LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board
- Susanne Albers (TU München)
- Chris Hankin (Imperial College London)
- Deepak Kapur (University of New Mexico)
- Michael Mitzenmacher (Harvard University)
- Madhavan Mukund (Chennai Mathematical Institute)
- Catuscia Palamidessi (INRIA)
- Wolfgang Thomas (Chair, RWTH Aachen)
- Pascal Weil (CNRS and University Bordeaux)
- Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics
Contents

Preface
 John Tang Boyland .. ix

Artifacts
 Camil Demetrescu and Matthew Flatt xi

Organization .. xiii

External Reviewers ... xv

List of Authors .. xvii

Abstracts of Invited Talks

Object-Oriented Programming without Inheritance
 Bjarne Stroustrup .. 1

Programming in the Large for the Internet of Things
 Jong-Deok Choi .. 2

Software Verification “Across the Stack”
 Alexander J. Summers .. 3

Gradual Typing

Towards Practical Gradual Typing
 Asumu Takikawa, Daniel Feltey, Earl Dean, Matthew Flatt, Robert Bruce Findler,
 Sam Tobin-Hochstadt, and Matthias Felleisen 4

TreatJS: Higher-Order Contracts for JavaScript
 Matthias Keil and Peter Thiemann 28

Trust, but Verify: Two-Phase Typing for Dynamic Languages
 Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala 52

Implementation

Concrete Types for TypeScript
 Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek 76

Simple and Effective Type Check Removal through Lazy Basic Block Versioning
 Maxime Chevalier-Boisvert and Marc Feeley 101

Loop Tiling in the Presence of Exceptions
 Abhilash Bhandari and V. Krishna Nandivada 124
Objects

- **Transparent Object Proxies for JavaScript**
 Matthias Keil, Sankha Narayan Guria, Andreas Schlegel, Manuel Geffken, and Peter Thiemann 149

- **A Theory of Tagged Objects**
 Joseph Lee, Jonathan Aldrich, Troy Shaw, and Alex Potanin 174

- **Brand Objects for Nominal Typing**
 Timothy Jones, Michael Homer, and James Noble .. 198

Analysis I

- **Access-rights Analysis in the Presence of Subjects**
 Paolina Centonze, Marco Pistoia, and Omer Tripp .. 222

- **Variability Abstractions: Trading Precision for Speed in Family-Based Analyses**
 Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wąsowski 247

Developer Assistance

- **Optimization Coaching for JavaScript**
 Vincent St-Amour and Shu-yu Guo .. 271

- **PERFBLOWER: Quickly Detecting Memory-Related Performance Problems via Amplification**
 Lu Fang, Liang Dou¹, and Guoqing Xu .. 296

- **Hybrid DOM-Sensitive Change Impact Analysis for JavaScript**
 Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman 321

Types

- **Intensional Effect Polymorphism**
 Yuheng Long, Yu David Liu, and Hridesh Rajan ... 346

- **Type Inference for Place-Oblivious Objects**
 Riyaz Haque and Jens Palsberg ... 371

- **Asynchronous Liquid Separation Types**
 Johannes Kloos, Rupak Majumdar, and Viktor Vafeiadis 396

Parallelism

- **The Eureka Programming Model for Speculative Task Parallelism**
 Shams Imam and Vivek Sarkar ... 421

¹ Work was done while the author visited UC Irvine during 2013–2014.
Cooking the Books: Formalizing JMM Implementation Recipes
Gustavo Petri, Jan Vitek, and Suresh Jagannathan 445

Defining Correctness Conditions for Concurrent Objects in Multicore Architectures
Brijesh Dongol, John Derrick, Lindsay Groves, and Graeme Smith 470

Empirical Studies

The Love/Hate Relationship with the C Preprocessor: An Interview Study
Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi 495

The Good, the Bad, and the Ugly: An Empirical Study of Implicit Type Conversions in JavaScript
Michael Pradel and Koushik Sen ... 519

Abstraction

A Pattern Calculus for Rule Languages: Expressiveness, Compilation, and Mechanization
Avraham Shinnar, Jérôme Siméon, and Martin Hirzel 542

Global Sequence Protocol: A Robust Abstraction for Replicated Shared State
Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich . 568

Streams à la carte: Extensible Pipelines with Object Algebras
Aggelos Biboudis, Nick Palladinos, George Fourtounis, and Yannis Smaragdakis .. 591

Verification

Lightweight Support for Magic Wands in an Automatic Verifier
Malte Schwerhoff and Alexander J. Summers 614

Modular Verification of Finite Blocking in Non-terminating Programs
Pontus Boström and Peter Müller ... 639

Modular Termination Verification
Bart Jacobs, Dragan Bosnacki, and Ruurd Kuiper 664

Analysis II

Framework for Static Analysis of PHP Applications
David Hauzar and Jan Kofroň ... 689

Adaptive Context-sensitive Analysis for JavaScript
Shiyi Wei and Barbara G. Ryder ... 712

Scalable and Precise Static Analysis of JavaScript Applications via Loop-Sensitivity
Changhee Park and Sukyoung Ryu ... 735
Preface

This volume contains 31 accepted papers (of 136 submitted) of the 29th ECOOP, ECOOP’15 which will take place in Prague in July of 2015. Each submitted paper was assigned at least three program committee (PC) reviewers. If a PC member was an author, then the paper was assigned a minimum of five PC reviewers. Over twenty additional external reviewers wrote reviews of papers where we needed more expertise. External reviewers had to be approved by the program chair. Altogether 450 reviews were produced.

