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Abstract
One of the most common assumptions in many machine learning and data analysis tasks is that
the given data points are realizations of independent and identically distributed (IID) random
variables. However, this assumption is often violated, e.g., when training and test data come
from different distributions (dataset bias or domain shift) or the data points are highly inter-
dependent (e.g., when the data exhibits temporal or spatial correlations). Both scenarios are
typical situations in visual recognition and computational biology. For instance, computer vision
and image analysis models can be learned from object-centric internet resources, but are often
rather applied to real-world scenes. In computational biology and personalized medicine, train-
ing data may be recorded at a particular hospital, but the model is applied to make predictions
on data from different hospitals, where patients exhibit a different population structure. In the
seminar report, we discuss, present, and explore new machine learning methods that can deal
with non-i.i.d. data as well as new application scenarios.
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The seminar broadly dealt with machine learning, the area of computer science that concerns
developing computational methods using data to make accurate predictions. The classical
machine learning theory is built upon the assumption of independent and identically distrib-
uted random variables. In practical applications, however, this assumption is often violated,
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for instance, when training and test data come from different distributions (dataset bias or
domain shift) or when the data exhibits temporal or spatial correlations. In general, there
are three major reasons why the assumption of independent and identically distributed data
can be violated:
1. The draw of a data point influences the outcome of a subsequent draw (inter-dependencies).
2. The distribution changes at some point (non-stationarity).
3. The data is not generated by a distribution at all (adversarial).
The seminar focused on the scenarios (a) and (b). This general research direction comprises
several subfields of machine learning: transfer and multi-task learning, learning with inter-
dependent data, and two application fields, that is, visual recognition and computational
biology. Both application areas are not only two of the main application areas for machine
learning algorithms in general, but their recognition tasks are often characterized by multiple
related learning problems that require transfer and multitask learning approaches. For ex-
ample, in visual recognition tasks, object categories are often visually related or hierarchically
organized, and tasks in computational biology are often characterized by different but related
organisms and phenotypes. The problems and techniques discussed during the seminar are
also important for other more general application areas, such as scientific data analysis or
data-oriented decision making.

Results of the Seminar and Topics Discussed
In the following, the important research fields related to the seminar topic are introduced
and we also give a short list of corresponding research questions discussed at the seminar. In
contrast to other workshops and seminars often associated with larger conferences, the aim
of the Dagstuhl seminar was to reflect on open issues in each of the individual research areas.

Foundations of Transfer Learning

Transfer Learning (TL) [2, 18] refers to the problem of retaining and applying the knowledge
available for one or more source tasks, in order to efficiently develop an hypothesis for a new
target task. Each task may contain common (domain adaptation [25, 10]) or different label
sets (across category transfer). Most of the effort has been devoted to binary classification
[23], while interesting practical transfer problems are often intrinsically multi-class and the
number of classes can increase in time [17, 22]. Accordingly the following research questions
arise:

How to formalize knowledge transfer across multi-class tasks and provide theoretical
guarantees on this setting?
Moreover, can inter-class transfer and incremental class learning be properly integrated?
Can learning guarantees be provided when the adaptation relies only on pre-trained
source hypotheses without explicit access to the source samples, as it is often the case in
real world scenarios?

Foundations of Multi-task Learning

Learning over multiple related tasks can outperform learning each task in isolation. This is
the principal assertion of Multi-task learning (MTL) [3, 7, 1] and implies that the learning
process may benefit from common information shared across the tasks. In the simplest case,
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the transfer process is symmetric and all the tasks are considered as equally related and
appropriate for joint training. Open questions in this area are:

What happens when the condition of equally related tasks does not hold, e.g., how to
avoid negative transfer?
Moreover, can non-parametric statistics [27] be adequately integrated into the learning
process to estimate and compare the distributions underlying the multiple tasks in order
to learn the task similarity measure?
Can recent semi-automatic methods, like deep learning [9] or multiple kernel learning
[13, 12, 11, 4], help to get a step closer towards the complete automatization of multi-task
learning, e.g., by learning the task similarity measure?
How can insights and views of researcher be shared across domains (e.g., regarding the
notation of source task selection in reinforcement learning)?

Foundations of Learning with Inter-dependent Data

Dependent data arises whenever there are inherent correlations in between observations.
For example, this is to be expected for time series, where we would intuitively expect that
instances with similar time stamps have stronger dependencies than ones that are far away
in time. Another domain where dependent data occurs are spatially-indexed sequences, such
as windows taken from DNA sequences. Most of the body of work on machine learning
theory is on learning with i.i.d. data. Even the few analyses (e.g., [28]) allowing for “slight”
violations of the assumption (mixing processes) analyze the same algorithms as in the i.i.d.
case, while it should be clear that also novel algorithms are needed to most effectively adapt
to rich dependency structures in the data. The following aspects have been discussed during
the seminar:

Can we develop algorithms that exploit rich dependency structures in the data?
Do such algorithms enjoy theoretical generalization guarantees?
Can such algorithms be phrased in a general framework in order to jointly analyze them?
How can we appropriately measure the degree of inter-dependencies (theoretically) such
that it can be also empirically estimated from data (overcoming the so-called mixing
assumption)?
Can theoretical bounds be obtained for more practical dependency measures than mixing?

Visual Transfer and Adaptation

Visual recognition tasks are one of the main applications for knowledge transfer and adaptation
techniques. For instance, transfer learning can put to good use in the presence of visual
categories with only a few number of labels, while across category transfer can help to
exploit training data available for related categories to improve the recognition performance
[14, 21, 20, 22]. Multi-task learning can be applied for learning multiple object detectors [30]
or binary image classifiers [19] jointly, which is beneficial because visual features can be shared
among categories and tasks. Another important topic is domain adaptation, which is very
effective in object recognition applications [24], where the image distribution used for training
(source domain) is different from the image distribution encountered during testing (target
domain). This distribution shift is typically caused by a data collection bias. Sophisticated
methods are needed as in general the visual domains can differ in a combination of (often
unknown) factors including scene, object location and pose, viewing angle, resolution, motion
blur, scene illumination, background clutter, camera characteristics, etc. Recent studies
have demonstrated a significant degradation in the performance of state-of-the-art image
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classifiers due to domain shift from pose changes [8], a shift from commercial to consumer
video [5, 6, 10], and, more generally, training datasets biased by the way in which they were
collected [29].

The following open questions have been discussed during the seminar:
Which types of representations are suitable for transfer learning?
How can we extend and update representations to avoid negative transfer?
Are current adaptation and transfer learning methods efficient enough to allow for
large-scale continuous visual learning and recognition?
How can we exploit huge amounts of unlabeled data with certain dependencies to minimize
supervision during learning and adaptation?
Are deep learning methods already compensating for common domain changes in visual
recognition applications?

Application Scenarios in Computational Biology

Non-i.i.d. data arises in biology, e.g., when transferring information from one organism to
another or when learning from multiple organisms simultaneously [31]. A scenario where
dependent data occurs is when extracting local features from genomic DNA by running a
sliding window over a DNA sequence, which is a common approach to detect transcription
start sites (TSS) [26]. Windows close by on the DNA strand – or even overlapping –
show stronger dependencies than those far away. Another application scenario comes from
statistical genetics. Many efforts in recent years focused on models to correct for population
structure [16], which can arise from inter dependencies in the population under investigation.
Correcting for such rich dependency structures is also a challenge in prediction problems in
machine learning [15]. The seminar brought ideas together from the different fields of machine
learning, statistical genetics, Bayesian probabilistic modeling, and frequentist statistics. In
particular, we discussed the following open research questions:

How can we empirically measure the degree of inter-dependencies, e.g., from a kinship
matrix of patients?
Do theoretical guarantees of algorithms (see above) break down for realistic values of
“the degree of dependency”?
What are effective prediction and learning algorithms correcting for population structure
and inter-dependencies in general and can they be phrased in a general framework?
What are adequate benchmarks to evaluate learning with non-i.i.d. data?
How can information be transferred between organisms, taking into account the varying
noise level and experimental conditions from which data are derived?
How can non-stationarity be exploited in biological applications?
What are promising applications of non-i.i.d. learning in the domains of bioinformatics
and personalized medicine?

