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Abstract
Given an undirected graph G = (VG, EG) and a fixed pattern graph H = (VH , EH) with k

vertices, we consider the H-Transversal and H-Packing problems. The former asks to find the
smallest S ⊆ VG such that the subgraph induced by VG \ S does not have H as a subgraph, and
the latter asks to find the maximum number of pairwise disjoint k-subsets S1, ..., Sm ⊆ VG such
that the subgraph induced by each Si has H as a subgraph.

We prove that if H is 2-connected, H-Transversal and H-Packing are almost as hard to
approximate as general k-Hypergraph Vertex Cover and k-Set Packing, so it is NP-hard to
approximate them within a factor of Ω(k) and Ω̃(k) respectively. We also show that there is a
1-connected H where H-Transversal admits an O(log k)-approximation algorithm, so that the
connectivity requirement cannot be relaxed from 2 to 1. For a special case of H-Transversal
where H is a (family of) cycles, we mention the implication of our result to the related Feedback
Vertex Set problem, and give a different hardness proof for directed graphs.
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1 Introduction

Given a collection of subsets S1, ..., Sm of the underlying set U , the Set Transversal problem
asks to find the smallest subset of U that intersects every Si, and the Set Packing problem
asks to find the largest subcollection Si1 , ..., Sim′ which are pairwise disjoint.1 It is clear
that optimum of the former is always at least that of the latter (i.e. weak duality holds).
Studying the (approximate) reverse direction of the inequality (i.e. strong duality) as well as
the complexity of both problems for many interesting classes of set systems is arguably the
most studied paradigm in combinatorial optimization.

This work focuses on set systems where the size of each set is bounded by a constant
k. With this restriction, Set Transversal and Set Packing are known as k-Hypergraph
Vertex cover (k-HVC) and k-Set Packing (k-SP), respectively. This assumption significantly
simplifies the problem since there are at most nk sets. While there is a simple factor k-
approximation algorithm for both problems, it is NP-hard to approximate k-HVC and k-SP
within a factor less than k − 1 [21] and O( k

log k ) [34] respectively.

∗ Supported in part by NSF grant CCF-1115525.
† Supported by a Samsung Fellowship and NSF CCF-1115525.
1 These problems are called many different names in the literature. Set Transversal is also called

Hypergraph Vertex Cover, Set Cover (of the dual set system), and Hitting Set. Set Packing is also
called Hypergraph Matching. We try to use Transversal / Packing unless another name is established
in the literature (e.g. k-Hypergraph Vertex Cover).
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Given a large graph G = (VG, EG) and a fixed graph H = (VH , EH) with k vertices, one of
the natural attempts to further restrict set systems is to set U = VG, and take the collection
of subsets to be all copies of H in G (formally defined in the next subsection). This natural
representation in graphs often results in a deeper understanding of the underlying structure
and better algorithms, with Maximum Matching (H = K2) being the most well-known
example. Kirkpatrick and Hell [39] proved that Maximum Matching is essentially the only
case where H-Packing can be solved exactly in polynomial time – unless H is the union
of isolated vertices and edges, it is NP-hard to decide whether VG can be partitioned into
k-subsets each inducing a subgraph containing H. A similar characterization for the edge
version (i.e. U = EG) was obtained much later by Dor and Tarsi [22].

We extend these results by studying the approximability of H-Transversal and H-Packing.
We use the term strong inapproximability to denote NP-hardness of approximation within a
factor Ω(k/polylog(k)). We give a simple sufficient condition that implies strong inapprox-
imability – if H is 2-vertex connected, H-Transversal and H-Packing are almost as hard
to approximate as k-HVC and k-SP. We also show that there is a 1-connected H where
H-Transversal admits an O(log k)-approximation algorithm, so 1-connectivity is not sufficient
for strong inapproximability for H-Transversal. It is an interesting open problem whether
1-connectivity is enough to imply strong inapproximability of H-Packing, or there is a class of
connected graphs where H-Packing admits a significantly nontrivial approximation algorithm
(e.g. factor kε for some ε < 1).

Our results give an unified answer to questions left open in many independent works
studying a special case where H is a cycle or clique, and raises some new open questions.
In the subsequent subsections, we state our main results, review related work, and state
potential future directions.

1.1 Problems and Our Results
Given an undirected graphs G = (VG, EG) and H = (VH , EH) with |VH | = k, we define the
following problems.

H-Transversal asks to find the smallest F ⊆ VG such that the subgraph of G induced by
VG \ F does not have H as a subgraph.
H-Packing asks to find the maximum number of pairwise disjoint k-subsets of S1, ..., Sm
of VG such that the subgraph induced by each Si has H as a subgraph.

Our main result states that 2-connectivity of H is sufficient to make H-Transversal and
H-Packing hard to approximate.

I Theorem 1. If H is a 2-vertex connected with k vertices, unless NP ⊆ BPP, no polynomial
time algorithm approximates H-Transversal within a factor better than k− 1, and H-Packing
within a factor better than Ω( k

log7 k
).

Let k-Star denote K1,k−1, the complete bipartite graph with 1 and k − 1 vertices on
each side. The following theorem shows that k-Star Transversal admits a good approxima-
tion algorithm, so the assumption of 2-connectedness in Theorem 1 is required for strong
inapproximability of H-Transversal.

I Theorem 2. k-Star Transversal can be approximated within a factor of O(log k) in poly-
nomial time.

This algorithmic result matches Ω(log k)-hardness of k-Star Transversal via a simple
reduction from Minimum Dominating Set on degree-k graphs [16]. This problem has the
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following equivalent but more natural interpretation: given a graph G = (VG, EG), find the
smallest F ⊆ VG such that the subgraph induced by VG \ F has maximum degree at most
k − 2. Our algorithm, which uses iterative roundings of 2-rounds of Sherali-Adams hierarchy
of linear programming (LP) followed by a simple greedy algorithm for Constrained Set Cover,
is also interesting in its own right, but we defer the details to Appendix A.

Our hardness results for transversal problems rely on hardness of k-HVC which is NP-hard
to approximate within a factor better than k − 1 [21]. Our hardness results for packing
problems rely on hardness of Maximum Independent Set on graphs with maximum degree
k and girth strictly greater than g (MIS-k-g). Almost tight inapproximability of MIS on
graphs with maximum degree k (MIS-k) is recently proved in Chan [11], which rules out an
approximation algorithm with ratio better than Ω( k

log4 k
). We are able to extend his result

to MIS-k-g with losing only a polylogarithmic factor. All applications in this work require
g = Θ(k).

I Theorem 3. For any constants k and g, unless NP ⊆ BPP, no polynomial time algorithm
approximates MIS-k-g within a factor of Ω( k

log7 k
).

