQuery. For example, with flow sensitivity (distinguishing different program points) [6] and
call-context sensitivity (distinguishing different call sites) techniques, analysis of a simple
program that just loads jQuery 2.1.0 using SAFE does not terminate in 5 hours; the analysis
does not terminate either with varying sensitivities like object-sensitivity (distinguishing
calls by the addresses of receiver objects) [22] and k-CFA with 1 to 10 for k (distinguishing
calls by k-length call strings that represent call sequences).

We observed that this scalability problem arises due to the combination of imprecise
analysis results in loops and the dynamic nature of object property names in JavaScript.
Most static analyzers represent a loop as a CFG illustrated in Figure 2 and simply join
the analysis results from all incoming edges into a loop-head node, which is the same as
combining analysis results of all iterations. Let us revisit the code example in Figure 1.
When the SAFE static analyzer analyzes the call of jQuery.extend on line 17, it estimates
that the possible values of options on line 10 include the argument object passed on line 17,
which approximates the possible values of name on line 11 as all 25 property names of the
argument object. Therefore, the nested loop body on lines 12 and 13 copies the joined value
of the values of 25 properties to all 25 properties in the jQuery object by target[name] =
copy. Then, the analyzer estimates that the subsequent jQuery.each call may invoke all
possible 21 functions. Because jQuery calls such methods frequently at loading time, the
imprecise analysis results lead to state explosion and incur large performance overhead. We
found such patterns in various applications including 9 of top 10 popular websites5 as well as
in major JavaScript libraries.

To alleviate the scalability problem, we improve analysis precision in loops by distinguish-
ing each iteration of loops as many as needed during analysis with different loop contexts
for each iteration depending on the analysis results of loop conditional expressions. It is
similar to unrolling loops during analysis by finding precise unrolling counts for each loop
automatically as far as the loop conditions keep definite. As for the example in Figure 1,
precise unrolling counts for two loops on lines 9 and 11 should be 1 and 25, respectively. Our
analysis technique indeed creates 1 and 25 different loop contexts for the loops, respectively, as
long as the analysis results of loop conditional expressions are determinate for each iteration.

4 http://w3techs.com/technologies/overview/javascript_library/all
5 http://www.alexa.com

http://w3techs.com/technologies/overview/javascript_library/all
http://www.alexa.com
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s ∈ S
nnormal ∈ Nnormal
ncall ∈ Ncall
nafterCall ∈ NafterCall

nentry ∈ Nentry = {nglobal
entry, ...}

nexit ∈ Nexit
n ∈ N = (Nnormal ]Ncall ]NafterCall ]Nentry ]Nexit)
e = 〈n1, s, n2〉 ∈ E ⊆ N× S×N
p ∈ P = (N ]E)
callNode ∈ NafterCall → Ncall

origin(〈n1, s, n2〉) = n1
stmt(〈n1, s, n2〉) = s

target(〈n1, s, n2〉) = n2
callEdge(〈n1, s, n2〉) = n1 ∈ Ncall ∧ n2 ∈ Nentry
returnEdge(〈n1, s, n2〉) = n1 ∈ Nexit ∧ n2 ∈ NafterCall
normalEdge(〈n1, s, n2〉) = ¬callEdge(〈n1, s, n2〉) ∧ ¬returnEdge(〈n1, s, n2〉)

Figure 3 Program representation as a CFG.

Then, it propagates analysis results only in the loop contexts where the analysis results of
the loop conditional expressions are not true to outside of loops. In this way, we can analyze
loop iterations more precisely, which enables to analyze the value of jQuery.each as exactly
the function on line 18 and consequently to analyze the following jQuery.each call on line
19 more precisely. In Section 6, we demonstrate that this technique can dramatically improve
the analysis scalability.

3 Collecting Semantics of Programs

In this section, we formally describe the concrete collecting semantics of programs. We
represent a program as a language-independent Control Flow Graph (CFG) and define its
collecting semantics as a map from each program point (a CFG node or a CFG edge) to a set
of all reachable concrete states at the point. Our formalization uses notations from Mangal
et al.’s [17].

3.1 Program Representation

We represent a program as an interprocedural CFG G = (S,N,E, nglobal
entry) as summarized in

Figure 3; S is a set of statements in the program; N is a set of nodes consisting of normal
nodes Nnormal, call nodes Ncall, after-call nodes NafterCall, entry nodes Nentry, and exit
nodes Nexit; E is a set of edges where an edge is a 3-tuple of a node, a statement, and
another node; nglobal

entry ∈ Nentry is a special entry node for the program. We use ] to denote a
disjoint union of sets.

We assume that CFGs are well-formed: a CFG has an entry node and an exit node for
each function; it also has a call edge from a call node to an entry node and its corresponding
return edge from an exit node to an after-call node for each function call. The function
callNode takes an after-call node and returns its corresponding call node. The helper functions

ECOOP’15



740 Scalable and Precise Static Analysis of JavaScript Applications via Loop-Sensitivity

(set of states) τ ∈ ℘(State) = {τinit, ...}
(summary map) κc ∈ Acon = P→ ℘(State)

JsKc ∈ ℘(State)→ ℘(State)

Fcon(κc)(n) =
⋃
{κc(e) | n = target(e)}

Fcon(κc)(e) = Jstmt(e)Kc(κc(origin(e)))

Figure 4 Concrete domain and transfer functions.

origin, stmt, and target are accessors of an edge, and callEdge, returnEdge, and normalEdge
are predicates that identify the kind of an edge.

3.2 Concrete Domain and Transfer Functions

Figure 4 shows the concrete domain and transfer functions of our collecting semantics. The
concrete domain is a powerset of concrete states ℘(State), where τinit is a set of initial states.
The collecting semantics repeatedly updates a summary map κc from program points P to
sets of states using the transfer function Fcon. For each node n, the transfer function collects
the concrete states of all the incoming edges of n. For each edge e, the transfer function
performs a concrete execution of the statement stmt(e) using the statement transfer function
J•Kc on each state at the origin node of e and returns resulting states.

We assume that the set domain of concrete states is a finite complete lattice with the
subset relation ordering. Then, the domain Acon of summary maps is also a complete lattice
using the following order relation:

∀κc1 , κc2 ∈ Acon : (κc1 v κc2 ⇐⇒ ∀p : κc1(p) v κc2(p)).

We also assume that the statement transfer function is monotone:

∀s, τ1, τ2 : τ1 v τ2 =⇒ JsKc(τ1) v JsKc(τ2).