Conclusion

The idea of the seminar bringing together people from theory, algorithms, computer vision,
and computational biology, was very successful, since many discussions and joint research
questions came up that have not been anticipated in the beginning. These aspects were not
completely limited to non-i.i.d. learning and also touched ubiquitous topics like learning with
deeper architectures. It was the agreement of all participants that the seminar should be the
beginning of an ongoing series of longer Dagstuhl seminars focused on non-i.i.d. learning.
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3 Overview of Talks

3.1 Transfer Learning using Marginal Distribution Information
Gilles Blanchard (University of Potsdam, DE)

License Creative Commons BY 3.0 Unported license
© Gilles Blanchard

Consider a setting where a large number N of labeled training samples Si := (Xij , Yij)1≤j≤ni

(i = 1, . . . , N) on X×Y are available. The primary goal is not to find an adequate classification
(or regression) function for each of these samples, but rather to find an appropriate prediction
function f : X × Y for a new, unlabeled test sample ST := (XT

j )1≤j≤nT . Such a situation
occurs, for instance, for the automatic gating problem for flow cytometry data, a high-
throughput measurement platform that is an important clinical tool for the diagnosis of many
blood-related pathologies. The index i indicates a particular patient; for each patient a blood
sample is taken, and measured by the device. This blood sample contains ni invidual cells –
potentially several dozens of thousands – each of which is separately analyzed by the device,
giving rise to a feature vector Xij of attributes related to physical and chemical properties
of the individual cell. The label Yij , input manually by an expert, gives the type of each
cell (blood cell, white cell, etc.). The goal is to make this last labelling (or “gating”) step
automatic, using the available labeled data. Note that in this case, for a new test patient
zero label information is available, only the feature vectors of the cells present in the blood
sample.

This problem belongs to the vast landscape of transfer learning. A classical approach
to the problem (the covariate shift setting) assumes that the marginal distribution P

(i)
X

differs between samples, but that the conditional PY |X stays the same. This is a very strong
assumption that we want to avoid. We propose the following alternative Ansatz: there is a
relationship common to all samples from the marginal P (i)

X to the conditional P (i)
Y |X . Thus,

we posit that there is some pattern making it possible to learn a mapping from marginal
distributions to labels. We call this setting marginal predictor learning. In other words, we
want to learn a mapping

f : PX ×X → R ,

(where PX denotes the set of marginal distributions on X ) which, for a new unlabeled sample
with corresponding empirical marginal distribution P̂TX , will predict the label f(P̂TX , x) for a
specific feature vector x belonging to that sample.

We show that this setting is amenable to a reproducing kernel learning method. The gist
of our approach is to combine recent developments about kernels on distributions (Christmann
and Steinwart 2010, Sriperumbudur et al. 2010) with ideas of kernel multitask learning
(Evgeniou and Pontil 2005). In a nutshell, the abstract “kernel task similarity matrix”
present in kernel multitask learning is replaced by a task similarity matrix determined by
the similarity between empirical marginal distributions, as measured by a distribution kernel.
We show in particular that this approach is universally consistent under weak assumptions,
is practically applicable and can outperform other approaches.

References
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3.2 Non-i.i.d. Deep Learning
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LSDA: Detection as Domain Adaptation

One of the fundamental challenges in training object detection systems is the need to collect
a large of amount of images with bounding box annotations. The introduction of detection
challenge datasets, such as PASCAL VOC [9], have propelled progress by providing the
research community a dataset with enough fully annotated images to train competitive
models although only for 20 classes. Even though the more recent ImageNet detection
challenge dataset [3] has extended the set of annotated images, it only contains data for
200 categories. As we look forward towards the goal of scaling our systems to human-level
category detection, it becomes impractical to collect a large quantity of bounding box labels
for tens or hundreds of thousands of categories.

We ask, is there something generic in the transformation from classification to detection
that can be learned on a subset of categories and then transferred to other classifiers? We
cast this task as a domain adaptation problem, considering the data used to train classifiers
(images with category labels) as our source domain, and the data used to train detectors
(images with bounding boxes and category labels) as our target domain. We then seek to
find a general transformation from the source domain to the target domain, that can be
applied to any future classifier to adapt it into a detector.
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Figure 1 The core idea is that we can learn detectors (weights) from labeled classification data
(left), for a wide range of classes. For some of these classes (top) we also have detection labels
(right), and can learn detectors. But what can we do about the classes with classification data but
no detection data (bottom)? Can we learn something from the paired relationships for the classes
for which we have both classifiers and detectors, and transfer that to the classifier at the bottom to
make it into a detector?

We have already released a 7.6K visually grounded lexicon comprised of detectors adapted
from ImageNet classifiers, available at https://github.com/jhoffman/lsda. Our model is based
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on a technique we call Large Scale Detection through Adaptation (LSDA), an algorithm
that learns to transform an image classifier into an object detector [15]. To accomplish this
goal, we use supervised convolutional neural networks (CNNs), which have recently been
shown to perform well both for image classification [18] and object detection [10, 21]. We
have recently extended this model to also solve a latent variable task to identify inlier visual
regions, further improving learning from images of complex scenes [16].

In the future, we will extend this model beyond its present formulation based on WordNet
to include similar concepts which can be learned from static imagery, including adjectives, and
to incorporate motion representations for learning verbs. E.g., we hope to provide groundings
similar to that in the Columbia “adjective noun pairs” dataset of [6], but integrated into the
LSDA detector framework.

CNN

CNN

CNN

CNN

CNN

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

W1

W2

W3

W4

WT

Visual Features Sequence Learning PredictionsVisual Input

Figure 2 We introduced Long-term Recurrent Convolutional Networks (LRCNs), a class of
architectures leveraging the strengths of rapid progress in CNNs for visual recognition problem, and
the growing desire to apply such models to time-varying inputs and outputs. This enables learning
from images and videos with only weak labels in the form of tags or captions. LRCN processes the
(possibly) variable-length visual input (left) with a CNN (middle-left), whose outputs are fed into a
stack of recurrent sequence models (LSTMs, middle-right), which finally produce a variable-length
prediction (right). Please see goo.gl/cZRM4U for example output sentences.

LCRN: Weak learning from images, videos, and captions

Image data collection for individual concepts may have reached a plateau in productivity,
and we predict stronger models will result from models which leverage images and text in
context, with only indirect labeling. Learning models from images or videos and associated
captions or descriptive text is an especially appealing method for grounding elementary
units in perceptual experience, as the system learns how to align image and textual content
without explicit supervision.

Recognition and description of images and videos is a fundamental challenge of computer
vision. Dramatic progress has been achieved by supervised convolutional models on image
recognition tasks, and a number of extensions to process video have been recently proposed.
Ideally, a video model should allow processing of variable length input sequences, and also
provide for variable length outputs, including generation of full-length sentence descriptions
that go beyond conventional one-versus-all prediction tasks. We have produced long-term
recurrent convolutional networks (LRCNs), a novel architecture for visual recognition and

goo.gl/cZRM4U
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description which combines convolutional layers and long-range temporal recursion and is
end-to-end trainable (see Figure 2).

We have instantiated our architecture for specific video activity recognition, image caption
generation, and video description tasks. We have shown that long-term recurrent convolutional
models are generally applicable to visual time-series modeling and that these models improve
generation of descriptions from intermediate visual representations derived from conventional
visual models. We instantiate our proposed architecture in three experimental settings. First,
we show that directly connecting a visual convolutional model to deep LSTM networks, we
are able to train video recognition models that capture complex temporal state dependencies.
While existing labeled video activity datasets may not have actions or activities with extremely
complex time dynamics, we nonetheless see improvements on the order of 4% on conventional
benchmarks. and importantly enable direct end-to-end trainable image-to-sentence mappings.
Strong results for machine translation tasks have recently been reported [22, 7]; such models
are encoder/decoder pairs based on LSTM networks. Our multimodal architecture consists
of a visual CNN to encode a deep state vector and an LSTM to decode the vector into an
natural language string. This model can be trained end-to-end on large-scale image and text
datasets, and even with modest training provides competitive generation results compared
to existing methods.

To date, there has only been limited investigation of what has been learned in these
models, and little systematic exploration of how such knowledge can be extracted and
leveraged in related tasks. Anecdotal results suggest that the LCRN model does learn how to
localize specific noun phrases and can learn to ground complex and/or idiosyncratic terms.

We propose to combine the variable input weak learning model with our large scale
detection through adaptation approach to create models that not only produce captions and
descriptions for novel videos/images, but are also able to localize the salient nouns and verbs.
This will enable interactive applications and provide an intuitive medium through which to
communicate with users.

Towards Deep Confusion

The methods proposed above presume a (possibly weakly labeled) supervised learning
regime, with test and training data coming from the same domain. It is a widely recognized
phenomenon that models trained in one environment, even with large data sources, suffer
from degraded performance when deployed in a new or specialized environment. For example,
a model trained on web search images may not perform very well for recognition on a robot
mounted camera in a warehouse or office environment. In order for our large scale models to
be widely applicable, we will develop algorithms that quickly adapt to new scenarios without
the expensive overhead of collecting new labeled data and retraining a model from scratch.

Dataset bias is a well known and theoretically understood problem with traditional
supervised approaches to image recognition [23]. A number of recent theoretical and empirical
results have shown that supervised methods’ test error increases in proportion to the
difference between the test and training input distribution [2, 4, 20, 23]. In the last few
years, several methods for visual domain adaptation have been suggested to overcome this
issue [8, 24, 1, 20, 19, 17, 12, 11, 13, 14], but were limited to shallow models. The traditional
approach to adapting deep models has been fine-tuning; see [10] for a recent example.