Papers authored by PC members were given extra scrutiny. Along with the extra reviews, the papers were decided upon before the PC meeting. Each paper had to be clearly acceptable with at least one champion and no objections to inclusion. Of the fifteen PC papers, only three were accepted. Several of the rejected papers would probably have been accepted in normal circumstances.

The program committee met in at ETH in Zürich to decide on the non-PC papers that had at least one positive review. We discussed these 80 papers in eight groups of ten papers each. After the discussion, each paper had a PC member tasked with writing up a summary of the discussion for the authors.

This proceedings is the first one to be published by the Leibniz International Proceedings in Informatics (LIPIcs). We appreciate the long partnership with Springer Verlag, who not only published the proceedings for most of the previous instances of ECOOP, but also provided in-kind funds to the authors of the best paper. Moving to LIPIcs allows ECOOP to provide “Gold Open Access” to accepted papers, which not only raises visibility, but also meets the requirements of increasingly many funding providers for open access. We look forward to a positive partnership with the Schloss Dagstuhl Leibniz-Zentrum für Informatik.

I would like to take this opportunity to thank Malte Schwerhoff and Marlies Weissert of ETH who were invaluable in handling the logistics of the meeting and to Peter Müller whose office provided funding and hosting of the event. I thank my own institution (University of Wisconsin-Milwaukee) for a reduced teaching schedule in the Spring semester of 2015, as well as providing a lunch for PC members. I also want to thank all the PC members for their hard work and thoughtful reviews. Last I would like to thank the ECOOP 2015 “Comfy Chair” Jan Vitek for his constant availability for questions and assistance.

John Tang Boyland

May, 2015
Artifacts

The ECOOP Artifact Evaluation (AE) process considers artifacts – software, data, proofs, videos, etc. – that are associated with published papers and that are independently submitted, reviewed, and accepted or rejected by an Artifact Evaluation Committee (AEC). The long-term goal of this process is to foster a culture of reproducibility of experimental results by considering software artifacts as first-class citizens, as well as enhancing the information provided to the community about research results. Artifacts are reviewed and accepted even if they cannot be made available to the public (e.g., because of confidentiality requirements or intellectual property difficulties), but the intent is that artifacts should be made available if possible. This year’s ECOOP is the third edition to include AE, and similar processes continue to be adopted at other top conferences.

The AE process is similar to a paper-review process; artifacts are submitted by paper authors and evaluated by a committee based on individual assessments followed by a discussion among the reviewers. As is traditional, the ECOOP 2015 AEC members are all outstanding junior researchers. Each of the 17 AEC members reviewed 2-3 artifacts, and each artifact was evaluated by 3 members.

In the first phase, reviewers were asked to “kick the tires” of each artifact to check that it could be reviewed effectively. An author-response period followed immediately afterward. This phase ruled out corrupt artifact archive files and similar low-level problems that could easily be resolved with help from the authors.

In the second phase, the reviewers read the accepted papers, evaluated the associated artifacts with respect to the content and claims of the paper, and wrote evaluation summaries. In their artifact evaluations, reviewers focused on four key questions: (1) Is the artifact consistent with the paper? (2) Is the artifact complete? (3) Is the artifact well documented? and (4) Is the artifact easy to reuse? Each reviewer assigned an overall rating of “does not live up to expectations [raised by the paper],” “lives up to the expectations,” or “exceeds expectations” for each artifact. In a virtual AEC meeting, the committee discussed those ratings and reviews and decided on acceptance or rejection for each artifact. During the discussion, all AEC members could see all reviews and discussions (except as proscribed by a conflict of interests), which allowed a calibration of the reviews across artifacts and reviewers.

Among the 31 papers accepted for ECOOP 2015, we received 15 artifacts for evaluation. Of the submitted artifacts, the committee accepted 12 and rejected 3. A high acceptance rate seems natural for the AE process, since it covers only artifacts for papers that have already been accepted for publication. Currently, the AE process is not intended to influence paper submission, and independence is ensured by opening artifact submission only after paper notifications. As the AE process evolves, it is possible that the intent and application of AE influence will change.