Then, the final collecting semantics of a program is defined as a least fixpoint of Fcon as
follows:

κcon = leastFix λκc.(κI t Fcon(κc))
where κI(p) = if p = nglobal

entry then τinit else ⊥.

An initial summary map κI maps only the global entry node to the set of initial states τinit
and others to ⊥ (empty set). We can easily prove that Fcon is monotone on summary maps :

∀κc1 , κc2 : κc1 v κc2 =⇒ Fcon(κc1) v Fcon(κc2)

and the unique least fixpoint exists by the Tarski theorem [24].

4 k-CFA Formalization

Before describing our LSA in the next section, we formalize k-CFA with the program
representation of Figure 3 in this section.
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4.1 Abstract Interpretation
Abstract interpretation [7, 8] is a theoretical foundation of various static analyses; it guarantees
the soundness of an analysis when the analysis satisfies some required conditions. In abstract
interpretation, a program analysis is a computation of monotone transfer functions on an
abstract domain D̂, which represents an approximation of a concrete domain D on which
concrete programs execute. When a pair of functions α and γ satisfies the following Galois
connection condition:

∀x ∈ D, x̂ ∈ D̂ : α(x) v x̂⇐⇒ x v γ(x̂)

they provide relationships between elements in the domains: an abstraction of a concrete
value x is α(x), and concrete values denoted by an abstract value x̂ is γ(x̂). With this
condition, a concrete and monotone transfer function F and its corresponding abstract
transfer function F̂ should satisfy the following:

α ◦ F v F̂ ◦ α

where ◦ denotes function composition. Once an analysis meets all the conditions above,
abstract interpretation guarantees that a concrete program execution result by a least fixpoint
of F and its abstract program execution result by a least fixpoint of F̂ satisfy the following
soundness property:

α ◦ leastFix F v leastFix F̂

which means that the analysis result soundly approximates the concrete program result.

4.2 Formal Description of k-CFA
k-CFA [21] is a call-context sensitive analysis; it distinguishes the same function body from
its different call sites using the k number of call strings that represent call history. As a
simple example, consider the following function calls:

function g() { ... }
function f() { g(); }
f();
f();

In 0-CFA, two calls for f are indistinguishable; two input states from the calls are joined
at the entry of the f body. On the contrary, 1-CFA can distinguish the two f calls giving
more precise analysis results for f than the ones from 0-CFA, but it still cannot distinguish
the g calls at the first and the second f calls since it maintains only one length of call
strings; likewise, 2-CFA can distinguish the g calls but any function calls in a deeper level.
In general, k-CFA provides more precise results with the longer length of k at the expense of
performance overhead due to more call contexts.

4.2.1 Analysis Domain and Transfer Functions
Figure 5 shows an analysis domain and statement transfer functions for k-CFA. An abstract
domain ˆState is a finite complete lattice representing a set of abstract states where the state
τ̂init denotes an initial state when the analysis begins. The statement transfer function JsK is
monotone on ˆState:

ECOOP’15
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(abstract state) τ̂ ∈ ˆState = {τ̂init, ...}
(lattice operations) t,u ∈ ℘( ˆState)→ ˆState

⊥,> ∈ ˆState
v ⊆ ˆState× ˆState

(transfer functions) JsK ∈ ˆState→ ˆState
(k-length call string) π ∈ Π = {ε} ]

⊎
k≥n≥1(Ncall)n

(k-CFA annotation) κ̂c ∈ Âcfa = (P×Π)→ ˆState

(sequence operations)
n⊕ π = nπ

π#k =

 ε if k = 0
π if k > 0 ∧ |π| ≤ k
n1 · · · nk if k > 0 ∧ π = n1 · · · nk nk+1 · · ·

Figure 5 k-CFA domain and statement transfer functions.

F̂cfa(κ̂c)(〈n, π〉) =
⊔
{κ̂c(〈e, π〉) | n = target(e)}

F̂cfa(κ̂c)(〈e, π〉) =



Jstmt(e)K(κ̂c(〈origin(e), π〉)) if normalEdge(e)⊔
{Jstmt(e)K(κ̂c(〈origin(e), π1〉)) | if callEdge(e)

π = (origin(e)⊕ π1)#k}
Jstmt(e)K(κ̂c(〈origin(e), if returnEdge(e)

(callNode(target(e))⊕ π)#k〉))

Figure 6 Transfer functions on k-CFA annotations.

∀s, τ1, τ2 : τ1 v τ2 =⇒ JsK(τ1) v JsK(τ2)

and it abstractly executes the statement s with an input state and produces an output state.
A k-length call string π is a sequence of call nodes with the maximum length k and ε denotes
the empty sequence. We write n⊕ π to denote prepending a new call node n to a sequence
π and π#k to denote the k-length prefix of π. Finally, the k-CFA annotation κ̂c maps a pair
of a node or an edge and a call string to its corresponding abstract state: κ̂c(〈p, π〉) gives an
approximate input state at the program point p in the call context represented by the call
string π. The domain Âcfa of k-CFA annotations is a complete lattice using the following
order relation:

∀κ̂c1 , κ̂c2 : (κ̂c1 v κ̂c2⇐⇒∀p, π : κ̂c1(〈p, π〉) v κ̂c2(〈p, π〉)).

4.2.2 Control Flow Analysis
Figure 6 shows the definition of the transfer function F̂cfa on k-CFA annotations. The transfer
function takes a k-CFA annotation and returns an updated k-CFA annotation by transferring
the analyzed state of a preceding node or edge to the current node or edge; for call and
return edges, it updates call strings appropriately. Note that while a join operator in the
transfer function for call edges is necessary to join all analysis results from calls with the
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same call strings but different call history at the entry of the target function, the operator is
not needed in the transfer function for return edges because analysis results from different
call history are already combined at the entry of the function by the corresponding call edges.
Then, k-CFA computes the fixpoint of F̂cfa, κ̂cfa, which contains final analysis results for all
nodes and edges in a CFG with the maximum k-length call contexts:

κ̂cfa = leastFix λκ̂c.(κ̂I t F̂cfa(κ̂c))
where κ̂I(〈p, π〉) = if 〈p, π〉 = 〈nglobal

entry, ε〉 then τ̂init else ⊥.