We propose a new CNN architecture, outlined in Figure 3, which uses an adaptation
layer along with a domain confusion loss based on maximum mean discrepancy (MMD) [5]
to automatically learn a representation jointly trained to optimize for classification and
domain invariance. Our domain confusion metric can be used both to select the dimension
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Figure 3 Our architecture optimizes a deep CNN for both classification performance and domain
invariance. The model can be trained for supervised adaptation, when there is a small number
of target labels available, or unsupervised adaptation, when no target labels are available. We
introduce domain invariance through domain confusion guided selection of the depth and width of
the adaptation layer, as well as an additional loss term during fine-tuning that directly minimizes
the distance between source and target representations.

of the adaptation layers, choose an effective placement for a new adaptation layer within
a pre-trained CNN architecture, and fine-tune the representation. Our architecture can be
used to solve both supervised adaptation, when a small amount of target labeled data is
available, and unsupervised adaptation, when no labeled target training data is available.
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3.3 Computer Vision to Support Decision Making in Ecology
Joachim Denzler (Friedrich Schiller University Jena, DE)
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Ecology is the study of life and its interaction with the physical environment. Scientists are
interested in quantifying relations between atmospheric, oceanic, and terrestrial processes.
For a long time, analysis has been done locally both with respect to the region of investigation
as well as with respect to the field in which phenomena are studied. Due to the possibilities
to record data all over the world, the increase in resolution, the quality of recordings from
satellites, distributions of data sets over the world wide web, and computing in the cloud
new opportunities arise. Such heterogenous and globally collected data may make it possible
to answer questions that are of fundamental importance for the future of our planet.
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In this research domain computer vision can play an important role in the future. Today,
most work by researchers in ecology is done by analyzing data manually. For example, the
number of butterflies in a certain region is determined by visual inspection of traps installed
in the environment.

Over the last years, computer vision research already tackled problems that are of high
relevance for ecology as well. One example is the automatic analysis of remote sensing
data. A second example is the identification of animals from images and videos. Birds,
dogs, mushrooms, flowers build databases for object recognition benchmarks, since those
objects not just offer very challenging problems but also call for new methods, that lead to
the area of fine-grained recognition. Works directly related to ecology are for example, the
classification of insects [1], or computer vision methods for coral reef assessment [2].

One hypothesis of our research is that computer vision methods can only be accepted
and successful in ecology, if we are able to exploit all knowledge (labeled data from similar
domains, common feature representations, etc.) already available, to incrementally improve
performance, and to keep the human in the loop, for example, to check of correct automatic
decision. This allows to build automatic systems with minimal user efforts – a preliminary, if
researchers from other disciplines shall accept modern techniques from computer vision for
their research. Domain adaptation and transfer learning will play one key role to success.

When working together with people from ecology and biodiversity research, specific
problems arise that must be solved from the computer vision and machine learning perspective:
1. can we configure initial classifiers for ecology applications using already existing data

bases or images from the internet?
2. can we adapt existing classifiers using a minimal set of training data from a specific

application scenario, to reduce the effort by researchers from ecology?
3. can the process of domain adaptation be supported by the human in the loop, for example,

to embed it into a life-long learning scenario?
4. can we exploit data from additional modalities besides visual data to support transfer

learning in the visual domain?
5. are there common principles in transfer learning that can also be applied to analyse

dynamic processes, for example, the interactions between animals – with special focus on
behaviour changing over time

6. can we benefit from the huge amount of data that will be collected in the future, and are
existing methods from machine learning already capable to deal with streams of input
data for model update

The Computer Vision Group Jena aims at life-long learning scenarios, including large
scale visual learning and recognition [3], active learning [4, 5], novelty detection [6, 7, 8],
incremental learning [9], and fine-grained recognition [10, 11]. For dynamic scene analysis,
computer vision in sensor networks has been one goal during the past years as well, with
the focus on supervised and unsupervised activity recognition [12, 13]. Applications so far
came from biology (unsupervised mytosis detection [14]) and medicine (classification of facial
paralysis [15]). In the later case we investigated domain adaptation for active appearnance
models [16].

The Computer Vision Group, headed by Joachim Denzler, consists of two senior research-
ers, Erik Rodner and Wolfgang Ortmann, and currently 12 PhD students. Joachim is also
faculty member of the Abbe-School of Photonics and the International Max-Planck-Research
School for Global Biochemical Cycles. He is co-founder of the Michael Stifel Center for
Data-Driven and Simulation Science Jena.



Trevor Darrell, Marius Kloft, Massimiliano Pontil, Gunnar Rätsch, and Erik Rodner 33

References
1 N. Larios, B. Soran: Haar random forest features and svm spatial matching kernel for

stonefly species identification. In: International Conference on Pattern Recognition. (2010)
2 Beijbom, O., Edmunds, P.J., Kline, D.I., Mitchell, B.G., Kriegman, D.: Automated an-

notation of coral reef survey images. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Providence, Rhode Island (2012)

3 Fröhlich, B., Rodner, E., Kemmler, M., Denzler, J.: Large-scale gaussian process multi-
class classification for semantic segmentation and facade recognition. Machine Vision and
Applications 24(5) (2013) 1043–1053

4 Käding, C., Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Active learning and
discovery of object categories in the presence of unnameable instances. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). (2015)

5 Freytag, A., Rodner, E., Denzler, J.: Selecting influential examples: Active learning with
expected model output changes. In: European Conference on Computer Vision (ECCV).
Volume 8692. (2014) 562–577

6 Bodesheim, P., Rodner, E., Freytag, A., Denzler, J.: Divergence-based one-class classific-
ation using gaussian processes. In: British Machine Vision Conference (BMVC). (2012)
50.1–50.11

7 Bodesheim, P., Freytag, A., Rodner, E., Kemmler, M., Denzler, J.: Kernel null space
methods for novelty detection. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2013)

8 Bodesheim, P., Freytag, A., Rodner, E., Denzler, J.: Local novelty detection in multi-class
recognition problems. In: IEEE Winter Conference on Applications of Computer Vision
(WACV). (2015) 813–820

9 Lütz, A., Rodner, E., Denzler, J.: I want to know more: Efficient multi-class incremental
learning using gaussian processes. Pattern Recognition and Image Analysis 23(3) (2013)
402–407

10 Simon, M., Rodner, E., Denzler, J.: Fine-grained classification of identity document types
with only one example. In: Machine Vision Applications (MVA). (2015)

11 Göring, C., Rodner, E., Freytag, A., Denzler, J.: Nonparametric part transfer for fine-
grained recognition. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2014) 2489–2496

12 Krishna, M.V., Denzler, J.: A combination of generative and discriminative models for fast
unsupervised activity recognition from traffic scene videos. In: IEEE Winter Conference
on Applications of Computer Vision (WACV). (2014) 640–645

13 Körner, M., Denzler, J.: Temporal self-similarity for appearance-based action recognition
in multi-view setups. In: Computer Analysis of Images and Patterns. Volume 8047. (2013)
163–171

14 Krishna, M.V., Denzler, J.: A hierarchical bayesian approach for unsupervised cell pheno-
type clustering. In: German Conference on Pattern Recognition (GCPR). (2014) 69- -80

15 Haase, D., Kemmler, M., Guntinas-Lichius, O., Denzler, J.: Efficient measuring of facial
action unit activation intensities using active appearance models. In: IAPR International
Conference on Machine Vision Applications (MVA). (2013) 141–144

16 Haase, D., Rodner, E., Denzler, J.: Instance-weighted transfer learning of active appearance
models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2014)
1426–1433

15152



34 15152 – Machine Learning with Interdependent and Non-identically Distributed Data

3.4 Reproducing Kernel Hilbert Space Embeddings in Computational
Biology

Philipp Drewe (Max-Delbrück-Centrum, DE)
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A fundamental problem in computational biology is identifying genes in a cell that are
processed differently upon perturbation of the cell. However, this is challenging as the
processing of the genes cannot be directly measured, but has to be inferred from a set of
incomplete observations (reads) of the genes. These reads are high-dimensional, structured
and typically non-iid distributed. Therefore, classical statistical test, such as the Kolmogorov-
Smirnov test, cannot be applied in this setting. In this work, we show that Reproducing
Kernel Hilbert Space (RKHS) embeddings allow a suitable representation of read-data.
Furthermore, we present RKHS-embedding-based approaches to test for homogeneity of two
sets of observations, in order to accurately identify genes whose processing has changed.