We remark that assuming the Unique Games Conjecture (UGC) slightly improves our
hardness ratios through better hardness of k-HVC [38] and MIS-k [3], and even simplifies
the proof for some problems (e.g. k-Clique Transversal) through structured hardness of
k-HVC [5]. Indeed, an earlier (unpublished) version of this work [30] relied on the UGC to
prove that MIS-k-k is hard to approximate within a factor of Ω( k

log4 k
), while only giving

Ω̃(
√
k)-factor hardness without it. Now that we obtain almost matching hardness, we focus

on proving hardness results without the UGC.

1.2 Related Work and Special Cases

After the aforementioned work characterizing those pattern graphs H admitting the existence
of a polynomial-time exact algorithm for H-Packing [39, 22], Lund and Yannakakis [45]
studied the maximization version of H-Transversal (i.e. find the largest V ′ ⊆ VG such that
the subgraph induced by V ′ does not have H as a subgraph), and showed it is hard to
approximate within factor 2log1/2−ε n for any ε > 0. They also mentioned the minimization
version of two extensions of H-Transversal. The most general node-deletion problem is
APX-hard for every nontrivial hereditary (i.e. closed under node deletion) property, and the
special case where the property is characterized by a finite number of forbidden subgraphs
(i.e. {H1, ...,Hl}-Transversal in our terminology) can be approximated with a constant ratio.
They did not provide explicit constants (one trivial approximation ratio for {H1, ...,Hl}-
Transversal is max(|VH1 |, ..., |VHl |)), and our result can be viewed as a quantitative extension
of their inapproximability results for the special case of H-Transversal.

H-Transversal / Packing has been also studied outside the approximation algorithms
community. The duality between our H-Transversal and H-Packing is closely related to the
famous Erdős-Pósa property actively studied in combinatorics. The recent work of Jansen
and Marx [36] considered problems similar to our H-Packing with respect to fixed-parameter
tractability (FPT).

Many other works on H-Transversal / Packing focus on a special case where H is a cycle
or clique. We define k-Cycle (resp. k-Clique) to be the cycle (resp. clique) on k vertices.
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1.2.1 Cycles
The initial motivation for our work was to prove a super-constant factor inapproximability for
the Feedback Vertex Set (FVS) problem without relying on the Unique Games Conjecture.
Given a (directed) graph G, the FVS problem asks to find a subset F of vertices with the
minimum cardinality that intersects every cycle in the graph (equivalently, the induced
subgraph G \F is acyclic). One of Karp’s 21 NP-complete problems, FVS has been a subject
of active research for many years in terms of approximation algorithms and fixed-parameter
tractability (FPT). For FPT results, see [8, 14, 18, 15] and references therein.

FVS on undirected graphs has a 2-approximation algorithm [4, 7, 17], but the same problem
is not well-understood in directed graphs. The best approximation algorithm [48, 26, 25]
achieves an approximation factor of O(logn log logn). The best hardness result follows from
a simple approximation preserving reduction from Vertex Cover, which implies that it is
NP-hard to approximate FVS within a factor of 1.36 [20]. Assuming UGC [37], it is NP-hard
to approximate FVS in directed graphs within any constant factor [29, 50] (we give a simpler
proof in [30]). The main challenge is to bypass the UGC and to show a super-constant
inapproximability result for FVS assuming only P 6= NP or NP 6⊆ BPP.

By Theorem 1, we prove that k-Cycle Transversal is hard to approximate within factor
Ω(k). In the full version of this work [31], we prove the following theorem that improves the
result of Theorem 1 in the sense that in the completeness case, a small number of vertices not
only intersect cycles of length exactly k, but intersect every cycle of length 3, 4, ..., O( logn

log logn ).

I Theorem 4. Fix an integer k ≥ 3 and ε ∈ (0, 1). Given a graph G = (VG, EG) (directed
or undirected), unless NP ⊆ BPP, there is no polynomial time algorithm to tell apart the
following two cases.

Completeness: There exists F ⊆ VG with 1
k−1 + ε fraction of vertices that intersects every

cycle of at most length O( logn
log logn ) (hidden constant in O depends on k and ε).

Soundness: Every subset F with less than 1− ε fraction of vertices does not intersect at
least one cycle of length k. Equivalently, any subset with more than ε fraction of vertices
has a cycle of length exactly k in the induced subgraph.

This can be viewed as some (modest) progress towards showing inapproximability of FVS
in the following sense. Consider the following standard linear programming (LP) relaxation
for FVS.

min
∑
v∈VG

xv subject to
∑
v∈C

xv ≥ 1 ∀ cycle C , and 0 ≤ xv ≤ 1 ∀v ∈ VG

The integrality gap of the above LP is upper bounded by O(logn) for undirected graphs [6]
and O(logn log logn) for directed graphs [26]. Suppose in the completeness case, there exists
a set of measure c that intersects every cycle of length at most log1.1 n (or any number
bigger than the known integrality gaps). If we remove these vertices and consider the
above LP on the remaining subgraphs, since every cycle is of length at least log1.1 n, setting
xv = 1/ log1.1 n is a feasible solution, implying that the optimal solution to the LP is at most
n/ log1.1 n. Since the integrality gap is at most O(logn log logn), we can conclude that the
remaining cycles can be hit by at most O(n log logn/ log0.1 n) = o(n) vertices, extending
the completeness result to every cycle. Thus, improving our result to hit cycles of length
ω(logn log logn) in the completeness case will prove a factor-ω(1) inapproximability of FVS.

Another interesting aspect about Theorem 4 is that it also holds for undirected graphs.
This should be contrasted with the fact that undirected graphs admit a 2-approximation
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algorithm for FVS, suggesting that to overcome logn-cycle barrier mentioned above, some
properties of directed graphs must be exploited. Towards developing a directed graph specific
approach, we also present a different reduction technique called labeling gadget. It has an
additional advantage of being derandomized and assumes only P 6= NP.

For cycles of bounded length, Kortsarz et al. [41] studied k-Cycle Edge Transversal, and
suggested a (k− 1)-approximation algorithm as well as proved that improving the ratio 2 for
K3 will have the same impact on Vertex Cover, refuting the Unique Games Conjecture [38].

For the dual problem of packing cycles of any length, called Vertex-Disjoint Cycle Packing
(VDCP), the results of [42, 28] imply that the best approximation factor by any polynomial
time algorithm lies between Ω(

√
logn) and O(logn). In a closely related problem Edge-

Disjoint Cycle Packing (EDCP), the same papers showed that Θ(logn) is the best possible.
In directed graphs the vertex and edge version have the same approximability, the best
known algorithms achieves O(

√
n)-approximation while the best hardness result remains

Ω(logn).
Variants of k-Cycle Packing have also been considered in the literature. Rautenbach

and Regen [47] studied k-Cycle Edge Packing on graphs with girth k and small degree.
Chalermsook et al. [10] studied a variant of k-Cycle Packing on directed graphs for k ≥ n1/2

where we want to pack as many disjoint cycles of length at most k as possible, and proved
that it is NP-hard to approximate within a factor of n1/2−ε. This matches the algorithm
implied by [42].