The analysis begins with the initial state τ̂init at the global entry node in the empty call
context, and it propagates the abstract state from the initial node to all reachable nodes and
edges via F̂cfa. It is obvious from the order relation of Âcfa that F̂cfa is monotone on k-CFA
annotations:

∀κ̂c1 , κ̂c2 : κ̂c1 v κ̂c2 =⇒ F̂cfa(κ̂c1) v F̂cfa(κ̂c2).

Then, a unique least fixpoint of F̂cfa in a complete lattice domain exists [24] and the
computation terminates since the domains of F̂cfa are all finite.

4.3 Soundness
We assume that k-CFA is a sound approximation of the collecting semantics presented in
Section 3:

Galois connection: Functions αs ∈ ℘(State)→ ˆState and γs ∈ ˆState→ ℘(State) exist.
αs(τinit) v τ̂init: τ̂init is a sound approximation of τinit.
∀s ∈ S : αs ◦ JsKc v JsK ◦ αs: The abstract function JsK is a sound approximation of JsKc

for a statement s.
Galois connection: Functions αc ∈ Acon → Âcfa and γc ∈ Âcfa → Acon exist.
αc ◦ Fcon v F̂cfa ◦ αc: The abstract function F̂cfa is a sound approximation of Fcon.

Then, by the monotonicity of Fcon and F̂cfa, abstract interpretation guarantees the soundness
of k-CFA:

αc(κcon) v κ̂cfa.

We use the definitions of κcon and κ̂cfa, least fixpoints of Fcon and F̂cfa, respectively defined
in previous sections for the same well-formed program p. In the next section, we use the
above assumptions to show that our new analysis technique is also sound when we apply it
to k-CFA.

5 Loop-Sensitive Analysis

Now, we extend k-CFA with loop-sensitivity. In k-CFA, a loop head node is simply a normal
node with two incoming and two outgoing edges as shown in Figure 2. According to the node
transfer function F̂cfa, the abstract state of a loop head node is a join of abstract states from
the two incoming edges, which effectively combines analysis results of all iterations incurring
large precision losses. The main idea of LSA is to distinguish each loop iteration using loop
strings like call strings in k-CFA to reduce precision losses. The novelty of our work lies in
applying the sensitivity-based analysis technique to loops using loop strings and formally
proving the soundness of the analysis in the abstract interpretation framework. Unlike the
traditional loop unrolling, LSA automatically determines the unrolling number of each loop
during analysis using the analysis results of loop conditional expressions, which immensely
enhances the analysis performance.

ECOOP’15
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nlhead ∈ Nlhead

nlend ∈ Nlend

nout ∈ Nlout

nbreak ∈ Nbreak

ncontinue ∈ Ncontinue

nreturn ∈ Nreturn

n ∈ N = (Nnormal ]Ncall ]NafterCall ]Nentry ]Nexit]
Nlhead ]Nlend ]Nlout ]Nbreak ]Ncontinue ]Nreturn)

loopHead ∈ N→ Nlhead

loopHeads ∈ N→ ℘(Nlhead)
loopInEdge(〈n1, s, n2〉) = n1 ∈ Nnormal ∧ n2 ∈ Nlhead

loopIterEdge(〈n1, s, n2〉) = n1 ∈ Nlend ∧ n2 ∈ Nlhead

loopIterEdge(〈n1, s, n2〉) = n1 ∈ Ncontinue ∧ n2 ∈ Nlhead

loopOutEdge(〈n1, s, n2〉) = n1 ∈ Nlhead ∧ n2 ∈ Nlout

loopBreakEdge(〈n1, s, n2〉) = n1 ∈ Nbreak ∧ n2 ∈ Nlout

loopReturnEdge(〈n1, s, n2〉) = n1 ∈ Nreturn ∧ n2 ∈ Nexit

normalEdge(〈n1, s, n2〉) = ¬callEdge(〈n1, s, n2〉) ∧ ¬returnEdge(〈n1, s, n2〉) ∧
¬loopInEdge(〈n1, s, n2〉) ∧ ¬loopIterEdge(〈n1, s, n2〉) ∧
¬loopOutEdge(〈n1, s, n2〉) ∧ ¬loopBreakEdge(〈n1, s, n2〉) ∧
¬loopReturnEdge(〈n1, s, n2〉)

Figure 7 Program representation with loop-sensitivity.

5.1 Formal Description

We formally describe how to extend sound k-CFA to LSA while preserving the soundness of
the analysis.

5.1.1 Program Representation

Without loss of generality, we assume that we can rewrite all loop constructs in a target
program as “while(e)s” where the evaluation of e does not have any side effects and CFGs
for all loops conform to the structure in Figure 2. Note that for-in loops in JavaScript cannot
be rewritten into while loops in general since the iteration order is implementation specific
according to the ECMAScript standard [9]. However, real-world implementations in major
browsers such as Internet Explorer, Safari, Firefox, and Chrome use the same iteration order;
for instance, in for(x in obj), they use the same order that the properties were added
to the object obj. Thus, we use this order for the JavaScript cases. Figure 7 presents the
extension of CFGs in Figure 3 for loop-sensitivity. In addition to call, after-call, entry, and
exit nodes introduced in Figure 3, we refine nodes further to distinguish nodes in loops as
loop-head, loop-end, loop-out, break, continue, and return nodes. The functions loopHead
and loopHeads take a node in a loop and return its innermost loop-head node and a set of
all its enclosing loop-head nodes, respectively. We also refine edges further to distinguish
loop-related edges as follows:

loop-in edge: an edge from a normal node outside a loop to a loop-head node
loop-iter edge: an edge from a loop-end node or a continue node to a loop-head node
loop-out edge: an edge from a loop-head node to a loop-out node
loop-break edge: an edge from a break node inside a loop to a loop-out node
loop-return edge: an edge from a return node inside a loop to an exit node
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Figure 8 Loop-related nodes and edges for LSA.

(i-depth j-length loop string)
ψ ∈ Ψ = {ε} ]

⊎
i≥n≥1(Π×Nlhead × N{0..j})n

(abstract value for loop conditional expression)
check(s, τ̂) ∈ ˆBool = {⊥b, ˆtrue, ˆfalse,>b}

(context)
φ = 〈π, ψ〉 ∈ Φ = Π×Ψ

(LSA annotation)
κ̂l ∈ Âlsa = (P×Φ)→ ˆState

Figure 9 LSA domain and transfer functions.