Papers with accepted artifacts in this proceedings are marked with a rosette representing the seal of approval by the AEC. We are glad to note that all accepted artifacts are collected on the Dagstuhl Research Online Publication Server (DROPS) alongside the papers, and for the first time each artifact has its own DOI separate from its paper’s DOI.

This year’s AE process benefited greatly from the experience and advice of previous AEC organizers. We relied on the guidelines by Shriram Krishnamurthi, Matthias Hauswirth, Steve Blackburn, and Jan Vitek published in the foundational on-line article Artifact Evaluation for

2 One accepted paper’s artifact was ineligible for review, due to having an AEC co-chair as an author.
Software Conferences available at http://www.artifact-eval.org. The Artifact Evaluation Artifact effort by Steve Blackburn and Matthias Hauswirth, available at the address http://evaluate.inf.usi.ch/artifacts/aea, was also of inspiration. We thank the Program Chair John Boyland for his help and cooperation, and we particularly thank Jan Vitek for his continued involvement and advice. Thanks also to Eddie Kohler for his help with the HotCRP conference management software. Most significantly, we enthusiastically commend the AEC members for their diligent efforts. Finally, we thank all authors for packaging and documenting their artifacts for ECOOP 2015 and for making them publicly available; we believe that this extra step of publication is an invaluable service for the community.

Camil Demetrescu
Matthew Flatt

May, 2015
Organization

Comfy Chair

Jan Vitek (Northeastern University)

General Chairs

Tomas Kalibera
Pavel Kordik (Czech Technical University)

Program Chair

John Tang Boyland (University of Wisconsin-Milwaukee)

Program Committee

Stephanie Balzer (Carnegie Mellon University)
Walter Binder (University of Lugano)
Eric Bodden (Fraunhofer SIT and TU Darmstadt)
Viviana Bono (University of Torino)
Einar Broch Johnsen (University of Oslo)
Dave Clarke (Uppsala University and KU Leuven)
Werner Dietl (University of Waterloo)
Danny Dig (Oregon State University)
Irene Finocchi (Sapienza University, Rome)
Christian Hammer (Saarland University)
Martin Hirzel (IBM Research)
Marieke Huisman (University of Twente)
Xuandong Li (Nanjing University)
Francesco Logozzo (Facebook)
Yi Lu (Oracle Labs)
Todd Millstein (University of California, Los Angeles)
Peter Müller (ETH Zurich)
Bruno Oliveira (University of Hong Kong)
Tamiya Onodera (IBM Research – Tokyo)
Pavel Parízek (Charles University in Prague)
Matthew Parkinson (Microsoft Research, UK)
Christoph Reichenbach (Goethe University)
Marco Servetto (Victoria University of Wellington)
Friedrich Steimann (Fernuniversität in Hagen)
T. Stephen Strickland (Brown University)
Mohsen Vakilian (Google)
Tom Van Cutsem (Alcatel-Lucent Bell Labs)
Harry Xu (University of California, Irvine)
Nobuko Yoshida (Imperial College London)
Organization

Artifact Evaluation Co-chairs
Camil Demetrescu (Sapienza University of Rome)
Matthew Flatt (University of Utah)

Artifact Evaluation Committee
Karim Ali (Technical University at Darmstadt)
Stefan Blom (University of Twente)
Lubomír Bulej (Charles University in Prague)
Nicolas Cardózo (Trinity College Dublin)
Fernando Chirigati (NYU Polytechnic School of Engineering)
Emilio Coppa (Sapienza University of Rome)
Paolo G. Giarrusso (University of Tübingen)
Raghavendra Kagalavadi (Oracle Labs)
Du Li (Carnegie Mellon University)
Sihan Li (University of Illinois at Urbana-Champaign)
Stefan Marr (Inria, France)
Philip Mayer (Ludwig Maximilians University Munich)
Cyrus Omar (Carnegie Mellon University)
Daniel Perelman (University of Washington)
Cosmin Radoi (University of Illinois)
Christophe Scholliers (Vrije Universiteit Brussel)
Wei Yang (University of Illinois at Urbana-Champaign)
External Reviewers