3.5 Bridging the Gap Between Synthetic and Real Data
Mario Fritz (MPI für Informatik – Saarbrücken, DE)
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There is a long tradition of using generative models in combination with discriminative
classifiers [5, 6, 7]. Equally the recently successful deep learning technique [3] use jittering
techniques [1, 2] that imply sampling from an underlying distribution. Although in both
cases the the model is postulated and all parameters are in our control, we rarely achieve an
accurate representation of the true underlying distribution. Yet, these techniques have shown
improved performance as learning is guided by prior knowledge encoded in such generative
models.

Learning and Prediction from Rendered/Synthesized Data

Many applications greatly benefit by means of synthesizing additional training data. For
visual recognition this often involves a rendering process for creating new images. The
employed model represents prior knowledge about the target domain. In this section, several
examples are listed where we have directly used the rendered data – assuming that the
domain mismatch between real and virtual examples is negligible.

Detection by Rendering. In early work, we have captured a light-field of an object and
rendered new views of the object on demand in order to evaluate the posterior in a particle
filter tracking framework [8].

New View Synthesis. Human generalize easily from a single view of an object to novel
view-points. Today’s computer vision algorithms are mostly learning and example based and
therefore have to be shown variations across style and viewpoints in order to succeed. We
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have presented an approach that uses a 3D model to guide novel view synthesis, that is able
to fill in disocculsion areas truthfully [9]. The object models trained on such augmented data
show a greatly improved view point generalization.

Differentiable Vision Pipeline. Most recently, we have established a fully differentiable
vision pipeline [10] that builds on top of an approximately differentiable renderer [4] and
a differentiated HOG image representation. This allows us to estimate object poses by
exploiting the prescribed image synthesis procedure in the gradient computation.

Adaptation to Rendered/Synthesized Data

Although significant progress has been achieved by solely relying on realistic rendering and
synthesis, quite often the domain shift between the virtual and the real world introduces a
distribution mismatch that should be treated separately.

Visual Domain Adaptation via Metric Learning. We have proposed to reduce the effects
of domain shifts by a metric learning formulation [11]. Hereby we have improved recognition
across different data sources such a webcam, dslr or data from the web.

Recognition from Virtual Examples. We have employed the concept of metric learning for
domain adaptation to the problem of visual material recognition [12]. The approach helps to
bridge the gap between rendered and real data.

Prediction under changing prior distribution. Most recently, we have have shown how to
perform gaze estimation in the wild [13]. Considering the change in the prior distribution of
head pose and eye fixation distribution has been critical when training across datasets.

Unsupervised Adaptation

Future challenges include scenarios where no training data for adaptation is available. Less
work has been performed in this direction. We have proposed to adapt to new conditions in a
road segmentation task by assuming a stationary, structured prior over the label space, which
allows us to successfully adapt a semantic labeler to unseen weather conditions [14]. Beyond
the traditional recognition scenarios, we have also attempted to bring the required adaptivity
to learning settings. E.g. we have adapted active learning strategies via reinforcement
learning to different training distributions [15]. We hypothesize that non-parametric learning
techniques for visual recognition and grouping [16] can be well suited to transfer structural
relations across domains, while being less affected by changes in individual appearances.

References
1 P. Simard, B. Victorri, Y. LeCun, J. Denker. Tangent prop-a formalism for specifying

selected invariances in an adaptive network. In Advances in neural information processing
systems (NIPS), 1992

2 D. Decoste, B. Schölkopf. Training invariant support vector machines. In Journal of
Machine Learning, 2002

3 A. Krizhevsky, I. Sutskever, G. Hinton. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances in Neural Information Processing Systems (NIPS), 2012.

4 M. Loper, M. Black. Opendr: An approximate differentiable renderer. In European Con-
ference on Computer Vision (ECCV), 2014

5 T. Jaakkola, D. Haussler. Exploiting generative models in discriminative classifiers. In
Advances in neural information processing systems (NIPS), 1999

15152



36 15152 – Machine Learning with Interdependent and Non-identically Distributed Data

6 M. Fritz, B. Leibe, B. Caputo, B. Schiele. Integrating representative and discriminant
models for object category detection. In IEEE International Conference on Computer
Vision (ICCV), 2005

7 A. Holub, M. Welling, P. Perona. Combining generative models and fisher kernels for object
recognition. In IEEE International Conference on Computer Vision (CVPR), 2005

8 M. Zobel, M. Fritz, and I. Scholz. Object tracking and pose estimation using light-field
object models. In Vision, Modeling, and Visualization Conference (VMV), 2002.

9 K. Rematas, T. Ritschel, M. Fritz, and T. Tuytelaars. Image-based synthesis and re-
synthesis of viewpoints guided by 3d models. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2014.

10 W.-C. Chiu and M. Fritz. See the difference: Direct pre-image reconstruction and pose
estimation by differentiating hog. arXiv:1505.00663 [cs.CV], 2015.

11 K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new
domains. In European Conference on Computer Vision (ECCV), 2010.

12 W. Li and M. Fritz. Recognizing materials from virtual examples. In European Conference
on Computer Vision (ECCV), 2012.

13 X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. Appearance-based gaze estimation in the
wild. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

14 E. Levinkov and M. Fritz. Sequential bayesian model update under structured scene prior
for semantic road scenes labeling. In IEEE International Conference on Computer Vision
(ICCV), 2013.

15 S. Ebert, M. Fritz, B. Schiele. Ralf: A reinforced active learning formulation for object class
recognition In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

16 W.-C. Chiu, M. Fritz. Multi-class video co-segmentation with a generative multi-video
model. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013

3.6 On the Need of Theory and Algorithms Correcting for Confouding
Factors

Marius Kloft (HU Berlin, DE)
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A classic assumption in machine learning states that the data is independently realized from
an unknown distribution. This assumptions greatly simplifies theory [1] and algorithms [2].
However, it is common in several applications that the data exhibit dependencies and inherent
correlations between observations. Clearly, this occurs especially for time series, for instance,
in network security (e.g., HTTP requests) and computer vision (video streams). Under
the assumption of time-structured dependencies, several algorithms and theory have been
proposed [3]. But few theory and algorithms have been developed for complexer dependencies,
in particular for confounding ones.

For instance in statistical genetics, it is one of the central challenges to detect – among
ten thousands of genes – the ones that are strong predictors of complex diseases or other
binary outcomes [4, 5], as it is a first step in identifying regulatory components controlling
heritability. However, for various diseases such as type 2 diabetes [6], these sparse signals are
yet largely undetected, which is why these missing associations have been entitled the The
Dark Matter of Genomic Associations [7]. Central problems include that these signals are
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often very weak, and the found signals can be spurious due to confounding. Confounding
can stem from varying experimental conditions and demographics such as age, ethnicity,
gender [8], and – crucially – population structure, which is due to the relatedness between
the samples [9, 8, 10]. Ignoring such confounders can often lead to spurious false positive
findings that cannot be replicated on independent data [11]. Correcting for such confounding
dependencies is considered one of the greatest challenges in statistical genetics [12]. Another
example is content- and anomaly-based network intrusion detection and malware detection,
where attacks are recorded within sandboxes [13]. Thus attributes that are specific to
sandboxes help in discriminating attacks from benign data so that these attributes may be
falsely promoted by the learning algorithm.

In the present Dagstuhl workshop, we found that there is a lack of research in the above
respect. Which is why we advocate to develop theory and algorithms learning and estimation
in the presence of confounding, the basic aim of which would be to understand and create
statistical machine learning from confounded data. In particular, the following open problems
arose at the workshop:

How can we quantify “confoundedness” in learning settings?
Can we develop theory similar to uniform convergence kind of analyses [1] under the
assumption of confounders? And in order for this to work which assumptions do we need
to state?
How to design effective learning algorithms in presence of confounding and dependent
labels?
How to address feature selection under confounders?
How to automatically learn the confounders?

Addressing the above stated open questions will subject to interesting future work. A good
starting point to this end will be previous theoretical analyses regarding time series [3, 14]
and probabilistic models such as the probit regression model [15, 16], and its extentions to
GP classification [17, 18] and generalized linear mixed models [19].
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3.7 Transfer Learning in Computer Vision
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Computer Vision offers a wide range of problems where transfer learning techniques, such as
domain adaptation and multi-task learning, can be applied. Several such techniques have
proven useful in practice, but a solid theoretical understanding of when and how transfer
learning offer benefits for computer vision tasks is still lacking. In my research group at
IST Austria, we are particularly interested in the problem of lifelong learning. A lifelong
learner continuously and autonomously learns from a stream of data, potentially for years or
decades [1, 2]. During this time the learner should build an ever-improving base of generic
information, and use this as background knowledge and context for solving different tasks.
Using PAC-Bayesian learning theory, we have developed theoretic foundations that allow
us to study different lifelong learning situations [3]. The generalization bounds that we
obtain consist only of computable quantities and can therefore be used to analyze existing
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lifelong learning algorithms and derive new ones. Similar techniques also allow the analysis
of algorithms for sequential multi-task learning [4].