The functions loopInEdge, loopIterEdge, loopOutEdge, loopBreakEdge, and loopReturnEdge
are predicates identifying the kind of an edge. Note that this extension does not change
CFG structures but just refine the kinds of nodes and edges; all loop-related nodes and edges
are normal nodes and edges in k-CFA. Figure 8 illustrates loop-related nodes and edges:
a shaded box denotes a loop, dashed edges denote normal edges, and solid edges denote
loop-related edges.

5.1.2 Analysis Domain and Transfer Functions

Figure 9 shows the extension of the analysis domain and transfer functions in Figure 5 for
loop-sensitivity. A loop string ψ is a maximum i-length sequence of loop contexts; for a loop
context 〈π, nlhead ,m〉, π is a call context where this loop context is introduced, nlhead is a
loop-head node that introduces this loop context, and m is a loop iteration count where
m ∈ N{0..j}; N{0..j} is the set of natural numbers between 0 and j. When loop iterations
are indistinguishable because the value of the loop conditional expression may be both true
and false, we call such contexts join loop contexts and denote them by m = 0. We call LSA
using such “i-depth j-length loop strings” and k-length call strings 〈i, j, k〉-LSA. The values
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of i and j are predefined as k in k-CFA. Intuitively, i and j mean the maximum depth of
distinguishable nested loops and the maximum number of distinguishable iterations in a
loop, respectively. For instance, if i = 0, LSA is the same as k-CFA and 〈2, 10, k〉-LSA can
distinguish up to 10 iterations in each loop with 2-level nested loops. As a design choice, we
require that j ≥ 1 while i ≥ 0 and k ≥ 0. Note that the value of j is effective only when
i ≥ 1.

The function check checks if a boolean expression s evaluates to an error (⊥b), true,
false, or both (>b) in a given abstract state τ̂ ; we use this function to update loop contexts
depending on the values of loop conditionals as we explain later in this section. A context φ
is a pair of a call string and a loop string, and an LSA annotation κ̂l maps a pair of a node
or an edge and a context to its corresponding abstract state: κ̂l(〈p, φ〉) gives an approximate
input state at the program point p in the context φ. Note that a call string in a context
φ denotes different information from a call string in a loop context element 〈π, nlhead ,m〉;
the former is for k-CFA on which LSA is based, and the latter is to serve as a call context
where the loop is introduced, which is necessary to change the current loop context properly
when the flow changes by return statements in loops as we present later in this section. The
domain Âlsa of LSA annotations is a complete lattice using the following order relation:

∀κ̂l1 , κ̂l2 : (κ̂l1 v κ̂l2 ⇐⇒ ∀p, φ : κ̂l1(〈p, φ〉) v κ̂l2(〈p, φ〉)).

5.1.3 Loop-Sensitive Analysis
As with k-CFA, 〈i, j, k〉-LSA computes the least fixpoint of the transfer function F̂lsa on LSA
annotations as follows:

κ̂lsa = leastFix λκ̂l.(κ̂I t F̂lsa(κ̂l))
where κ̂I(〈p, 〈π, ψ〉〉) = if 〈p, 〈π, ψ〉〉 = 〈nglobal

entry, 〈ε, ε〉〉 then τ̂init else ⊥

where the analysis starts with the initial state τ̂init at the global entry node in the empty
call and loop contexts. Like F̂cfa in Figure 6, the definition of F̂lsa consists of node and
edge transfer functions. The transfer functions for nodes and normal, call, and return edges
remain the same as in k-CFA except that a context is now a pair of a call string and a loop
string instead of a single call string. Due to the space limitation, we present core parts of
the transfer functions for loop-related edges, and refer the interested readers to a companion
report [12] for the full definition.

Loop-in edge. Figure 10 shows the definition of F̂lsa for loop-in edges. For presentation
brevity, we omit universal quantifiers binding meta variables in obvious cases. For example,
ψ = 〈π1, nlhead ,m〉⊕ψ1 in the second rule is equal to ∀π1, nlhead ,m, ψ1 : ψ = 〈π1, nlhead ,m〉⊕
ψ1.

The first rule states that when i = 0, LSA is the same as k-CFA; the abstract states from
the origin node of the edge propagate through the edge without changing the current loop
string: Jstmt(e)K(κ̂l(〈origin(e), 〈π, ψ〉〉)). The function F̂lsa has similar rules for all the other
loop-related edges, and we omit them in this paper for brevity.

The second rule specifies the case when the depth of the current loop string |ψ| reaches
the maximum depth i not by the current loop but by an outer loop: it is either from a
different call context π 6= π1 or from a different loop nlhead 6= target(e). Then, LSA simply
propagates the abstract states from the origin node of the edge. Other loop-related edges
also have similar rules.

The third and fourth rules describe the case with a join loop context, where the iteration
count of the innermost loop string is 0. The third rule is when an outer loop creates the
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F̂lsa(κ̂l)(〈e, 〈π, ψ〉〉) if loopInEdge(e) =

Jstmt(e)K(κ̂l(〈origin(e), 〈π, ψ〉〉)) if i = 0

Jstmt(e)K(κ̂l(〈origin(e), 〈π, ψ〉〉)) if |ψ| = i ∧ ψ = 〈π1, nlhead ,m〉 ⊕ ψ1 ∧
(π 6= π1 ∨ nlhead 6= target(e))

Jstmt(e)K(κ̂l(〈origin(e), 〈π, ψ〉〉)) if |ψ| < i ∧ ψ = 〈π1, nlhead , 0〉 ⊕ ψ1 ∧
(π 6= π1 ∨ nlhead 6= target(e))

Jstmt(e)K(κ̂l(〈origin(e), 〈π, ψ1〉〉)) if ψ = 〈π, target(e), 0〉 ⊕ ψ1 ∧
∀〈π1, nlhead ,m〉, ψ2 :
〈π1, nlhead ,m〉 ⊕ ψ2 = ψ1 ∧m 6= 0

Jstmt(e)K(κ̂l(〈origin(e), 〈π, ψ1〉〉)) if ψ = 〈π, target(e), 1〉 ⊕ ψ1

Figure 10 Transfer functions for loop-in edges.