Jonathan Aldrich
Gavin Bierman
Robert Bocchino
Stefan Brunthaler
Satish Chandra
Tiago Cogumbrêiro
Lu Fang
Yang Feng
Stephen Fink
Steve Freund
François Gauthier
Andy Gordon
Robert Grimm
Johannes Lerch
Padmanabhan Krishnan
Du Li
Stefan Marr
Ethan Munson
Khanh Nguyen
Kim Nguyen
Tien Nguyen
Dominic Orchard
Tomas Petricek
Andreas Rossberg
Andrew Santosa
Bernhard Scholz
Peter Sewell
Gregor Snelting
Matthew Staats
Tijs van der Storm
Emilio Tuoso
Jules Villard
Gulfem Savrun Yeniceri
Wei Zhang
<table>
<thead>
<tr>
<th>Authors</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonathan Aldrich</td>
<td>Yu David Liu</td>
</tr>
<tr>
<td>Saba Alimadadi</td>
<td>Yuheng Long</td>
</tr>
<tr>
<td>Abhilash Bhandari</td>
<td>Rupak Majumdar</td>
</tr>
<tr>
<td>Aggelos Biboudis</td>
<td>Flávio Medeiros</td>
</tr>
<tr>
<td>Dragan Bosnacki</td>
<td>Ali Mesbah</td>
</tr>
<tr>
<td>Pontus Boström</td>
<td>Peter Müller</td>
</tr>
<tr>
<td>Claus Brabrand</td>
<td>Sarah Nadi</td>
</tr>
<tr>
<td>Sebastion Burckhardt</td>
<td>V Krishna Nandivada</td>
</tr>
<tr>
<td>Paolina Centonze</td>
<td>James Noble</td>
</tr>
<tr>
<td>Maxime Chevalier-Boisvert</td>
<td>Nick Palladinos</td>
</tr>
<tr>
<td>Benjamin Cosman</td>
<td>Jens Palsberg</td>
</tr>
<tr>
<td>Earl Dean</td>
<td>Changhee Park</td>
</tr>
<tr>
<td>John Derrick</td>
<td>Karthik Pattabiraman</td>
</tr>
<tr>
<td>Aleksandar S. Dimovski</td>
<td>Gustavo Petri</td>
</tr>
<tr>
<td>Brijesh Dongol</td>
<td>Marco Pistoia</td>
</tr>
<tr>
<td>Liang Dou</td>
<td>Alex Potanin</td>
</tr>
<tr>
<td>Lu Fang</td>
<td>Michael Pradel</td>
</tr>
<tr>
<td>Marc Feeley</td>
<td>Jonathan Protzenko</td>
</tr>
<tr>
<td>Matthias Felleisen</td>
<td>Hridesh Rajan</td>
</tr>
<tr>
<td>Daniel Feltey</td>
<td>Márcio Ribeiro</td>
</tr>
<tr>
<td>Robert Bruce Findler</td>
<td>Gregor Richards</td>
</tr>
<tr>
<td>Matthew Flatt</td>
<td>Barbara G. Ryder</td>
</tr>
<tr>
<td>George Fourtounis</td>
<td>Sukyoung Ryu</td>
</tr>
<tr>
<td>Manuel Fähndrich</td>
<td>Vivek Sarkar</td>
</tr>
<tr>
<td>Manuel Geffken</td>
<td>Andreas Schlegel</td>
</tr>
<tr>
<td>Rohit Gheyi</td>
<td>Malte Schwerhoff</td>
</tr>
<tr>
<td>Lindsay Groves</td>
<td>Koushik Sen</td>
</tr>
<tr>
<td>Shi-yu Guo</td>
<td>Troy Shaw</td>
</tr>
<tr>
<td>Sankha Narayan Guria</td>
<td>Avraham Shinmar</td>
</tr>
<tr>
<td>Riyaz Haque</td>
<td>Jerome Simeon</td>
</tr>
<tr>
<td>David Hanzar</td>
<td>Yannis Smaragdakis</td>
</tr>
<tr>
<td>Martin Hirzel</td>
<td>Graeme Smith</td>
</tr>
<tr>
<td>Michael Homer</td>
<td>Vincent St-Amour</td>
</tr>
<tr>
<td>Shams Imam</td>
<td>Alexander J. Summers</td>
</tr>
<tr>
<td>Suresh Jagannathan</td>
<td>Asumu Takikawa</td>
</tr>
<tr>
<td>Bart Jacobs</td>
<td>Peter Thiemann</td>
</tr>
<tr>
<td>Ranjit Jhala</td>
<td>Sam Tobin-Hochstadt</td>
</tr>
<tr>
<td>Timothy Jones</td>
<td>Ömer Tripp</td>
</tr>
<tr>
<td>Matthias Keil</td>
<td>Viktor Vafeiadi</td>
</tr>
<tr>
<td>Johannes Kloos</td>
<td>Panagiotis Vekris</td>
</tr>
<tr>
<td>Jan Kofro</td>
<td>Jan Vitek</td>
</tr>
<tr>
<td>Ruurd Kuiper</td>
<td>Andrzej Wąsowski</td>
</tr>
<tr>
<td>Christian Kästner</td>
<td>Shiyi Wei</td>
</tr>
<tr>
<td>Joseph Lee</td>
<td>Harry Xu</td>
</tr>
<tr>
<td>Daan Leijen</td>
<td>Francesco Zappa Nardelli</td>
</tr>
</tbody>
</table>

29th European Conference on Object-Oriented Programming.
Editor: John Tang Boyland
Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany