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Abstract
In this paper, we introduce a novel rule for synthesis of reactive systems, applicable to systems
made of n components which have each their own objectives. It is based on the notion of
admissible strategies. We compare our novel rule with previous rules defined in the literature,
and we show that contrary to the previous proposals, our rule define sets of solutions which
are rectangular. This property leads to solutions which are robust and resilient. We provide
algorithms with optimal complexity and also an abstraction framework.
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1 Introduction

The automatic synthesis of reactive systems has recently attracted a considerable attention.
The theoretical foundations of most of the contributions in this area rely on two-player zero
sum games played on graphs: one player (player 1) models the system to synthesize, and
the other player (player 2) models its environment. The game is zero-sum: the objective of
player 1 is to enforce the specification of the system while the objective of player 2 is the
negation of this specification. This is a worst-case assumption: because the cooperation of
the environment cannot be assumed, we postulate that it is antagonistic.

A fully adversarial environment is usually a bold abstraction of reality. Nevertheless, it is
popular because it is simple and sound: a winning strategy against an antagonistic player is
winning against any environment which pursues its own objective. But this approach may fail
to find a winning strategy even if there exist solutions when the objective of the environment
is taken into account. Also, this model is for two players only: system vs environment.
In practice, both the system and the environment may be composed of several parts to
be constructed individually or whose objectives should be considered one at a time. It is
thus crucial to take into account different players’ objectives when synthesizing strategies;
accordingly, alternative notions have been proposed in the literature.

A first classical alternative is to weaken the winning condition of player 1 using the
objective of the environment, requiring the system to win only when the environment meets
its objective. This approach together with its weaknesses have been discussed in [3], we
will add to that later in the paper. A second alternative is to use concepts from n-players
non-zero sum games. This is the approach taken both by assume-guarantee synthesis [6]
(AG), and by rational synthesis [16] (RS). AG relies on secure equilibria [8] (SE), a refinement
of Nash equilibria [23] (NE). In SE, objectives are lexicographic: players first try to maximize
their own specifications, and then try to falsify the specifications of others. It is shown in [8]
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that SE are those NE which represent enforceable contracts between the two players. In RS,
the system is assumed to be monolithic and the environment is made of components that are
partially controllable. In RS, we search for a profile of strategies where the system ensures
its objective and the players that model the environment are given an “acceptable” strategy
profiles, from which it is assumed that they will not deviate. “Acceptable” is formalized
either by NE, dominating strategies (Dom), or subgame perfect equilibria (SPE).

Contributions. As a first and central contribution, we propose a novel notion of synthesis
where we take into account different players’ objectives using the concept of admissible
strategies [1, 2, 4]. For a player with objective φ, a strategy σ is dominated by σ′ if σ′ does
as well as σ w.r.t. φ against all strategies of the other players, and better for some of those
strategies. A strategy σ is admissible if it is not dominated by another strategy. In [2], the
admissibility notion was lifted to games played on graphs, and algorithmic questions left
open were solved in [4], with the goal of model checking the set of runs that survive the
iterative elimination of dominated strategies. Here, we use this notion to derive a meaningful
notion to synthesize systems with several players, with the following idea. Rational players
should only play admissible strategies since dominated strategies are clearly suboptimal. In
assume-admissible synthesis (AA), we make the assumption that players play admissible
strategies. Then for each player, we search for an admissible strategy that is winning
against all admissible strategies of other players. AA is sound: any strategy profile that
is winning against admissible strategies of other players, satisfies the objectives of all the
players (Theorem 1).

As a second contribution, we compare the different synthesis rules. First we apply all the
rules on a simple but representative example, and show the main advantages of AA w.r.t.
the other rules. Then we compare systematically the different approaches. We show when a
solution for one rule implies a solution for another rule and we prove that, contrary to other
rules, AA yields rectangular sets of solutions (Theorem 4). We argue that the rectangularity
property is essential for practical applications. As a third contribution, we provide algorithms
to decide the existence of assume-admissible winning strategy profiles and prove the optimal
complexity of our algorithm (Theorem 8): PSPACE-complete for Müller, and PTIME for
Büchi objectives. As a last important contribution, we provide an abstraction framework
which allows us to define sufficient conditions to compute sets of winning assume-admissible
strategies for each player in the game compositionally (Theorem 12).

Additional pointers to related works. We have already mentioned assume-guarantee syn-
thesis [6] and rational synthesis [16, 20]. Those are the closest related works to ours as
they pursue the same scientific objective: to synthesis strategy profiles for non-zero sum
multi-player games by taking into account the specification of each player. As those works
are defined for similar formal setting, we are able to provide formal statements in the core of
the paper that add elements of comparison with our work.

In [15], Faella studies several alternatives to the notion of winning strategy including the
notion of admissible strategy. His work is for two-players only, and only the objective of
one player is taken into account, the objective of the other player is left unspecified. Faella
uses the notion of admissibility to define a notion of best-effort in synthesis while we use the
notion of admissibility to take into account the objectives of the other players in an n player
setting where each player has his own objective.

The notion of admissible strategy is definable in strategy logics [9, 22] and decision
problems related to the AA rule can be reduced to satisfiability queries in such logics.
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102 Assume-Admissible Synthesis

Nevertheless this would not lead to worst-case optimal algorithms. Based on our previous
work [4], we develop in this paper worst-case optimal algorithms.