F̂lsa(κ̂l)(〈e, 〈π, ψ〉〉) if loopIterEdge(e) ∧ ψ = 〈π, target(e),m〉 ⊕ ψ1 =

Jstmt(e)K(τ̂1)t if m = j ∧
Jstmt(e)K(τ̂2) τ̂1 = κ̂l(〈origin(e), 〈π, 〈π, target(e),m−1〉 ⊕ ψ1〉〉) ∧

τ̂2 = κ̂l(〈origin(e), 〈π, ψ〉〉)

Jstmt(e)K(τ̂1) t if 2 ≤ m ≤ j−1 ∧
Jstmt(e)K(τ̂2) τ̂1 = κ̂l(〈origin(e), 〈π, 〈π, target(e),m−1〉 ⊕ ψ1〉〉) ∧

τ̂2 = κ̂l(〈origin(e), 〈π, ψ〉〉) ∧
(check(stmt(e), τ̂1) = >b ∨ check(stmt(e), τ̂2) = >b)

Jstmt(e)K(τ̂) if 2 ≤ m ≤ j−1 ∧
τ̂ = κ̂l(〈origin(e), 〈π, 〈π, target(e),m−1〉 ⊕ ψ1〉〉) ∧
(check(stmt(e), τ̂) = ˆtrue ∨ check(stmt(e), τ̂) = ˆfalse)

Figure 11 Transfer functions for loop-iter edges.

join loop context and the fourth rule is when the current loop creates it. The condition
∀〈π1, nlhead ,m〉, ψ2 : 〈π1, nlhead ,m〉⊕ψ2 = ψ1∧m 6= 0 in the fourth rule prevents prepending
another join loop context when the outer loop of the current one already creates a join loop
context. In a join loop context, LSA joins the analysis results from loop-in and loop-iter
edges as the final analysis result of the loop. Note that join loop contexts have the same
effect as preventing loops with non-deterministic loop conditions from unrolling and thus
avoiding unnecessary fixpoint computation.

The fifth rule addresses the case for analyzing loop bodies. It prepends a new loop context
〈π, target(e), 1〉 denoting the first iteration of the loop in the same call context to the current
loop string, and propagates the abstract states from the origin node of the edge in the context
before the loop through the edge: Jstmt(e)K(κ̂l(〈origin(e), 〈π, ψ1〉〉)).

Loop-iter edge. Figure 11 shows a partial definition of F̂lsa for loop-iter edges, which propag-
ate abstract states resulting from loop iterations to a loop-head node target(e) introducing
new loop contexts whenever necessary. We omit the rules similar to the ones for loop-in
edges for brevity.
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F̂lsa(κ̂l)(〈e, 〈π, ψ〉〉) if loopOutEdge(e) ∧ i 6= 0 ∧ |ψ| < i

=
⊔
{Jstmt(e)K(τ̂) | 1 ≤ m ≤ j ∧ τ̂ = κ̂l(〈origin(e), 〈π, 〈π, origin(e),m〉 ⊕ ψ〉〉) ∧

ˆfalse v check(stmt(e), τ̂)}

F̂lsa(κ̂l)(〈e, 〈π, ψ〉〉) if loopBreakEdge(e) ∧ i 6= 0 ∧ |ψ| < i

=
⊔
{Jstmt(e)K(τ̂) | 1 ≤ m ≤ j ∧

τ̂ = κ̂l(〈origin(e), 〈π, 〈π, loopHead(origin(e)),m〉 ⊕ ψ〉〉)}

F̂lsa(κ̂l)(〈e, 〈π, ψ〉〉) if loopReturnEdge(e) ∧ i 6= 0 ∧ |ψ| < i

=
⊔
{Jstmt(e)K(τ̂) | ψ1 ∈ Ψ ∧ nlhead2 ∈ loopHeads(origin(e)) ∧

〈π, nlhead2 ,m2〉 ∈ ψ1 ∧
1 ≤ m2 ≤ j ∧ τ̂ = κ̂l(〈origin(e), 〈π, ψ1||ψ〉〉)}

Figure 12 Transfer functions for loop-out, loop-break, and loop-return edges.

The first rule specifies the case when the iteration count m reaches the maximum length
j. In this case, all further analysis results from the current iteration in the same loop
context are joined with the analysis result from the previous iteration. Note that i and j
in 〈i, j, k〉-LSA with the definition of F̂lsa ensure that the analysis terminates using a finite
loop-string domain.

The second and third rules are for the cases when the iteration count m does not reach
the maximum length j. The second rule is when the analysis result of a loop conditional
expression stmt(e) in the current iteration is >b; because all further iterations from the
current one are indistinguishable, the analysis results are combined with the analysis result
from the previous iteration. In the third rule, because the analysis result of a loop conditional
expression in the previous iteration is either true or false, it does not need to join analysis
results.

Loop-out edge. Figure 12 presents representative rules for the remaining loop-related edges.
The first rule specifies that a loop-out edge propagates an abstract state from a loop to a
loop-out node removing the current loop context from the loop string only when the analysis
result of the loop conditional expression is false or >b: ˆfalse v check(stmt(e), τ̂). By this
condition, when the analysis result of a loop conditional expression is true, a loop-out edge
does not propagate the abstract state from a loop to a loop-out node, which improves the
analysis precision of nodes after loops.

Loop-break edge. As the second rule in Figure 12 specifies, a loop-break edge propagates
an abstract state from a break node inside a loop to a loop-out node. Since the evaluation of
the break statement breaks out of a loop, the rule reverts the loop string to the one before
the current loop by finding the innermost loop-head node with loopHead and reverting to
the loop context just before it.

Loop-return edge. The third rule in Figure 12 states that a loop-return edge propagates
an abstract state from a return node inside a loop to an exit node of a function enclosing
the loop. Because the evaluation of the return statement breaks out all the enclosing loops
and returns from the enclosing function, the rule reverts the loop string to the one before
the current function is called by finding all the enclosing loop-head nodes with loopHeads
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and reverting to the loop context just before the call of the current function. Using the
concatenation operator ||, the rule joins all analysis results of the return node in contexts
〈π, ψ1||ψ〉 where ψ1 contains loop contexts with the current call string π and the enclosing
loop-head nodes of the return node: nlhead2 ∈ loopHeads(origin(e)).

We prove that F̂lsa is monotone on the domain of κ̂l.

I Theorem 1. (Monotonicity of F̂lsa)
∀κ̂l1 , κ̂l2 : κ̂l1 v κ̂l2 =⇒ F̂lsa(κ̂l1) v F̂lsa(κ̂l2).

Then, the unique least fixpoint of F̂lsa exists, and the computation terminates since the
domains of F̂lsa are finite.