1.2.2 Cliques
Minimum Maximal (resp. Maximum) Clique Transversal asks to find the smallest subset of
vertices that intersects every maximal (resp. maximum) clique in the graph. In mathematics,
Tuza [51] and Erdős et al. [24] started to estimate the size of the smallest such set depending
on structure of graphs. See the recent work of Shan et al. [49] and references therein. In
computer science, exactly computing the smallest set on special classes of graphs appears in
many works [32, 44, 12, 23, 43].

Both the edge and vertex version of k-Clique Packing also have been studied actively
both in mathematics and computer science. In mathematics, the main focus of research
is lower bounding the maximum number of edge or vertex-disjoint copies of Kk in very
dense graphs (note that even K3 does not exist in Kn,n which has 2n vertices and n2 edges).
See the recent paper [52] or the survey [53] of Yuster. The latter survey also mentions
approximation algorithms, including APX-hardness and the general approximation algorithm
for k-Set Packing which now achieves k+1+ε

3 for the vertex version and (k2)+1+ε
3 for the edge

version [19]. Feder and Subi [27] considered H-Edge Packing and showed APX-hardness
when H is k-cycle or k-clique. Chataigner et al. [13] considered an interesting variant where
we want to pack vertex-disjoint cliques of any size to maximize the total number of edges
of the packed cliques, and proved APX-hardness and a 2-approximation algorithm. Exact
algorithms for special classes of graphs have been considered in [9, 33, 35, 40].

1.3 Open Problems
For H-Transversal, 1-connectivity is not sufficient for strong hardness, because k-Star
Transversal admits an O(log k)-approximation algorithm by Theorem 2. It is open whether
1-connectivity is sufficient or not for such strong hardness for H-Packing. k-Star Packing is
at least as hard as MIS-k by a trivial reduction, but the approximability of k-Path Packing
appears to be still unknown. Whether k-Path Transversal admits a factor o(k) approximation
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algorithm is also an intriguing question. For directed acyclic graphs, Svensson [50] proved
that it is Unique Games-hard to approximate k-Path Transversal within a factor better
than k.

The approximability of H-Edge Transversal and H-Edge Packing is less understood than
the vertex versions. Proving tight characterizations for the edge versions similar to Theorem 1
is an interesting open problem.

1.4 Organization
The rest of the main body is devoted to proving Theorem 1 for H-Transversal / Packing
and Theorem 3 for MIS-k-g. Section 2 recalls and extends previous hardness results for the
problems we reduce from; Sections 3 and 4 prove hardness of H-Transversal and H-Packing
respectively. Appendix A gives an O(log k)-approximation algorithm for k-Star Transversal,
proving Theorem 2. Theorem 4 is proved in the full version of this work [31].

2 Preliminary

2.1 Notation
A k-uniform hypergraph is denoted by P = (VP , EP ) such that each e ∈ EP is a k-subset
of VP . We denote e as an ordered k-tuple e = (v1, . . . , vk). The ordering can be chosen
arbitrarily given P , but should be fixed throughout. If v indicates a vertex of some graph,
we use a superscript vi to denote another vertex of the same graph, and ei to denote the ith
(hyper)edge. For an integer m, let [m] = {1, 2, . . . ,m}. Unless otherwise stated, the measure
of F ⊆ V is obtained under the uniform measure on V , which is simply |F ||V | .

2.2 k-HVC
An instance of k-HVC consists of a k-uniform hypergraph P , where the goal is to find a set
C ⊆ VP with the minimum cardinality such that it intersects every hyperedge. The result of
Dinur, Guruswami, Khot and Regev [21] states that

I Theorem 5 ([21]). Given a k-uniform hypergraph (k ≥ 3) and ε > 0, it is NP-hard to tell
apart the following cases:

Completeness: There exists a vertex cover of measure 1+ε
k−1 .

Soundness: Every vertex cover has measure at least 1− ε.
Therefore, it is NP-hard to approximate k-HVC within a factor k − 1 + 2ε.

Moreover, the above result holds even when the degree of a hypergraph is bounded by d
depending on k and ε.

2.3 MIS-k
Given a graph G = (VG, EG), a subset S ⊆ VG is independent if the subgraph induced by S
does not contain any edge. The Maximum Independent Set (MIS) problem asks to find the
largest independent set, and MIS-k indicates the same problem where G is promised to have
maximum degree at most k. The recent result of Chan [11] implies

I Theorem 6 ([11]). Given a graph G with maximum degree at most k, it is NP-hard to tell
apart the following cases:

Completeness: There exists an independent set of measure Ω(1/(log k)).
Soundness: Every subset of vertices of measure O( log3 k

k ) contains an edge.
Therefore, it is NP-hard to approximate MIS-k within a factor Ω( k

log4 k
).
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3 H-Transversal

In this section, given a 2-connected graph H = (VH , EH) with k vertices, we give a reduction
from k-HVC to H-Transversal. The simplest try will be, given a hypergraph P = (VP , EP )
(let n = |VP |,m = |EP |), to produce a graph G = (VG, EG) where VG = VP , and for each
hyperedge e = (v1, . . . , vk) add |EH | edges that form a canonical copy of H to EG. While
the soundness follows directly (if F ⊆ VP contains a hyperedge, the subgraph induced by F
contains H), the completeness property does not hold since edges that belong to different
canonical copies may form an unintended non-canonical copy. To prevent this, a natural
strategy is to replace each vertex by a set of many vertices (call it a cloud), and for each
hyperedge (v1, . . . , vk), add many canonical copies on the k clouds (each copy consists of
one vertex from each cloud). If we have too many canonical copies, soundness works easily
but completeness is hard to show due to the risk posed by non-canonical copies, and in the
other extreme, having too few canonical copies could result in the violation of the soundness
property. Therefore, it is important to control the structure (number) of canonical copies
that ensure both completeness and soundness at the same time.

Our technique, which we call random matching, proceeds by creating a carefully chosen
number of random copies of H for each hyperedge to ensure both completeness and soundness.
We remark that properties of random matchings are also used to bound the number of
short non-canonical paths in inapproximability results for edge-disjoint paths on undirected
graphs [2, 1]. The details in our case are different as we create many copies of H based on a
hypergraph.

Fix ε > 0, apply Theorem 5, let c := 1+ε
k−1 , s := 1 − ε be the measure of the minimum

vertex cover in the completeness and soundness case respectively, and d := d(k, ε) be the
maximum degree of hard instances. Let a and B be integer constants greater than 1, which
will be determined later. Lemma 7 and 9 with these parameters imply the first half of
Theorem 1.