Acknowledgments. The described work was funded by the European Research Council
under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant
agreement no 308036.
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3.8 Optimization for Machine Learning – Made Easy yet Efficient
Soeren Laue (Friedrich Schiller University Jena, DE)
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Many machine learning problems are cast as continuous optimization problems. A non-
exhaustive list of such problems includes support vector machines [2], elastic nets [8],
dimension reduction [1], and sparse PCA [9]. Moreover, for a given machine learning problem
there is typically not only a single formulation as an optimization problem but different
formulations that, for example, take previous knowledge or constraints into account. In
the case of support vector machines the original formulation uses an `2-regularization term
combined with the hinge loss. Different variants include the use of different loss functions,
e.g., an `2-loss term for adapting to Gaussian noise, `1-regularization to obtain sparse
predictors [7], or a combination of `1- and `2-regularization. Adding to this already large
variety is the use of kernels in many of the problem formulations. However, up to this day,
efficient solutions to any of these formulations still require the implementation of specialized,
and highly-tuned solvers, not only in the case of support vector machines but for almost any
machine learning problem that has been formulated as an optimization problem. This of
course poses a problem when dealing with data sets whose size is well beyond the reach of
easy to use modeling languages combined with a generic solver.

We present a novel approach to mitigate this problem by tightly coupling the modeling
language and the generic solver. This results in code that is a few orders of magnitude
more efficient than state-of-the-art modeling language/generic solver combinations like
CVX/Gurobi [3, 4, 5] and CVX/Mosek [3, 4, 6]. The tight coupling is achieved by a
generative programming approach that generates an individual solver for each problem as an
instance of a generic solver. The generic optimizer is able to solve almost any continuous
optimization problem with constraints over Rn that has been proposed for machine learning
tasks. It combines the ease of use of commonly used modeling languages with the efficiency of
highly-tuned, specialized state-of-the-art solvers for the individual machine learning problems.
In the end, the automatically generated solver can be either deployed as a callable library or
as a stand-alone solver.
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3.9 Transfer and Multi-Task Learning in Reinforcement Learning
Alessandro Lazaric (INRIA Lille, FR)
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The Context

Reinforcement learning’s (RL) [5, 1] challenging objective is to develop autonomous
agents able to learn how to act optimally in an unknown and uncertain environment by
trial-and-error and with limited level of supervision (i.e., a reinforcement signal). RL is
mostly applied in domains where a precise formalization of the environment and/or the
efficient computation of the optimal control policy is particularly difficult (e.g., robotics,
human-computer interaction, recommendation systems). An RL problem is formalized as a
Markov decision process (MDP)M characterized by a state space X , an action space A, a
(stochastic) dynamics p : X ×A → ∆(X ) that determines the transition from states to states
depending on the action, a reward function r : X ×A×X → R that determines the value of
a transition x, a, x′. An MDP defines a control task. The solution to an MDP/task is an
optimal policy π∗ : X → A that prescribes the actions to take in each state to maximize the
(discounted) sum of rewards measured by the optimal value function V ∗ = maxπ E[

∑
t γ

trt]
with γ ∈ (0, 1) and rt = r(xt, π(xt), xt+1). Two of the most difficult challenges in RL are:
1. How to explore the unknown environment so as to maximize the cumulative reward. This

requires solving the exploration-exploitation problem, well formalized and studied at
its core by the multi-armed bandit framework [2].

2. How to effectively represent the policy and/or the value function. This requires defining
an approximation space which is well-suited for the specific MDP at hand.

Both previous aspects may greatly benefit from techniques able to define suitable exploration
strategies and approximation spaces from past experience or joint experience from other tasks
(e.g., designing a intelligent tutoring system for a student and reuse the teaching strategy to
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other students). The objective of my research is to study the problems of transfer learning,
multi-task learning, and domain adaptation in the RL (and related) field.

The Past

Unlike in supervised learning, transfer learning faces challenges which are specific to field of
RL:

many different things can be transferred (e.g., the MDP parameters, policies, value
functions, samples, features),
the definition of “unsupervised” samples is not clear and thus, domain adaptation methods
exploiting target unsupervised samples cannot be easily applied,
samples are often non-i.i.d. because they are obtained from policies
tasks may be similar in terms of policies but neither MDPs nor value functions or
viceversa.

For this reason, borrowing techniques from “supervised” transfer/multi-task learning is not
always trivial or even possible. Early research focused on studying transfer of different kind
of solutions from a source to a target task1. Later, more sophisticated transfer/multi-task
scenarios and algorithms have been developed (e.g., using hierarchical Bayesian solutions
to learn “priors” from multiple tasks) to improve the accuracy of the approximation of
optimal policies/value functions. The results obtained in the past show a significant sample
complexity reduction and an improvement in asymptotic accuracy when transfer/multi-task
is applied.

The Future

My main interest in the short-term is to study the problem of how transfer/multi-task learning
can actually improve exploration-exploitation strategies in multi-armed bandit (MAB) and
RL. While the problem of approximation is common in supervised learning as well, the active
collection of information is very much specific to RL and MAB.

So far, I have investigated a sequential transfer scenario and investigated two approaches
in the linear MAB framework: (i) transfer of samples (under review), (ii) use of transferred
samples to identify the set of possible MAB problems and speed-up the problem identification
phase [3]. In both cases, we proved that the cumulative reward (i.e., reduce the regret)
of exploration-exploitation strategies in MAB can be actually improved and that negative
transfer can be avoid. Nonetheless, a number of very important questions remain unanswered:

Is it possible to incrementally and efficiently estimate the potential bias due to transfer
from different tasks? Under which assumptions? In specific cases, this can be done in
supervised learning.
What is the measure of similarity between two MDPs that determines the difference in
performance of an exploration-exploitation strategy when applied to the two MDPs?
Is it worth it to explore more in earlier tasks to “unveil” the generative process of the
sequence of tasks and exploit it to enhance the transfer? In which scenarios?
MDPs with different state-action spaces may still be very much similar. Is it possible
to map different MDP to an “underlying” common MDP structure in which similar
exploration-exploitation solutions can be identified and transferred?

As motivating fields of application, I will focus on intelligent tutoring systems, recommendation
systems, and computer games.

1 See [6, 4] for a survey.
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3.10 Deep unsupervised domain adaptation by backpropagation
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The method

Consider the problem of learning a deep feedforward classifier in the presence of domain shift.
Assume that a large number of labeled source examples and a large number of unlabeled
target examples are present (e.g. train on synthetic images, test on real one). Our approach
[1] to this unsupervised domain adaptation problem is to combine deep learning and domain
adaptation into a single optimization process driven by simple backpropagation updates.
The goal of the optimization is to obtain a deep model that has domain-invariant feature
representations in its higher layers, while providing good predictions on the source data.

Let x be the input sample and y be the output of a network. Consider feature represent-
ation f that emerge after a certain layer L in the middle of the network. Let f = Gf (x; θf ),
y = Gy(x; θy), where Gf and Gy are parts of the network before and after the layer L,
while θf and θy are their parameters. Our goal is then to train a deep model where the
features f are domain-invariant, i.e. have similar distribution in the source and the target
domains. We denote these distributions as S(f) and T (f). While trying to match these
distributions, one still needs to minimize the loss of the label prediction y = Gy(Gf (x; θf ); θy)
for source-domain data.

To measure the (dis)similarity of distributions S(f) and T (f), we augment our deep model
with a domain classifier d = Gd(f ; θd). Given a feature vector f this multi-layer classifier
tries to predict whether it corresponds to the source or to the target example (i.e. whether
it comes from S(f) or T (f)). The lower is the loss of this classifier, the larger is the gap
between S(f) and T (f). In the ideal case (S(f) is the same as T (f)) this classifier would
perform no better than chance and have a high loss. The resulting three-part network has a
fork shape (forward pass through the network works as: x→ f , f → y, f → d).

The learning process trains all three parts of the network simultaneously using back-
propagation. The training incorporates both labeled source examples and unlabeled target
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examples. The parameters θy and θd are optimized by an SGD, with each update minimizing
the losses of the respective classifiers Gy (that only looks at labeled source data) and Gd
(that looks both at source and target data). The updates of the parameters θf of the
feature mapping are driven by the minimization of the loss of the label predictor Gy and the
maximization of the loss of the domain classifier Gd (as we want features to be predictive of
y and domain-invariant).