5.2 Soundness and Precision
This section shows that 〈i, j, k〉-LSA extending sound k-CFA is also sound and it is more
precise than or as precise as k-CFA. We proved all the theorems in this paper using the proof
assistant tool Coq [5] and the Coq library of lattices6; the mechanized proofs are publicly
available [12].

5.2.1 Soundness
We define translation functions between concrete summary maps and LSA annotations
α : Acon → Âlsa and γ : Âlsa → Acon as follows:

α(κc) = λ(〈p, φ〉).αs(κc(p) u statesInCtxt(φ))
γ(κ̂l) =

⊔
{κc | α(κc) v κ̂l}

where the helper function statesInCtxt : Φ→ ℘(State) provides a set of all possible concrete
states in a given context. For a given context φ, the meet of all reachable states κc(p) without
considering contexts and possibly unreachable states statesInCtxt(φ) in the context φ denotes
a set of all reachable states in the context. Then, α and γ satisfy the Galois connection
condition:

I Theorem 2. (Galois connection)
∀κc ∈ Acon, κ̂l ∈ Âlsa : α(κc) v κ̂l ⇐⇒ κc v γ(κ̂l).

We assume that all reachable states in a context φ are subsumed by the join of execution
results from all reachable states in the preceding contexts of φ. Then, we can prove the
soundness of the transfer function:

I Theorem 3. (Soundness of transfer functions)
α ◦ Fcon v F̂lsa ◦ α.

Finally, with all the theorems above, the abstract interpretation framework guarantees the
soundness of LSA:

α(κcon) v κ̂lsa.

6 http://raweb.inria.fr/2006/Raweb/lande/uid20.html
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Table 1 Analysis results of SAFE, SAFElsa, TAJS, and WALA within the timeout of 5 hours.

Group Success
(Number of programs) SAFE SAFElsa TAJS WALA
jQuery 1.0.0∼2.1.0 (14) 0 14 11 3

Modernizr 2.8.3 (1) 1 1 1 1
BootStrap 3.3.0 (1) 0 0 0 0
Mootools 1.5.1 (1) 0 1 0 0
Prototype 1.7.2 (1) 0 1 0 0

BENCH (61) 0 37 20 0
SLICE (61) 0 53 33 0

WEBSITE (5) 0 3 0 0

5.2.2 Precision

To compare the analysis results of k-CFA and 〈i, j, k〉-LSA, we define a translation function
from LSA annotations to CFA annotations η : Âlsa → Âcfa as follows:

η(κ̂l) = λ(〈p, π〉).
⊔
{κ̂l(〈p, 〈π, ψ〉〉) | ψ ∈ Ψ}.

It simply translates LSA contexts with the same call string (possibly with different loop
strings) to a CFA context by joining the LSA contexts. Then, the analysis results from LSA
are more precise than or at least as precise as the ones from CFA at all program points:

I Theorem 4. (Precision) η(κ̂lsa) v κ̂cfa

6 Evaluation

In this section, we evaluate our technique in two respects, scalability and precision, using
SAFElsa, an extension of an open-source framework SAFE [13, 15] that statically analyzes
JavaScript web applications with modeling of various browser environments. We performed
all experiments on a Mac OS X x64 machine with 3.4GHz Intel Core i7 CPU and 16GB
Memory, and we used 30-depth 1000-length loop strings and 10-CFA for LSA. Even though
we use big numbers for i and j for 〈i, j, k〉-LSA to ensure termination of analyses, we found
that actual analyses create much smaller numbers of loop contexts without incurring much
overhead. We also used 10-CFA for the experiment with SAFE for comparison.

6.1 Scalability

We evaluate the scalability of LSA by comparing the analysis results of SAFElsa with those
of state-of-the-art static analyzers, SAFE, TAJS, and WALA; we refer the interested readers
to Section 7 for more detailed explanation of the analyzers. For fair comparison, we used the
latest versions of SAFE and WALA from their open-source repositories except for jQuery as
we explain below and the specialized version for TAJS [18]. Similar to the experiments of
TAJS [1], we measured how many target subjects each analyzer successfully analyzes within
the timeout of 5 hours with normal analysis results. Table 1 summarizes the experimental
results.

The first column in Table 1 shows target subject groups we experimented with and the
numbers of programs in each group. The first 5 groups are simple programs that just load
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one of the top 5 JavaScript libraries according to W3Techs7. Because jQuery has a more
than 90% market share and many web applications still use old versions of jQuery even with
newer versions, we analyze all 14 released versions of jQuery (1.0.0 ∼ 1.11.0, 2.0.0 ∼ 2.1.0)
while we analyze only the latest versions for other libraries. The BENCH and SLICE groups
are benchmarks from the experiments of TAJS [1]; the authors collected 71 programs from a
jQuery tutorial8 that perform simple operations using jQuery 1.10.0, and they compared
analysis results of using the entire jQuery (BENCH) and using its sliced versions (SLICE).
Note that our experiments have excluded 10 programs from the original 71 benchmarks
because some soundness bugs in TAJS affected analysis results on the 10 programs. One such
bug is that the loop specialization mechanism in TAJS misses analysis flows in the presence
of the return statement in loops, which formal verification like our Coq mechanization can
surely detect. The last group WEBSITE contains main web pages of the 5 most popular
websites, google.com, facebook.com, youtube.com, baidu.com, and yahoo.com, according
to the Alexa website9.

The second to last columns in Table 1 show the successful analysis results. While SAFE
analyzes only one program that loads Modernizr10, SAFElsa performs the best: it analyzes
all programs that load 14 versions of jQuery and the latest versions of Modernizr, Mootools,
and Prototype; it analyzes 37, 53, and 3 programs in the BENCH, SLICE, and WEBSITE
groups, respectively. Note that because TAJS does not support ES5 getters and setters,
it cannot analyze jQuery version 2.x. Also, while WALA can analyze 3 versions of jQuery
using the dynamic determinacy technique [20], the technique is not available from its latest
open-source repository. Thus, Table 1 presents that WALA can analyze 3 versions of jQuery
but it does not hold for the latest open-source version. TAJS and WALA analyze 11 and
3 versions of jQuery, respectively, but our experiments showed that they fail to analyze
Mootools and Prototype unlike SAFElsa. For the BENCH and SLICE groups, TAJS analyzes
20 and 33 programs, respectively, but WALA analyzes none of them; for the WEBSITE group,
both TAJS and WALA fail to analyze any of 5 programs in the group.