3.1 Reduction
Without loss of generality, assume that VH = [k]. Given a hypergraph P = (VP , EP ),
construct an undirected graph G = (VG, EG) such that

VG = VP × [B]. Let n = |VP | and N = |VG| = nB. For v ∈ VP , let cloud(v) := {v} × [B]
be the copy of [B] associated with v.
For each hyperedge e = (v1, . . . , vk), for aB times, take l1, . . . , lk independently and
uniformly from [B]. For each edge (i, j) ∈ H (1 ≤ i < j ≤ k), add ((vi, li), (vj , lj)) to EG.
Each time we add |EH | edges isomorphic to H, and we have aB of such copies of H per
each hyperedge. Call such copies canonical.

3.2 Completeness
The next lemma shows that if P has a small vertex cover, G also has a small H-Transversal.

I Lemma 7. Suppose P has a vertex cover C of measure c. For any ε > 0, with probability
at least 3/4, there exists a subset F ⊆ VG of measure at most c+ ε such that the subgraph
induced by VG \ F has no copy of H.

Proof. Let F = C × [B]. We consider the expected number of copies of H that avoid F
and argue that a small fraction of additional vertices intersect all of these copies. Choose k
vertices (v1, l1), . . . , (vk, lk) which satisfy
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Figure 1 Two examples where k = 4 and H is a 4-cycle. On the left, purported edges are divided
into two groups (dashed and solid edges). Each copy of canonical cycle should match the labels of
three vertices to ensure it covers 2 designated edges (6 labels total). On the right, one canonical
copy can cover all the edges, and it only needs to match the labels of four vertices (4 labels total).

v1 ∈ VP can be any vertex.
l1, . . . , lk ∈ B can be arbitrary labels.
For each (i, j) ∈ EH , there must be a hyperedge of P containing both i and j.

There are n possible choices for v1, B choices for each li, and at most kd choices for each
vi (i > 1). The number of possibilities to choose such (v1, l1), . . . , (vk, lk) is bounded by
n(dk)kBk. Note that no other k-tuple of vertices induce a connected graph and contain a
copy of H. Further discard the tuple when two vertices are the same.

We calculate the probability that the subgraph induced by ((v1, l1), . . . , (vk, lk)) contains a
copy in this order – formally, for all (i, j) ∈ EH , ((vi, li), (vj , lj)) ∈ EG. For each (i, j) ∈ EH ,
we call a pair ((vi, li), (vj , lj)) ∈

(
VG
2
)
a purported edge. For a set of purported edges, we say

that this set can be covered by a single canonical copy if one copy of canonical copy of H
can contain all purported edges with nonzero probability. Suppose that all |EH | purported
edges can be covered by a single canonical copy of H. It is only possible when there is
a hyperedge whose k vertices are exactly {v1, . . . , vk}. In this case, ((v1, l1), . . . , (vk, lk))
intersects F . (right case of Figure 1). When |EH | purported edges have to be covered by
more than one canonical copy, some vertices must be covered by more than one canonical
copy, and each canonical copy covering the same vertex should give the same label to that
vertex. This redundancy makes it unlikely to have all k edges exist at the same time. (left
case of Figure 1). The below claim formalizes this intuition.

I Claim 1. Suppose that ((v1, l1), . . . , (vk, lk)) cannot be covered by a single canonical copy.
Then the probability that it forms a copy of H is at most (adk)k

2

Bk
.

Proof. Fix 2 ≤ p ≤ |EH |. Partition |EH | purported edges into p nonempty groups I1, . . . , Ip
such that each group can be covered by a single canonical copy of H. There are at most
p|EH | possibilities to partition. For each v ∈ VP , there are at most d hyperedges containing
v and at most aBd canonical copies intersecting cloud(v). Therefore, all edges in one group
can be covered simultaneously by at most aBd copies of canonical copies. There are at most
(aBd)p possibilities to assign a canonical copy to each group. Assume that one canonical
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copy is responsible for exactly one group. This is without loss of generality since if one
canonical copy is responsible for many groups, we can merge them and this case can be dealt
with smaller p.

Focus on one group I of purported edges, and one canonical copy L = (VL, EL) which is
supposed to cover them. Let I ′ ⊆ VG be the set of vertices which are incident on the edges in I.
Suppose VL = {(u1, l′1), . . . , (uk, l′k)}, which is created by a hyperedge f = (u1, . . . , uk) ∈ EP .
We calculate the probability that L contains all edges in I over the choice of labels l′1, . . . , l′k
for L. One necessary condition is that {v|(v, l) ∈ I ′ for some l ∈ [B]} (i.e. the set I ′ projected
to VP ) is contained in f . Otherwise, some vertices of I ′ cannot be covered by L. Another
necessary condition is vi 6= vj for any (vi, li) 6= (vj , lj) ∈ I ′. Otherwise (i.e. (v, li), (v, lj) ∈ I ′
for li 6= lj), since L gives only one label to each vertex in f ⊆ VP , (v, li) and (v, lj) cannot be
contained in L simultaneously. Therefore, we have a nice characterization of I ′: It consists
of at most one vertex from the cloud of each vertex in f .

The probability that L contains I is at most the probability that for each (vi, li) ∈ I ′,
li is equal to the label L assigns to vi, which is B−|I′|. Now we need the following lemma
saying that the sum of |I ′| is large, which relies on 2-connectivity of H.

I Lemma 8. Fix p ≥ 2. For any partition I1, ..., Ip of purported edges into p non-empty
groups,

∑p
i=1 |I ′i| ≥ k + p.

Proof. Let t be the number of vertices contained in at least two I ′is. Call them boundary
vertices. Note that exactly k − t vertices belongs to exactly one I ′i. For i = 1, ..., p, let bi be
the number of boundary vertices in |I ′i|. Since (I ′i, Ii) is a proper subgraph of H and H is
2-vertex connected, bi ≥ 2 for each i. Therefore,

p∑
i=1
|I ′i| = (k − t) + max(2p, 2t) ≥ k + p. J

We conclude that for each partition, the probability of having all the edges is at most

(aBd)p
p∏
q=1

B−|I
′
q| = (aBd)p

Bk+p = (ad)p

Bk
.

The probability that ((v1, l1), . . . , (vk, lk)) forms a copy is therefore bounded by

|EH |∑
p=2

p|EH |
(ad)p

Bk
≤ (adk)k2

Bk
. J

Therefore, the expected number of copies that avoid F is bounded by n(kd)kBk · (adk)k
2

Bk
.