We can achieve this behavior within standard deep learning packages based on SGD using
a simple trick. We reverse (multiply by a negative constant) the gradient that comes out of
the domain classifier Gy during backpropagation and pass it further back into the feature
extractor. This can be implemented as a simple gradient reversal layer. When this layer
is inserted between the feature extractor Gf and the domain classifier Gd, SGD moves the
parameters θf against the direction suggested by the minimization of the domain classifier’
loss (thus maximizing it). This reverse direction is combined with the direction suggested
by the minimization of the label predictor’ loss (as Gf and Gy are connected sequentially
in a standard way). Overall, SGD training makes the features f discriminative (good for
predicting y), while trying to mix the the distributions S(f) and T (f) as much as possible.
The resulting stochastic process can be seen as an example of adversarial learning and is
reminiscent of adversarial generative networks [2].

Further outlook

Supervised deep learning methods are highly-successful across many applications. Yet
training such models require lots of labeled data. Training them on surrogate data will
therefore remain an important avenue for research. Unsupervised deep domain adaptation
is becoming of particular interest for computer vision, since we almost always have some
source of surrogate labeled data (the two most notable sources being Internet images and
computer graphics).

The initial hope was that deep architectures will turn out to be invariant to domain shifts,
yet this has not proven to be the case. On the one hand the networks show impressive ability
to build invariance to some nuisance parameters towards higher level layers and thus mitigate
the domain shift. On the other hand, the sheer number of parameters within modern deep
architectures means that it is easier for deep models to overfit the peculiarities of a certain
domain.

It is no wonder that several groups including ours started working in parallel on the
unsupervised deep domain adaptation, i.e. training on labeled surrogate data and unlabeled
target domain data (e.g. [1, 3, 4, 5]).

Overall, the goal seems to be to learn deep architectures where bottom layers are
domain/modality specific with a gradually reducing specificity, middle layers are domain-
invariant and task-unspecific, and then top layers are task specific (and class-specific).
Parameters of the bottom layers of such networks can be either shared between domains or
be different across domains.
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3.11 Feature Learning in a Probit Model with Correlated Noise
Stephan Mandt (Institute for Data Sciences and Engineering, Columbia University, US)
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A large class of problems in statistical genetics amounts to finding a sparse linear effect in a
binary classification setup, such as finding a small set of genes that most strongly predict
a disease. Very often, these signals are spurious and obfuscated by confounders such as
age, ethnicity or population structure. Beyond statistical genetics, sparse estimation is a
general problem in binary classification, and has wide applications in science and technology,
including, among many others, neuroscience, medicine, text classification, credit scoring, and
computer malware detection. In all of these applications, confounding of the sparse signal
can have dramatic consequences such as false medical diagnoses or violations of financial
regulations. There is a need for statistical methods for feature selection that are robust to
these confounding influences.

The model

In my talk I showed that by generalizing the probit model in a way that it captures correlated
label noise is a way to eliminating confounders in the linear effect. Consider the following
model:

Yi = sign
(
X>i w + εi

)
, ε = (ε1, . . . , εn)> ∼ N (0,Σ).

This is just the probit regression model with the addition of a covariance matrix for the label
noises. By making the simplifying assumptions that all obeserved labels are 1 (this can be
achieved by a linear transformation on the noise covariance and data matrix), the central
computational problem amounts to optimizing the following objective function:

L(w) = − log
∫
Rn

+

N (ε;X>w,Σ) dnε + λ0||w||11.

Here, the `1 regularizer enforces sparsity in w, which is what we want in feature learning. In
the uncorrelated case, the above integral decomposes into a sum of one-dimensional integrals
that can be efficiently computed, but in the presence of correlations, the integral is intractable.
In my talk, I derived an approximate inference algorithm for this task.

Why correlated label noises?

The correlated probit model delivers two alternative explanations of the observed labels
Yi: one in terms of a sparse linear effect (this is what we are interested in), and another
explanation in terms of correlated label noise. The correlated label noise says, roughly
speaking, that data points Xi that are similar, will also have similar labels Yi. Similarity is
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expressed in terms of a set of known kernels Ki (e.g., based on side information) that are
the building blocks of the covariance matrix

Σ = λ1I +
∑m
i=2 λiKi.

The coefficients λi are determined by cross-validation. Now, by conditioning on the labels,
the linear effect and the noise distribution will become correlated; in other words, thinking
Bayesian, the correlated noise will explain away parts of the observed labels. Therefore the
sparse linear effect will try to fit only those labels that are hard to fit with a correlated noise
distribution, but better to fit with a sparse linear effect. Including a noise covariance matrix
is therefore a possible way to include effects into our model that we do not want to have an
effect on the sparse signal of interest.

Summary

Removing confounders in classification and regression task is an active and highly relevant
field of research. A challenge is to make these more complex models computationally tractable.
Variational methods offer a promising path.
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Under the covariate shift setting, accurate estimation of importance weight is a key step,
and several methods have been proposed for this purpose. We consider a new resampling
method for density ratio estimation between two distributions, and introduce our plan to
show its usefulness in theory and experiment.

3.13 Not IID Data in Advertising
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We present the problem of click prediction and show what is the most common solution
employed in industry to not-IID training data. Latest achievements in automatic parameter
tuning for stochastic gradient descent are also shown.
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3.14 The Benefit of Multitask Representation Learning
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We discuss a general method to learn data representations from multiple tasks. We provide
a justification for this method in both settings of multitask learning and learning-to-learn.
The method is illustrated in detail in the special case of linear feature learning. Conditions
on the theoretical advantage offered by multitask representation learning over independent
tasks learning are established. In particular, focusing on the important example of halfspace
learning, we derive the regime in which multitask representation learning is beneficial over
independent task learning, as a function of the sample size, the number of tasks and the
intrinsic data dimensionality. Other potential applications of our results include multitask
feature learning in reproducing kernel Hilbert spaces and multilayer, deep networks.

3.15 Adaptive Lifelong Learning for Visual Recognition and Data
Analysis

Erik Rodner (Friedrich Schiller University Jena, DE)
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Current and previous work

Whereas my studies focused on transfer learning with Gaussian process models [8] and
random decision forests [9], my current main research topic is lifelong learning and adaptive
scientific data analysis. In particular, I have worked on aspects of adaptation [6, 10]
(model sharing, learning from different but related datasets), active learning [3, 7] (selecting
unlabeled examples which are likely beneficial when being labeled by an annotator), novelty
detection [1] (determining whether an example belongs to an unknown category), and fine-
grained recognition [11, 4, 2] (discriminating very similar categories). Learning with non-iid.
data has been always part of my research on domain adaptation, where I search for handy
solutions applicable to some of the large-scale learning problems we have in vision and
scientific data analysis. One example is the MMDT (max-margin domain transforms) method
presented in [6], which jointly learns classifier parameters as well as a linear transformation
that maps labeled examples of one dataset to the feature space of another but related labeled
dataset. The method itself is a straightforward extension of standard one-vs-all SVMs and
can be used in large-scale scenarios [10].

Recently, people have boosted the performance on nearly all vision datasets and tasks
by using a feature representation learned with high complexity models (e.g., CNNs) on
large-scale datasets, such as ImageNet. This strategy can be seen as non-iid. learning with
two related but different datasets (ImageNet and another vision data set). In a recent
publication, we brought this concept to an extreme by using pre-trained CNN models for
object part discovery [11].
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Adaptive lifelong learning

I am currently developing an approach which allows for adapting to new input data and
especially new tasks (set of categories) in a semi-supervised learning setting. First of all,
think about the scenario where we have ImageNet D̃ =

(
X̃, ỹ

)
(labels ỹ, input examples

X̃), from which we can learn quite a lot of object categories, and an unlabeled set of images
D = X acquired in a new environment/domain (e.g., video sequence of your office). The
goal is now to learn an object classifier for the new domain by exploiting the fact that the
input examples are related but different and the set of categories for the new domain might
also contain new categories not part of ImageNet (have you ever searched for toothpaste in
ImageNet?), i.e., the label space changed.

In particular, D̃ is sampled from p(y, x̃|q̃) and the unlabeled set D is sampled from
p(x|q), where q̃ and q are parameters of the distributions and are assumed to be sampled
from a world model p(q̃|Q) and p(q|Q). The goal is to find a model for p(y|x,q) by using
both datasets D and D̃ and carefully coupling of the distributions through the world model.
In summary, this is a learning framework that allows for adaptation of the label and the
input space jointly. Furthermore, it can be extended to learning over time by assuming
continuously changing distributions parameterized by qt.

Further challenges

In general, I am also interested in studying the effects current fine-tuning strategies have
for adaptation. In contrast to vision research a few years ago, people make indirectly use
of domain adaptation principles when fine-tuning is performed on models initially learned
on other datasets. How can we control the degree of adaptation performed? Are there any
theoretical results that might help us to select the parameters that should be fine-tuned and
the ones that should be fixed to their initial value?

Furthermore, adapting to the right output space, a user might need and expect, will be
extremely important in future in my opinion, especially for scientific data analysis where
the goal is not always defined in advance. In vision, object detection methods can now
detect thousands of categories and without focusing and re-focusing on the subset and the
granularity of semantic information the user needs, we are likely not be able to make use of
the results at all.