We believe that SAFElsa is more scalable than the other analyzers because of its ability
to distinguish loops more precisely without much overhead. From the experiments with
jQuery, we observed that LSA distinguishes at most 4 nested loops (4-depth) across function
boundaries and maximum 36 iterations (36-length). This implies that LSA can keep small
numbers of loop contexts in practice even when we use big numbers for i and j in 〈i, j, k〉-LSA.
Note that any combinations of the i and j values bigger than 4 and 36 in 〈i, j, 10〉-LSA give
the same analysis results in the jQuery cases with the same numbers of distinguished loop
contexts. Moreover, while LSA can precisely analyze loops of any forms such as for, for-in,
while, and do-while, loop specialization techniques in TAJS and WALA are applicable to
only special forms of loops by choosing contexts in heuristic ways; we found that Mootools
and Prototype used various forms of loops, which include those that the techniques in TAJS
and WALA cannot handle.

We investigated reasons why SAFElsa fails to analyze BootStrap11 and some programs in
the BENCH and SLICE groups within the timeout of 10 minutes. One reason is state explosion
by statically indeterminate values. For example, jQuery provides the jQuery.now() method
that returns a number representing the current time; a sound static analysis result of the

7 http://w3techs.com/technologies/overview/javascript_library/all
8 http://www.jquery-tutorial.net/
9 http://www.alexa.com/topsites
10 http://modernizr.com
11 http://getbootstrap.com/javascript/

ECOOP’15

google.com
facebook.com
youtube.com
baidu.com
yahoo.com
http://w3techs.com/technologies/overview/javascript_library/all
http://www.jquery-tutorial.net/
http://modernizr.com
http://getbootstrap.com/javascript/


752 Scalable and Precise Static Analysis of JavaScript Applications via Loop-Sensitivity

Table 2 Analysis results of SAFE and SAFElsa within the timeout of 5 hours.

Target SAFE SAFElsa
time
(s)

MaxCALL
(#)

CALL
(%)

PROP
(%)

time
(s)

MaxCALL
(#)

CALL
(%)

PROP
(%)

jQuery
2.1.1 timeout 32 88.57 36.36 27.56 2 99.65 83.93

Modernizr
2.8.3 60.02 49 95.42 41.67 5.92 2 96.85 100.00

BootStrap
3.3.0 timeout 37 87.10 53.33 timeout 254 87.85 73.02

Mootools
1.5.1 timeout 76 39.47 9.09 226.95 3 99.13 93.88

Prototype
1.7.2 timeout 30 91.49 28.57 35.74 2 99.41 87.72

google.
com

timeout 22 72.22 45.45 6,433.98 10 95.22 77.56

facebook.
com

timeout 2 99.41 42.22 timeout 3 99.60 88.14

youtube.
com

timeout 45 94.51 42.25 3,583.09 2 99.54 89.53

baidu.com timeout 37 92.00 56.52 timeout 41 93.12 72.37
yahoo.com timeout 64 94.31 88.44 7,244.78 2 99.21 97.34
Average – 39 85.45 44.39 – 32 96.95 86.34

method call should be any number. We observed that such statically indeterminate values
flow into loops making analysis results of loop conditional expressions also indeterminate,
which prohibits LSA from analyzing loops precisely.

Another reason we found in BootStrap is also state explosion in loops due to a sound event
modeling that considers all possible event-dispatch scenarios. Event handlers for an event
can access the target DOM element where the event was initially fired by the event.target
property. Because of event bubbling and capturing [25] (event propagation through the
path from the root of a DOM tree to a target element), the target element may not be
event.currentTarget for which the current event handler has been registered. Therefore,
a sound static analysis result for event.target should be all DOM elements on the subtree
of event.currentTarget, and we observed that such imprecise analysis results cause state
explosion by flowing into loops.

We believe that other analysis techniques not particularly related to loops may alleviate
the state explosion problems. Using random constant values as in TAJS [1] or user inputs
for statically indeterminate values may lessen the former problem, and more sophisticated
event modeling may mitigate the latter problem. Our future work includes these directions.

6.2 Precision
For precision, we compare the analysis results of SAFE and SAFElsa for programs that just
load the latest versions of the top 5 libraries and main web pages of the 5 most popular
websites. To measure the analysis precision, we compute MaxCALL, CALL, and PROP that
can be critical in the analysis scalability: (1) MaxCALL indicates the maximum number of
possible function calls resolved during analysis for each call; bigger numbers denote more
imprecise analysis results leading to more false function calls, which harm the analysis

google.com
google.com
facebook.com
facebook.com
youtube.com
youtube.com
baidu.com
yahoo.com
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scalability. (2) CALL indicates the ratio of definite function calls resolved to exactly one
function calls to all function calls; bigger numbers denote more precise analysis results with
less spurious function calls. (3) PROP indicates the ratio of dynamic property accesses
resolved to constant names to all dynamic property accesses without considering direct
constant accesses like o["name"]; bigger numbers denote more precise analysis results with
more exact property accesses. Thus, the bigger MaxCALL and the smaller CALL and PROP
an analysis has, the more likely it suffers from the scalability problem.

Table 2 shows the result; we averaged all figures in the table from 3 runs and normalized
them to per program point to directly compare SAFE and SAFElsa; for those with timeout,
we used pre-fixpoint analysis results that are still useful for precision comparison. The
table shows that SAFElsa significantly improves analysis results of SAFE; it analyzes more
programs than and provides more precise analysis results than SAFE. On average, LSA
reduces MaxCALL from 39 to 32 and it improves CALL and PROP from 85.45% and 44.39% to
96.95% and 86.34%, respectively. In the analysis of Mootools for example, LSA dramatically
improves the analysis precision by reducing MaxCALL from 76 to 3 and improving CALL and
PROP from 39.47% and 9.09% to 99.13% and 93.88%, respectively. Interestingly, SAFElsa has
bigger MaxCALL than SAFE for BootStrap, facebook.com, and baidu.com, which SAFElsa
fails to analyze within the timeout. We found that SAFElsa reaches more program points to
analyze and performs more fixpoint computation at the same program points than SAFE
within the same timeout thanks to improved scalability, which increases MaxCALL at program
points with imprecise analysis results. We expect that when analyzing the target programs
without setting a timeout, final analysis results would show smaller MaxCALL in SAFElsa
than SAFE.