With probability at least 3/4, the number of such copies is at most 4n(adk)2k2 . Let
B ≥ 4(adk)2k2

ε . Then these copies of H can be covered by at most εnB = εN vertices. J

3.3 Soundness
The soundness claim above is easier to establish. By an averaging argument, a subset I
of VG of measure 2ε must contain εB vertices from the clouds corresponding to a subset
S of measure ε in VP . There must be a hyperedge e contained within S, and the chosen
parameters ensure that one of the canonical copies corresponding to e is likely to lie within I.
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I Lemma 9. For a = a(k, ε) and B = Ω(log |EP |), if every subset of VP of measure at least
ε contains a hyperedge in the induced subgraph, with probability at least 3/4, every subset of
VG with measure 2ε contains a canonical copy of H.

Proof. We want to show that the following property holds for every hyperedge e =
(v1, . . . , vk): if a subset of vertices I ⊆ VG has at least ε fraction of vertices from each
cloud(vi), then I will contain a canonical copy. Fix A1 ⊆ cloud(v1), . . . , Ak ⊆ cloud(vk) be
such that for each i, |Ai| ≥ εB. There are at most 2kB ways to choose such A’s. The prob-
ability that one canonical copy associated with e is not contained in (v1, A1)× · · · × (vk, Ak)
is at most 1− εk. The probability that none of canonical copy associated with e is contained
in (v1, A1)× · · · × (vk, Ak) is (1− εk)aB ≤ exp(−aBεk).

By union bound over all A1, . . . , Ak, the probability that there exists A1, . . . , Ak containing
no canonical copy is at most exp(kB − aBεk) = exp(−B) ≤ 1

4|EP | by taking a large enough
constant depending on k and ε, and B = Ω(log |EP |). Therefore, with probability at least
3/4, the desired property holds for all hyperedges.

Let I be a subset of VG of measure at least 2ε. By an averaging argument, at least ε
fraction of good vertices v ∈ VP satisfy that |cloud(vi) ∩ I| ≥ εB. By the soundness property
of P , there is a hyperedge e contained in the subgraph induced by the good vertices, and the
above property for e ensures that I contains a canonical copy. J

4 H-Packing and MIS-k-g

Given a 2-connected graph H, the reduction from MIS-k-k to H-Packing is relatively
straightforward. Here we assume that hard instances of MIS-k-k are indeed k-regular for
simplicity. Given an instance M = (VM , EM ) of MIS-k-k, we take G = (VG, EG) to be its
line graph – VG = EM , and e, f ∈ VG are adjacent if and only if they share an endpoint as
edges of M .

For each vertex v ∈ VM , let star(v) := {e ∈ VG : v ∈ e}. star(v) induces a k-clique, and
for v, u ∈ VM , star(v) and star(u) share one vertex if u and v are adjacent, and share no
vertex otherwise. Given an independent set S of M , we can find |S| pairwise disjoint stars in
G, which gives |S| vertex-disjoint copies of H. On the other hand, 2-connectivity of H and
large girth of M implies that any copy of H must be entirely contained in one star, proving
that many disjoint copies of H in G also give a large independent set of M with the same
cardinality, completing the reduction from MIS-k-k to H-Packing. The following theorem
formalizes the above intuition.

I Lemma 10. For a 2-connected graph H with k vertices, there is an approximation-preserving
reduction from MIS-k-k to H-Packing.

Proof. Let M = (VM , EM ) be an instance of MIS-k-k M with maximum degree k and
girth greater than k. First, let G = (VG = EM , EG) be the line graph of M . For each
vertex v ∈ VM with degree strictly less than k, we add k − deg(v) new vertices to VG. Let
star(v) ⊆ VG be the union of the edges of M incident on v and the newly added vertices for v.
Note that | star(v)| = k for all v ∈ VM . Add edges to G to ensure that every star(v) induces
a k-clique. For two vertices u and v of M , star(u) and star(v) share exactly one vertex if u
and v are adjacent in M , and share no vertex otherwise.

Let S be an independent set of M . The |S| stars {star(v)}v∈S are pairwise disjoint and
each induces a k-clique, so G contains at least |S| disjoint copies of H.

We claim that any k-subset of VG that induces a 2-connected subgraph must be star(v) for
some v. Assume towards contradiction, let T be a k-subset inducing a 2-connected subgraph
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of G that cannot be contained in a single star. We first show T must contain two disjoint
edges of M . Take any (u, v) ∈ T . Since T /∈ star(u), T contains an edge of M not incident
on u. If it is not incident on v either, we are done. Otherwise, let (w, v) be this edge. The
same argument from T /∈ star(v) gives another edge (w′, u) in T . If w 6= w′, (w, v) and (w′, u)
are disjoint. Otherwise, w, u, v form a triangle in M , contradicting a large girth. Let (u, v),
(w, x) be two disjoint edges of M in contained in T .

Since the subgraph of G vertex-induced by T is 2-connected, there are two internally
vertex-disjoint paths P1, P2 in G from (u, v) to (w, x). The sum of the two lengths is at
most k, where the length of a path is defined to be the number of edges. By considering
the internal vertices of Pi (edges of M) and deleting unnecessary portions, we have two
edge-disjoint paths P ′1, P ′2 in M where each P ′i connects {u, v} and {w, x}, with length at
most the length of Pi minus one. There is a cycle in M consists only of the edges of P ′1, P ′2
together with (u, v), (w, x). Since |P ′1|+ |P ′2|+ 2 ≤ k, it contradicts that M has girth strictly
greater than k. J

We prove that MIS-k-g is also hard to approximate by a reduction from MIS-d (d = Ω̃(k)),
using a slightly different random matching idea. Given a degree-d graph with possibly small
girth, we replace each vertex by a cloud of B vertices, and replace each edge by a copies of
random matching between the two clouds. While maintaining the soundness guarantee, we
show that there are only a few small cycles, and by deleting a vertex from each of them and
sparsifying the graph we obtain a hard instance for MIS-k-g. Note that g does not affect the
inapproximability factor but only the runtime of the reduction.

I Theorem 11 (Restatement of Theorem 3). For any constants k and g, unless NP ⊆ BPP,
no polynomial time algorithm approximates MIS-k-g within a factor of Ω( k

log7 k
).

Proof. We reduce from MIS-d to MIS-k-g where k = O(d log2 d). Given an instance G0 =
(VG0 , EG0) of MIS-d, we construct G = (VG, EG) and G′ = (VG′ , EG′) by the following
procedure:

VG = VG0 × [B]. As usual, let cloud(v) = {v} × [B].
For each edge (u, v) ∈ EG0 , for a times, add a random matching as follows.

Take a random permutation π : [B]→ [B].
Add an edge ((u, i), (v, π(i)) for all i ∈ [B].

Call the resulting graph G. To get the final graph G′,
For any cycle of length at most g, delete an arbitrary vertex from the cycle. Repeat
until there is no cycle of length at most g.

Note that the step of eliminating the small cycles can be implemented trivially in time
O(ng). Let n = |VG0 |,m = |EG0 |, N = nB = |VG| ≥ |VG′ |,M = m · aB = |EG| ≥ |EG′ |. The
maximum degree of G and G′ is at most ad. By construction, girth of G′ is at least g + 1.