References
1 Paul Bodesheim, Alexander Freytag, Erik Rodner, Michael Kemmler, and Joachim Denzler.

Kernel null space methods for novelty detection. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3374–3381, 2013.

2 Alexander Freytag, Erik Rodner, Trevor Darrell, and Joachim Denzler. Exemplar-specific
patch features for fine-grained recognition. In German Conference on Pattern Recognition
(GCPR), pages 144–156, 2014.

3 Alexander Freytag, Erik Rodner, and Joachim Denzler. Selecting influential examples:
Active learning with expected model output changes. In European Conference on Computer
Vision (ECCV), volume 8692 of Lecture Notes in Computer Science, pages 562–577, 2014.

4 Christoph Göring, Erik Rodner, Alexander Freytag, and Joachim Denzler. Nonparametric
part transfer for fine-grained recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2489–2496, 2014.

5 Judy Hoffman, Sergio Guadarrama, Eric Tzeng, Ronghang Hu, Jeff Donahue, Ross Girshick,
Trevor Darrell, and Kate Saenko. LSDA: Large scale detection through adaptation. In
Neural Information Processing Systems (NIPS), 2014.

15152



48 15152 – Machine Learning with Interdependent and Non-identically Distributed Data

6 Judy Hoffman, Erik Rodner, Jeff Donahue, Brian Kulis, and Kate Saenko. Asymmetric and
category invariant feature transformations for domain adaptation. International Journal
of Computer Vision (IJCV), 109(1-2):28–41, 2014.

7 Christoph Käding, Alexander Freytag, Erik Rodner, Paul Bodesheim, and Joachim Denzler.
Active learning and discovery of object categories in the presence of unnameable instances.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

8 Erik Rodner and Joachim Denzler. One-shot learning of object categories using dependent
gaussian processes. In Annual Symposium of the German Association for Pattern Recogni-
tion (DAGM), pages 232–241. Springer, 2010.

9 Erik Rodner and Joachim Denzler. Learning with few examples for binary and multi-
class classification using regularization of randomized trees. Pattern Recognition Letters,
32(2):244–251, January 2011.

10 Erik Rodner, Judy Hoffman, Jeff Donahue, Trevor Darrell, and Kate Saenko. Transform-
based domain adaptation for big data. In NIPS Workshop on New Directions in Transfer
and Multi-Task Learning, 2013. abstract version of arXiv:1308.4200.

11 Marcel Simon, Erik Rodner, and Joachim Denzler. Part detector discovery in deep convo-
lutional neural networks. In Asian Conference on Computer Vision (ACCV), 2014.

3.16 Covariate Shift and Varying-Coefficient Models
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License Creative Commons BY 3.0 Unported license
© Tobias Scheffer

Joint work of Niels Landwehr, Matthias Bussas, Christoph Sawade, and Tobias Scheffer

The Past: Discriminative Learning of Importance Weights for Covariate Shift

Consider a data generation process in which there is a source variable σ ∈ {train, test}.
Training instances are governed by p(x|σ = train) whereas test instances are governed by a
potentially different p(x|σ = train). In either case, labels are created according to p(y|x).

In order to minimize the regularizes risk under the test distribution, one has to minimize
n∑
i=1

p(x|σ = test)
p(x|σ = train)`(fw(xi), yi) + Ω(w).

Estimating the training and test density functions [5] is unnecessarily difficult, because those
are high-dimensional density functions and really only a scalar factor is needed for each
instance. However, observe that, by simple arithmetics [1]:

p(x|σ = test)
p(x|σ = train) = p(σ = train)

p(σ = test)

(
1

p(σ = train|x) − 1
)
.

The density ratio can be written in terms of p(σ = train|x) which can be estimated with a
logistic regression model

p(σ = train|x,v) = 1
1 + exp(vTx) .

This model is trained using the training data as positive, and the test data as negative
examples.

Over KLIEP [6], this method has the advantage that the optimization problems are more
directly linked to minimizing the risk under the test distribution. Over kernel mean matching
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[4] it has the advantage that the regularization parameter for model fv can be tuned easily.
Since it is trained on labeled data (with label σ), it can simply be tuned on held-out data.

The Future: Varying-Coefficient Models with Isotropic GP Priors

Consider problems with continuous task variables t (e.g., time and space), regular attributes
x, and outputs y. Assume that pt(y|x) changes smoothly in t. For standard learning
problems, parameters w of a model p(y|x,w) are usually assumed to be governed by an
isotropic Gaussian prior (hence `2 regularization of w). Instead, let us assume that a function
ω : t 7→ w that generates task-specific parameters ω(t) of a model p(y|x,ω(t)) is governed
by an isotropic Gaussian Process prior.

The Gaussian Process couples p(y|x,ω(t)) for different values of t. A constant ω(t)
corresponds to an iid model; generally, ω allows the model to change smoothly in t.

“Theorem”. Let X,T,y be the training data and x∗, t∗ a test instance for which y∗ has to
be inferred. The predictive distribution p(y∗|X,y,T,x∗, t∗) of the above model is equal to
the predictive distribution of a standard Gaussian process that uses concatenated attribute
vectors (x, t) and product kernel k((xi, ti), (xj , tj)) = k(xi,xj)k(ti, tj).

The theorem shows that Bayesian inference for varying-coefficient models can be done in
O(n3 + dn) in the dual instead of in O(n3d3) [3] for n observations and d attributes. It also
makes assumptions explicit that justify the use of products of task and instance kernels [2].
The model works great for geospatial problems such as predicting rents or real estate prices.

Acknowledgment. This is joint work with Niels Landwehr, Matthias Bussas, and Christoph
Sawade.
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3.17 Kernel Hypothesis Tests on Dependent Data
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Statistical tests based on embeddings of probability distributions into reproducing kernel
Hilbert spaces have been applied in many contexts, including two sample testing [6], tests
of independence [5, 1], tests of conditional independence [4, 10], and tests for higher order
(Lancaster) interactions [8].

For these tests, consistency is guaranteed if and only if the observations are independent
and identically distributed. Much real-world data fails to satisfy the i.i.d. assumption: audio
signals, EEG recordings, text documents, financial time series, and samples obtained when
running Markov Chain Monte Carlo (MCMC), all show significant temporal dependence
patterns. The asymptotic behaviour of kernel test statistics becomes quite different when
temporal dependencies exist – the difference in their asymptotic null distributions has
important implications in practice: the permutation-based tests return an elevated number
of false positives.

An alternative estimate of the null distribution for the problem of independence testing
was proposed in [2] (where one signal is repeatedly shifted relative to the other). There is,
however, no obvious way to generalise this approach to other testing contexts. For instance,
we might have two time series, with the goal of comparing their marginal distribution. In
[3], it was shown that an external randomization with wild bootstrap [7] may be applied
to simulate from the null distribution for all kernel hypothesis tests for which V -statistics
are employed, and not just for independence tests. This result has a potential to lead to a
powerful set of model checking and MCMC diagnostic tools – where a nonparametric test
can be constructed whether a Markov chain has reached its stationary distribution using
Maximum Mean Discrepancy (MMD) [6] as a test statistic, similarly as in [9]. While a
permutation-based test of whether the sampler has converged leads to too many rejections
of the null hypothesis due to chain dependence (implying that one requires heavily thinned
chains, which is wasteful of samples and computationally burdensome), the wild bootstrap
approach can be applied directly on chains and is demonstrated to attain a desired number
of false positives in [3].

Future Work

Consistency of the above procedures requires strong mixing conditions on the time series at
hand. Moreover, the wild bootstrap procedure has a tuning parameter which requires some
knowledge of the mixing properties in order to be properly calibrated. Finally, the interplay
between the kernel choice and the test performance in the case of dependent data is not well
understood. What are the inherent tradeoffs when trying to learn such tuning parameters
on a held out portion of the data before performing a test? Moreover, many outstanding
practical considerations arise in the application of tests to MCMC diagnostics. When to
perform a test? Can tuning parameters be learned on the fly?
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3.18 Zero-shot learning via synthesized classifiers
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Real-world objects have a long-tailed distribution, making it difficult to collect labeled images
of rare objects for visual object recognition. One appealing way to address this problem
is zero-shot learning. We propose a unified framework based on the key insight that the
classifiers of semantically similar objects can be constructed from a set of base classifiers of
“phantom” classes. In sharp contrast to previous work, the classifiers of both seen and unseen
objects are synthesized from the base classifiers, enabling us to effectively learn the bases
using the labeled data of the seen classes and then readily apply them to synthesizing the
classifiers of unseen classes. We further consider a generalized zero-shot learning setting, in
which the test phase is a multi-way classification problem over both seen and unseen classes.
This generalized case reflects more closely how test data are distributed in real applications,
leading to a more challenging task. We demonstrate superior performance of our approach
over the state of the art for (generalized) zero-shot learning on two benchmark datasets.