6.3 Threats to Validity

A possible threat to validity of our results is that, since our target programs are simple
programs that use top 5 libraries and main web pages of the 5 most popular websites, the
results may not hold for some real-world JavaScript programs in different domains. Another
threat is that the comparison results with other static analyzers are not independent of
the capabilities of their base analyzers. As SAFE, WALA, and TAJS use different analysis
techniques and different modeling of JavaScript built-in functions and DOM APIs, the better
analysis results of SAFElsa may not be purely due to LSA.

7 Related Work

Sharir and Pnueli [21] introduced two approaches of call-context sensitivity, k-CFA and
Summary-Based Analysis (SBA), to statically analyze functions more precisely. While k-CFA
distinguishes function calls by call strings of the maximum k-length that represent call
histories, SBA distinguishes function calls by input states to functions. They proved that
k-CFA with the unbound length of k and SBA have the same analysis precision in domains
with precision-lossless join operations. Mangal et al. [17] extended this result by showing
that the result still holds in the presence of precision-lossy join operations. Using their
notation, we formalized k-CFA and LSA in the abstract interpretation framework to prove
the soundness and precision theorems of LSA. Note that although loop-sensitivity can be
used with any call sensitivity techniques, LSA that we present in this work subsumes k-CFA;
while k-CFA distinguishes call contexts only by some abstraction of call history denoted by
call strings, LSA distinguishes loop contexts not only by abstraction of loop history but also

ECOOP’15

facebook.com
baidu.com


754 Scalable and Precise Static Analysis of JavaScript Applications via Loop-Sensitivity

by abstraction of loop condition values. Thus, LSA is also similar to SBA in that it uses
value abstraction for loop conditions.

Trace partitioning [10, 19] is a general theoretical framework that supports systematic
abstractions on trace-based concrete semantics. While trace partitioning can improve the
analysis precision of loops as well, each loop should be annotated with an unrolling number
before the analysis just like the conventional loop unrolling technique. On the contrary, LSA
finds precise unrolling counts for loops automatically during analysis as far as loop conditions
keep determinate. Furthermore, our LSA formalization provides a detailed explanation about
loop context updates in the presence of tricky program points such as break, continue, and
return statements in loops, and our Coq mechanization proves its soundness.

SAFE [13, 15] is an extensible analysis framework for JavaScript web applications. SAFE
performs sophisticated data flow analyses for JavaScript applications in a flow-sensitive and
context-sensitive way producing heap information that contains pointer and value information
for all variables at each program point as analysis results. In addition to the data flow
analysis, it supports various extensions such as the ES6 module system [4] and detection
of Web API misuses [3]. Our experiments showed that SAFElsa significantly improves the
scalability and the precision of SAFE, which may, in turn, improve those of the various
extensions of SAFE.

TAJS [18] is a flow and context sensitive static analyzer for JavaScript applications similar
to SAFE. In addition to the object sensitivity [22], TAJS extended its context-sensitivity
to distinguish more functions and loops using the values of function parameters and loop
variables selected in heuristic ways, and the extension enabled TAJS to analyze most versions
of jQuery [1]. However, the technique does not accompany any formalization nor soundness
proof, and it is not general in that it can distinguish loops only when they conform to some
specific forms; for instance, the technique does not distinguish loops where variables in loop
conditional expressions are not involved in object property updates. Indeed, we found some
soundness bugs and observed that TAJS cannot analyze 3 libraries among the top 5 ones.

WALA [11] is a general analysis framework originally for Java, and it analyzes JavaScript
web applications as well. To address JavaScript-specific scalability problems, WALA developed
the correlation tracking technique [23] that rewrites for-in loops in the following forms with
the same property reads and writes:

for(x in src) des[x] = src[x];

to the following code:

for(x in src) (function (p) {des[p] = src[p]}) (x);

Then, the analysis distinguishes the function call in each iteration using field sensitivity
(distinguishing function calls by fields of objects) [16]. Later, WALA presented the dynamic
determinacy analysis [20], which first performs a dynamic information flow analysis [2] to
track ever-determinate values in all concrete executions, propagates such constant values in
a program, and then performs a static analysis on the specialized program. In particular for
loops, the technique uses such determinate values to find the maximum unrolling numbers.
However, even with the correlation tracking and dynamic determinacy techniques, WALA
can analyze only 3 versions of jQuery. In contrast, LSA can apply to any forms of loops and
it is fully static and automatic for finding precise numbers of distinguishable iterations for
loops.

Kashyap et al. [14] presented JSAI, a static analysis platform to support sound analysis
for JavaScript applications similar to SAFE and TAJS. One main feature of JSAI is the
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configurability of sensitivity techniques including call-context sensitivity. The authors
evaluated JSAI applying various call-context sensitivities such as k-CFA and object sensitivity
to various benchmarks. Their experimental results showed that static analysis with higher
sensitivity (as greater k for k-CFA) is far better than its counterpart with low sensitivity in
terms of performance in various kinds of JavaScript programs giving more precise analysis
results. It implies that higher precision may be a key to higher scalability of static analysis
at least for JavaScript programs. In Section 6, We also showed that higher precision by
LSA significantly improves the analysis performance for some JavaScript web applications.
Because JSAI does not support the comprehensive modeling of JavaScript built-in functions
including browser APIs that are essential for analyzing JavaScript web applications, we could
not compare JSAI with our implementation. However, we conjecture that JSAI would fail to
analyze many JavaScript web applications including JavaScript libraries unless it supports a
loop specialization technique such as LSA; in Section 2, we showed that call-context sensitivity
alone is not enough to analyze the most widely used JavaScript library in a scalable way due
to great loss of precision in loops.

8 Conclusion

We presented a novel analysis technique, Loop-Sensitive Analysis (LSA), which distinguishes
loop iterations as many as needed during analysis using loop contexts. We formalized LSA in
the abstract interpretation framework and showed how to extend k-CFA to LSA. We proved
that LSA is more precise than or at least as precise as k-CFA while it remains sound if the
base k-CFA is sound. We provide the mechanized proofs of the soundness and precision
theorems by the proof assistant tool, Coq. We have implemented LSA as an extension of
an open-source JavaScript static analysis framework, SAFE. Our mechanized proofs and
the LSA implementation are publicly available. We demonstrated that LSA dramatically
improves the scalability of the state-of-the-art JavaScript static analyzers by enhancing
analysis precision when analyzing the main web pages of the 5 most popular websites and
applications that use the top 5 JavaScript libraries. Because we presented LSA as language
independent, it is applicable to analysis of programs in other programming languages.
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