Girth Control. We calculate the expected number of small cycles in G, and argue that
the number of these cycles is much smaller than the total number of vertices, so that |VG|
and |VG′ | are almost the same. Let k′ be the length of a purported cycle. Choose k′ vertices
(v1, l1), . . . , (vk′ , lk′) which satisfy

v1 ∈ VG0 can be any vertex.
For each 1 ≤ i < k′, (vi, vi+1) ∈ EG0 .
l1, . . . , lk

′ ∈ B can be arbitrary labels.
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There are n possible choices for v1, B choices for each li, and d choices for each vi (i > 1).
The number of possibilities to choose such (v1, l1), . . . , (vk′ , lk′) is bounded by ndk′−1Bk

′ .
Without loss of generality, assume that no vertices appear more than once.

For each edge e = (u,w) ∈ G0, consider the intersection of the purported cycle
((v1, l1), ..., (vk′ , lk′)) and the subgraph induced by cloud(u) ∪ cloud(w). It is a bipartite
graph with the maximum degree 2. Suppose there are q purported edges e1, . . . , eq (ordered
arbitrarily) in this bipartite graph. By slightly abusing notation, let ei also denote the event
that ei exists in G. The following claim upper bounds Pr[ei|e1, . . . , ei−1] for each ei.

I Claim 2. Pr[ei|e1, . . . , ei−1] ≤ a
B−i .

Proof. There are a random matchings between cloud(u) and cloud(w), and for each j < i,
there is at least one random matching including ej . We fix one random matching and
calculate the probability that the random matching contains ei, conditioned on the fact that
it already contains some of e1, . . . , ei−1.

If there is ej (j < i) that shares a vertex with ei, ei cannot be covered by the same
random matching with ej . If a random matching covers p of e1, . . . , ei−1 which are disjoint
from ei, the probability that ei is covered by that random matching is 1

B−p , and this is
maximized when p = i− 1.

By a union bound over the a random matchings, Pr[ei|e1, . . . , ei−1] ≤ a
B−i . J

The probability that all of e1, . . . , eq exist is at most

q∏
i=1

a

B − i
≤
(

a

B − q

)q
≤
(

a

B − k′

)q
.

Since edges of G0 are processed independently, the probability of success for one fixed
purported cycle is ( a

B−k′ )
k′ . The expected number of cycles of length k′ is

ndk
′−1Bk

′
·
( a

B − k′
)k′

= ndk
′−1ak

′
(

1 + k′

B − k′

)k′
≤ndk

′−1ak
′
exp
( k′2

B − k′
)
≤ en(ad)k

′

by taking B − k′ ≥ k′2. Summing over k′ = 1, . . . , g, the expected number of cycles of
length up to g, is bounded by eg(ad)gn. Take B ≥ 4d2 · eg(ad)g. Then with probability at
least 3/4, the number of cycles of length at most g is at most Bn

d2 . By taking 1/d2 fraction
of vertices away (one for each short cycle), we have a girth at least g + 1, which implies(

1− 1
d2

)
|VG| ≤ |VG′ | ≤ |VG|.

Hardness of MIS-d states that it is NP-hard to distinguish the case G0 has an independent
set of measure c := Ω( 1

log d ) and the case where the maximum independent set has measure
at most s := O( log3 d

d ).

Completeness. Let I0 be an independent set of G0 of measure c. Then I = I0 × [B] is
also an independent set of G of measure c. Let I ′ = I ∩ VG′ . I ′ is independent in both G
and G′, and the measure of I ′ in G′ is at least the measure of I ′ in G, which is at least
c− 1/d2 = Ω( 1

log d ).
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Soundness. Suppose that every subset of VG0 of measure at least s contains an edge. Say
a graph is (β, α)-dense if we take β fraction of vertices, at least α fraction of edges lie within
the induced subgraph. We also say a bipartite graph is (β, α)-bipartite dense if we take
β fraction of vertices from each side, at least α fraction of edges lie within the induced
subgraph.

I Claim 3. For a = O( log(1/s)
s ) and B = O( logm

s ) the following holds with probability at
least 3/4: For every (u,w) ∈ EG0 , the bipartite graph between cloud(u) and cloud(w) is
(ε, ε2/8)-bipartite dense for all ε ≥ s.

Proof. Fix (u,w), and ε ∈ [s, 1], and X ⊆ cloud(u) and Y ⊆ cloud(w) be such that |X| =
|Y | = εB. The possibilities of choosing X and Y is(

B

εB

)2
≤ exp(O(ε log(1/ε)B))

Without loss of generality, let X = Y = [εB]. In one random matching, let Xi (i ∈ [εB])
be the random variable indicating whether vertex (u, i) ∈ X is matched with a vertex in Y or
not. Pr[X1 = 1] = ε, and Pr[Xi = 1|X1, . . . , Xi−1] ≥ ε/2 for i ∈ [εB/2] and any X1, . . . , Xi−1.
Therefore, the expected number of edges between X and Y is at least ε2B/4. With a random
matchings, the expected number is at least aε2B/4. By Chernoff bound, the probability that
it is less than aε2B/8 is at most exp(aε

2B
32 ). By union bound over all possibilities of choosing

X and Y , the probability that the bipartite graph is not (ε, ε2/8)-bipartite dense is

exp(ε log(1/ε)B) · exp
(
−aε

2B

32

)
≤ 1

4mB

by taking a = O( log(1/s)
s ) and B = O

( logm
s

)
. A union bound over all possible choices of ε

(B possibilities) and m edges of E0 implies the claim. J

I Claim 4. With the parameters a and B above, G is (4s log(1/s),Ω( sd ))-dense.

Proof. Fix a subset S of measure 4s log(1/s). For a vertex v of G0, let µ(v) := |cloud(v)∩S|
B .

Note that Ev[µ(v)] = 4s log(1/s). Partition VG0 into t + 1 buckets B0, . . . , Bt (t :=
dlog2(1/s)e), such that B0 contains v such that µ(v) ≤ s, and for i ≥ 1, Bi contains v
such that µ(v) ∈ (2i−1s, 2is]. Denote

µ(Bi) :=
∑
v∈Bi µ(v)
|VG0 |

.

Clearly µ(B0) ≤ s. Pick i ∈ {1, . . . , t} with the largest µ(Bi). We have µ(Bi) ≥ 2s since
Ev[µ(v)] ≥ 4s log(1/s). Let γ = 2i−1s. All vertices of Bi has µ(v) ∈ [γ, 2γ], so |Bi| ≥ (s/γ)n.