I would like to acknowledge the beneficial discussions with Prof. Christoph Lampert (IST,
Austria) at the Dagstuhl Seminar, in particular, pointers to his earlier work on generalized
zero-shot learning.
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3.19 A Bernstein-type Inequality for Some Mixing Processes and
Dynamical Systems with an Application to Learning

Ingo Steinwart (Universität Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Ingo Steinwart

Joint work of Hang, Hanyuan; Steinwart, Ingo
Main reference H. Hang, I. Steinwart, “A Bernstein-type Inequality for Some Mixing Processes and Dynamical

Systems with an Application to Learning,” arXiv:1501.03059v1 [math.PR], 2015.
URL http://arxiv.org/abs/1501.03059v1

We establish a Bernstein-type inequality for a class of stochastic processes that include the
classical geometrically φ-mixing processes, Rio’s generalization of these processes, as well as
many time-discrete dynamical systems. Modulo a logarithmic factor and some constants,
our Bernstein-type inequality coincides with the classical Bernstein inequality for i.i.d. data.
We further use this new Bernstein-type inequality to derive an oracle inequality for generic
regularized empirical risk minimization algorithms and data generated by such processes.
Applying this oracle inequality to support vector machines using the Gaussian kernels for
both least squares and quantile regression, it turns out that the resulting learning rates match,
up to some arbitrarily small extra term in the exponent, the optimal rates for i.i.d. processes.

3.20 Sampling without replacement: direct approach vs. reduction to
i.i.d.

Ilya Tolstikhin (MPI for Intelligent Systems – Tübingen, DE)
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We consider two closely related questions: (1) general properties of random variables sampled
without replacement from arbitrary finite domains and (2) risk bounds in transductive
learning, which is a particular setting of statistical learning theory introduced by V.Vapnik.

Formally, let C = {c1, . . . , cN} be some fixed finite population. Let Z1, . . . , Zn be sampled
uniformly without replacement from C for n ≤ N . independent. which may be more useful
depending on situations: n of them and then take the first subset. Random variables sampled
without replacement naturally appear in many modern applications of statistics, probability,
and machine learning. First example which comes to mind is cross-validation, where sample
is randomly partitioned into training and validation subsets. Other examples include matrix
completion problems, various iterative stochastic algorithms like stochastic gradient descent,
low-rank matrix factorization problems, and many others.

Arguably, one of the most useful tools when it comes to analysis of stochastic proced-
ures are concentration inequalities, which control a deviation of random variables from
their expected values with high probability. Generally one would like to upper bound tail
probabilities P{ξ − E[ξ] > t} or P{E[ξ] − ξ > t} for t > 0 and ξ := f(X1, . . . , Xn), where
X1, . . . , Xn are random variables taking values in domain X and f : Xn → R. The case
when X1, . . . , Xn are independent is very well studied and many useful results are available,
including Hoeffding’s and Bernstein’s inequalities for sums of independent real-valued random
variables and McDiarmid’s inequality for functions f with bounded differences. However,
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when random variables are sampled without replacement ξ := f(Z1, . . . , Zn) new techniques
are needed.

First results in this direction were derived by Hoeffding, who showed that classic inequal-
ities for sums mentioned above also hold for ξ :=

∑n
i=1 Zi. This result was based on the

elegant reduction of the sampling without replacement scheme to the i.i.d. setting. Later
results showed that a direct approach can be tighter than the reduction: using a martingale
technique Serfling derived an improved version of Hoeffding’s inequality for ξ :=

∑n
i=1 Zi,

containing additional factor N−n+1
N which decreases as n → N . The same technique was

later used to derive versions of Bernstein’s and McDiarmid’s inequalities for sampling without
replacement, which improve upon the i.i.d. counterparts in the similar way.

In trunsductive learning, a learner observes n labeled training points together with u
unlabeled test points with the final goal of giving correct answers for the test points. This
process can be modeled using sampling without replacement described above, with fixed
population of N input-output pairs C := {(Xi, Yi)}Ni=1, random labeled training sample
Sn := {Z1, . . . , Zn}, and unlabeled test sample Xu containing u = N −n inputs of remaining
elements Su := C \ Sn. Usually the learner fixes a class of predictors H and a bounded loss
function ` and seeks for an optimal predictor h∗u minimizing an average test loss err(h, Su)
over H. However, labels of the test objects are unknown, and the learner resorts to ĥn
which minimizes an empirical loss err(h, Sn) over H. The main question is: how large
can be the excess risk err(ĥn, Su) − err(h∗u, Su)? The excess risk can be upper bounded
in a standard way by uniform deviations of risks computed on two disjoint finite samples
Qn := suph∈H |err(h, Su)− err(h, Sn)|. Note that this construction naturally appears as a
middle step in proofs of standard i.i.d. risk bounds as a result of symmetrization or the
so-called double-sample trick. Since Qn is a function of the random training set Sn, we can
apply concentration inequalities for sampling without replacement in order to upper bound it
using E[Qn]. This can be done using a version of McDiarmid’s inequality or more powerful
versions of Talagrand’s inequality for sampling without replacement, which were recently
derived in [1].

It was also shown in [1] using Hoeffding’s reduction trick that E[Qn] is upper bounded by
E[Q̃n], where Q̃n is a supremum of the standard i.i.d. empirical process. Using well-known
symmetrization inequalities one can further upper bound E[Q̃n] (and thus E[Qn]) with
Rademcher complexity of the class H. Together with concentration argument this shows that
most of the i.i.d. risk bounds also hold in the transductive learning setting. However, we
would like to argue that this reduction to i.i.d. setting can give suboptimal results compared
to direct analysis of E[Qn] (in the same way as Hoeffding’s reduction trick leads to suboptimal
inequalities compared to the direct martingale technique).

We introduce a new complexity measure for transductive learning called permutational
Rademacher complexity (PRC), which is similar to the standard Rademacher complexity. The
only difference is that in PRC ±1 signs are obtained using random permutation of a sequence
containing equal number of “−1” and “+1”, while in the Rademacher complexity signs are
sampled i.i.d. We provide the preliminary results on PRC, including a novel symmetrization
inequality, which shows that E[Qn] is upper bounded by PRC.
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3.21 Active Learning for Domain Adaptation
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While classic machine learning paradigms assume training and test data are generated from
the same process, domain adaptation addresses the more realistic setting in which the learner
has large quantities of labeled data from some source task but limited or no labeled data
from the target task it is attempting to learn.

In the paper, we give the first formal analysis showing that using active learning for
domain adaptation yields a way to address the challenges inherent in this scenario. As is
common, we assume that the learner receives labeled data from the source task and unlabeled
data from the target task. In our model, the learner can make a small number of queries for
labels of target examples. Now the goal is to accurately learn a classifier for the target task
while making as few label requests as possible.

We propose a simple nonparametric algorithm, ANDA, that combines an active nearest
neighbor querying strategy with nearest neighbor prediction. ANDA receives a labeled
sample from the source distribution and an unlabeled sample from the target task. It first
actively selects a subset of the target data to be labeled based on the amount of source data
among the k′ nearest neighbors of each target example. Then it outputs a k-nearest neighbor
classifier on the combined source and target labeled data.

We prove that ANDA enjoys strong performance guarantees on both the risk of the
resulting classifier and the number of queries ANDA will make. Simply put, ANDA is
guaranteed to make enough queries to be consistent but will not make unnecessary ones.

4 Working Groups, Presentations, and Panel Discussion

Working groups were an essential part of the seminar and have been integrated in the schedule
in two versions: (1) discussion groups always directly after a presentation session and (2)
working groups on Thursday during a longer time slot with topics voted for by the participants
in a pseudo-random fashion. Especially the discussion groups directly after presentations
led to interesting questions and comments by all participants. Although time was limited,
results from the groups were summarized and supported a very interactive atmosphere of
the seminar. The talks of the seminar had three different lengths: (1) longer keynotes for
vision, algorithms, and computational biology for 25 minutes, (2) ongoing research talks for
12 minutes, and (3) quick presentations for just 3 minutes. This mix allowed a presentation
for every participant and the quick presentations often led to interesting discussions in the
evening.

The seminar ended with a panel discussion in the garden with Fei Sha, Shai-Ben David,
and Oliver Stegle on the topic of open problems and upcoming research challenges in the
area of non-i.i.d. learning. The topic quickly shifted towards recent advances in deep learning
and how they are currently affecting the methodology used for non-i.i.d. learning. Especially
for computational biology topics, the lack of large-scale training data was mentioned as the
main obstacle for using these techniques. The panel ended with a summary of the seminar
and a feedback to the organizers about its structure.
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