Since G0 has no independent set with more than ns vertices, Turán’s Theorem says that
the subgraph of G0 induced by Bi has at least |Bi|2 ( |Bi|ns − 1) = Ω( s

γ2n) edges. This is at least
Ω( s

dγ2 ) fraction of the total number of edges.
For each of these edges, by Claim 3, at least γ2/8 fraction of the edges from the bipartite

graph connecting the clouds of its two endpoints, lie in the subgraph induced by S (since
γ ≥ s). Overall, we conclude that there are at least Ω( s

dγ2 ) · γ
2

8 = Ω( sd ) fraction of edges
inside the subgraph induced by S. J
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Sparsification. Recall that G′ is obtained from G by deleting at most 1
d2 fraction of vertices

to have girth greater than g. In the completeness case, G′ has an independent set of measure
at least c− 1/d2 = Ω( 1

log d ). In the soundness case, G is (4s log(1/s),Ω( sd ))-dense, so G′ is
(β, α)-dense where β := Ω( log4 d

d ), α := Ω( log3 d
d2 ). Using density of G′, we sparsify G′ again –

keep each edge of G′ by probability kn
|EG′ |

so that the expected total number of edges is kn.
Fix a subset S ⊆ VG′ of measure β. Since there are at least α fraction of edges in the

subgraph induced by S, the expected number of picked edges in this subgraph is at least
αkn. By Chernoff bound, the probability that it is less than αkn

8 is at most exp(−αkn32 ). By
union bound over all sets of measure exactly β (there are at most

(
n
nβ

)
≤ exp(2β log(1/β)n)

of them), and over all possible values of β (there are at most n possible sizes), the desired
property fails with probability at most

n · max
β∈[β0,1]

{
exp(−αkn/32) · exp(2β log(1/β)n)

}
≤ n · e−n

when k = O(β log(1/β)
α ) = O(d log2 d). In the last step we remove all the vertices of degree

more than 10k. Since the expected degree of each vertex is at most 2k, the expected fraction
of deleted vertices is exp(−Ω(k))� β.

Combining all these results, we have a graph with small degree 10k = O(d log2 d) and
girth strictly greater than g, where it is NP-hard to approximate MIS within a factor of
c− 1

d2
β = Ω( d

log5 d
) = Ω( k

log7 k
). Therefore, it is NP-hard to approximate MIS-k-g within a

factor of Ω( k
log7 k

). J
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A Approximation Algorithm for k-Star Transversal

In this section, we show that k-Star Transversal admits an O(log k)-approximation algorithm,
matching the Ω(log k)-hardness obtained via a simple reduction from Minimum Dominating
Set on degree-(k− 1) graphs [16], and proving Theorem 2. Let G = (VG, EG) be the instance
of k-Star Transversal. This problem has a natural interpretation that it is equivalent to
finding the smallest F ⊆ VG such that the subgraph induced by VG \F has maximum degree
at most k − 2. Our algorithm consists of two phases.
1. Iteratively solve 2-rounds of Sherali-Adams linear programming (LP) hierarchy and put

vertices with a large fractional value in the transversal. If this phase terminates with a
partial transversal F , the remaining subgraph induced by VG \ F has small degree (at
most 2k) and the LP solution to the last iteration is highly fractional.

2. We reduce the remaining problem to Constrained Set Multicover and use the standard
greedy algorithm. While the analysis of the greedy algorithm for Constrained Set
Multicover is used as a black-box, low degree of the remaining graph and high fractionality
of the LP solution imply that the analysis is almost tight for our problem as well.

A.1 Iterative Sherali-Adams
Given G, 2-rounds of Sherali-Adams hierarchy of LP relaxation has variables {xv}v∈VG ∪
{xu,v}u,v∈VG . An integral solution y : VG 7→ {0, 1}, where y(v) = 1 indicates that v is picked
in the transvesal, naturally gives a feasible solution to the hierarchy by xv = yv, xu,v = yuyv.
Consider the following relaxation for k-Star Transversal.

minimize
∑
v∈VG

xv

subject to 0 ≤ xu,v, xv ≤ 1 ∀u, v ∈ VG
xu,v ≤ xu ∀u, v ∈ VG
xu + xv − xu,v ≤ 1 ∀u, v ∈ VG∑
v:(u,v)∈EG

(xv − xu,v) ≥ (deg(u)− k + 2)(1− xu) ∀u ∈ VG

The first three constraints are common to any 2-rounds of Sherali-Adams hierarchy, and
ensure that for any u, v ∈ VG, the local distribution on four assignments α : {u, v} 7→ {0, 1}
forms a valid distribution. In other words, the following four numbers are nonnegative and
sum to 1: Pr[α(u) = α(v) = 1] := xu,v, Pr[α(u) = 0, α(v) = 1] := xv − xu,v, Pr[α(u) =
1, α(v) = 0] := xu − xu,v, Pr[α(u) = α(v) = 0] := 1− xu − xv + xu,v.

The last constraint is specific to k-Star Transversal, and it is easy to see that it is a
valid relaxation: Given a feasible integral solution y : VG 7→ {0, 1}, the last constraint is
vacuously satisfied when yu = xu = 1, and if not, it requires that at least deg(u) − k + 2
vertices should be picked in the transversal so that there is no copy of k-Star in the induced
subgraph centered on u. The first phase proceeds as the following.
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Let S ← ∅.
Repeat the following until the size of S does not increase in one iteration.

Solve the above Sherali-Adams hierarchy for VG \ S – it means to solve the above
LP with additional constraints xv = 1 for all v ∈ S, which also implies xu,v = xu for
v ∈ S, u ∈ VG. Denote this LP by SA(S).
S ← {v : xv ≥ 1

α}, where α := 10.

We need to establish three properties from the first phase:
The size of S is close to that of the optimal k-Star Transversal.
Maximum degree of the subgraph induced by VG \ S is small.
The remaining solution has small fractional values – xv < 1

α for all v ∈ VG \ S.

The final property is satisfied by the procedure. The following two lemmas establish the
other two properties.

I Lemma 12. Let Frac be the optimal value of SA(∅). When the above procedure terminates,
|S| ≤ αFrac.

Proof. Assume that the above loop iterated l times, and for i = 0, ..., l, let Si be S after the
ith loop such that S0 = ∅, ..., Sl = S. We use induction from the last iteration. Let Fraci be
the optimal fractional solution to SA(Si) minus |Si| such that Frac = Frac0.

We first establish |Sl| − |Sl−1| ≤ αFracl−1. This is easy to see because, when x is the
optimal fraction solution to SA(Sl−1),

|Sl| − |Sl−1| = |{v /∈ Sl−1 : xv ≥
1
α
}| ≤ αFracl−1 .

For i = l− 2, l− 1, ..., 0, we show that |Sl| − |Si| ≤ αFraci. Let x be the optimal fraction
solution to SA(Si), and x′ be the solution obtained by partially rounding x in the following
way.

x′v = 1 if v ∈ Si. Otherwise, x′v = xv.
x′u,v = x′u (v ∈ Si), x′v (u ∈ Si), or xu,v otherwise.

It is easy to check that it is a feasible solution to SA(Si+1) (intuitively, rounding up only
helps feasibility), so its value is

|Si|+
∑

v/∈Si,xv< 1
α

xv ≥ |Si|+ Fraci+1,

which implies

Fraci =
∑

v/∈Si,xv≥ 1
α

xv +
∑

v/∈Si,xv< 1
α

xv ≥
1
α

(|Si+1| − |Si|) + Fraci+1 .

Finally, we have

|Sl| − |Si|
= (|Sl| − |Si+1|) + (|Si+1| − |Si|)

≤ αFraci+1 +(|Si+1| − |Si|)
≤ αFraci,

where the first inequality follows from the induction hypothesis. This completes the induction.
J
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I Lemma 13. After the termination, every vertex has degree at most 2k in the subgraph
induced by VG \ S.

Proof. We prove that at least one vertex is added to S if the subgraph induced by VG \ S
has a vertex of degree more than 2k. Fix one such iteration, and let S1 and S2 be S before
and after the iteration respectively. Let G′ be the subgraph of G induced by VG \ S1. If the
subgraph induced by VG \ S2 does not have any vertex with degree more than 2k, we are
done. Otherwise, fix one such vertex u ∈ VG \ S2. Note that the degree of u in G′ is also
more than 2k.

We show that at least one neighbor v of u satisfies v /∈ S1 but v ∈ S2. Let x be the
optimal fractional solution to SA(S1) and consider the following constraint for u.∑

v:(u,v)∈EG

(xv − xu,v) ≥ (deg(u)− k + 2)(1− xu).

Let Nbr(u) and Nbr′(u) be the set of neighbors of u in G and G′ respectively, and deg′(u) =
|Nbr′(u)|. Note that Nbr′(u) = Nbr(u) \ S1, and for v ∈ Nbr(u) ∩ S1, xv = 1 and xu,v = xu.
Therefore, the above constraint is equivalent to∑

v:Nbr(u)∩S1

(1− xu) +
∑

v:Nbr′(u)

(xv − xu,v) ≥ (deg(u)− k + 2)(1− xu)

⇔
∑

v:Nbr′(u)

(xv − xu,v) ≥ (deg′(u)− k + 2)(1− xu).

The fact that u /∈ S2 implies that xu < 1
α , which implies∑

v∈Nbr′(u)

xv

≥
∑

v∈Nbr′(u)

(xv − xu,v) ≥ (1− 1
α

)(deg′(u)− k) = (1− 1
α

) deg′(u)(1− k

deg′(u)
).

Therefore, there is one v ∈ Nbr′(u) with xv ≥ (1− 1
α )(1− k

deg′(u) ) ≥ 9
10 ·

1
2 >

1
α . v satisfies

v /∈ S1 but v ∈ S2. J

A.2 Constrained Set Multicover
The first phase returns a set S whose size is at most α times the optimal solution and the
subgraph induced by VG \ S has maximum degree at most 2k. As above, let G′ be the
subgraph induced by VG \ S, Nbr(u),Nbr′(u) be the neighbors of u in G and G′ respectively,
and deg(u) = |Nbr(u)|, deg′(u) = |Nbr′(u)|. The remaining task is to find a small subset
F ⊆ VG \ S such that the subgraph of G′ (and G) induced by VG \ (S ∪ F ) has no vertex of
degree at least k − 1. We reduce the remaining problem to the Constrained Set Multicover
problem defined below.

I Definition 14. Given an set system U = {e1, ..., en}, a collection of subsets C =
{C1, ..., Cm}, and a positive integer re for each e ∈ U , the Constrained Set Multicover
problem asks to find the smallest subcollection (each set must be used at most once) such
that each element e is covered by at least re times.

Probably the most natural greedy algorithm does the following:
Pick a set C with the largest cardinality (ties broken arbitrarily).
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Set re ← re − 1 for e ∈ C. If re = 0, remove it from U . For each C ∈ C, let C ← C ∩ U .
Repeat while U is nonempty.

Constrained Set Cover has the following standard LP relaxation, and Rajagopalan and
Vazirani [46] showed that the greedy algorithm gives an integral solution whose value is at
most Hd (i.e. the dth harmonic number) times the optimal solution to the LP, where d is
the maximum set size.

minimize
∑
C∈C

zC

subject to
∑
C:e∈C

zC ≥ re e ∈ U

0 ≤ zC ≤ 1 C ∈ C

Our remaining problem, k-Star Transversal on G′, can be thought as an instance of
Constrained Set Cover in the following way: U := {u ∈ VG \ S : deg′(u) ≥ k − 1} with
ru := deg′(u) − k + 2, and for each v ∈ VG \ S, add Nbr′(v) ∩ U to C. Intuitively, this
formulation requires at least ru neighbors be picked in the transversal whether u is picked or
not. This is not a valid reduction because the optimal solution of the above formulation can
be much more than the optimal solution of our problem. However, at least one direction
is clear (any feasible solution to the above formulation is feasible for our problem), and it
suffices to show that the above LP admits a solution whose value is close to the optimum of
our problem. The LP relaxation of the above special case of Constrained Set Cover is the
following:

minimize
∑

v∈VG\S

zv

subject to
∑

v:v∈Nbr′(u)

zv ≥ deg′(u)− k + 2 u ∈ U

0 ≤ zv ≤ 1 v ∈ VG \ S

Consider the last iteration of the first phase where we solved SA(S). Let x be the optimal
solution to SA(S) and Frac :=

∑
v xv−|S|. Note that xv <

1
α when v /∈ S. Define {yv}v∈V \S

such that yv := 2xv.

I Lemma 15. {yv} is a feasible solution to the above LP for Constrained Set Cover.

Proof. By construction 0 ≤ yv < 2
α , so it suffices to check for each u ∈ U ,∑

v:v∈Nbr′(u)

yv ≥ deg′(u)− k + 2.

Fix u ∈ U . Recall that Sherali-Adams constraints on x imply that∑
v:Nbr′(u)

(xv − xu,v) ≥ (deg′(u)− k + 2)(1− xu)

⇒
∑

v:Nbr′(u)

xv ≥ (deg′(u)− k + 2)(1− xu)

⇒
∑

v:Nbr′(u)

2xv ≥ deg′(u)− k + 2,

where the last line follows from the fact that 1− 1
α >

1
2 . J
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Therefore, Constrained Set Cover LP admits a feasible solution of value 2 Frac, and the
greedy algorithm gives a k-Star Transversal F with |F | ≤ 2 · Frac ·H2k. Since Frac is at most
the size of the optimal k-Star Transversal for G′ (and clearly G), |S ∪ F | is at most O(log k)
times the size of the smallest k-Star Transversal of G.
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