In [12], Damm and Finkbeiner use the notion of dominant strategy to provide a com-
positional semi-algorithm for the (undecidable) distributed synthesis problem. So while
we use the notion of admissible strategy, they use a notion of dominant strategy. The
notion of dominant strategy is strictly stronger : every dominant strategy is admissible but an
admissible strategy is not necessary dominant. Also, in multiplayer games with omega-regular
objectives with complete information (as considered here), admissible strategies are always
guaranteed to exist [2] while it is not the case for dominant strategies. We will show in
an example that the notion of dominant strategy is too strong for our purpose. Also, note
that the objective of Damm and Finkbeiner is different from ours: they use dominance as
a mean to formalize a notion of best-effort for components of a distributed system w.r.t.
their common objective, while we use admissibility to take into account the objectives of the
other components when looking for a winning strategy for one component to enforce its own
objective. Additionally, our formal setting is different from their setting in several respects.
First, they consider zero-sum games between a distributed team of players (processes) against
a unique environment, each player in the team has the same specification (the specification
of the distributed system to synthesize) while the environment is considered as adversarial
and so its specification is the negation of the specification of the system. In our case, each
player has his own objective and we do not distinguish between protagonist and antagonist
players. Second, they consider distributed synthesis: each individual process has its own view
of the system while we consider games with perfect information in which all players have a
complete view of the system state. Finally, let us point out that Damm and Finkbeiner use
the term admissible for specifications and not for strategies (as already said, they indeed
consider dominant strategies and not admissible strategies). In our case, we use the notion
of admissible strategy which is classical in game theory, see e.g. [17, 1]. This vocabulary
mismatch is unfortunate but we decided to stick to the term of “admissible strategy” which
is well accepted in the literature, and already used in several previous works on (multi-player)
games played on graphs [2, 15, 4].

Structure of the paper. Sect. 2 contains definitions. In Sect. 3, we review synthesis rules
introduced in the literature and define assume-admissible synthesis. In Sect. 4, we consider an
example; this allows us to underline some weaknesses of the previous rules. Sect. 5 presents
a formal comparison of the different rules. Sect. 6 contains algorithms for Büchi and Müller
objectives, and Sect. 7 abstraction techniques applied to our rule.

2 Definitions

A turn-based multiplayer arena is a tuple A = 〈P, (Si)i∈P , sinit, (Acti)i∈P , δ〉 where P is a
finite set of players; for i ∈ P , Si is a finite set of player-i states; we let S =

⊎
i∈P Si; sinit ∈ S

is the initial state; for every i ∈ P , Acti is the set of player-i actions; we let Act =
⋃
i∈P Acti;

and δ : S× Act 7→ S is the transition function. A run ρ is a sequence of alternating states
and actions ρ = s1a1s2a2 . . . ∈ (S · Act)ω such that for all i ≥ 1, δ(si, ai) = si+1. We write
ρi = si, and acti(ρ) = ai. A history is a finite prefix of a run ending in a state. We denote
by ρ≤k the history s1a1 . . . sk; and write last(ρ≤k) = sk, the last state of the history. The set
of states occurring infinitely often in a run ρ is Inf(ρ) = {s ∈ S | ∀j ∈ N. ∃i > j, ρi = s}.

A strategy of player i is a function σi : (S∗ · Si)→ Acti. A strategy profile for the set of
players P ⊆ P is a tuple of strategies, one for each player of P . We write −i for the set
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P \ {i}. Let Σi(A) be the set of the strategies of player i in A, written Σi if A is clear from
context, and ΣP the strategy profiles of P ⊆ P.

A run ρ is compatible with strategy σ for player i if for all j ≥ 1, ρj ∈ Si and actj(ρ) =
σ(ρ≤j). It is compatible with strategy profile σP if it is compatible with each σi for i ∈ P.
The outcome of a strategy profile σP is the unique run compatible with σP starting at sinit,
denoted OutA(σP). We write OutA,s(σP) for the outcome starting at state s. Given σP ∈ ΣP
with P ⊆ P, let OutA(σP ) denote the set of runs compatible with σP , and extend it to
OutA(Σ′) where Σ′ is a set of strategy profiles. For E ⊆ Si × Acti, let Strati(E) denote the
set of player-i strategies σ that only use actions in E in all outcomes compatible with σ.

An objective φ is a subset of runs. A strategy σi of player i is winning for objective φi if
for all σ−i ∈ Σ−i, OutA(σi, σ−i) ∈ φi. A game is an arena equipped with an objective for
each player, written G = 〈A, (φi)i∈P〉 where for each player i, φi is an objective. Given a
strategy profile σP for the set of players P , we write G, σP |= φ if OutA(σP ) ⊆ φ. We write
OutG(σP ) = OutA(σP ), and OutG = OutG(Σ). For any coalition C ⊆ P, and objective φ, we
denote by WinC(A, φ) the set of states s such that there exists σC ∈ ΣC with OutG,s(σC) ⊆ φ.

Although we prove some of our results for general objectives, we give algorithms for
ω-regular objectives represented by Muller conditions. A Muller condition is given by a
family F of sets of states: φi = {ρ | Inf(ρ) ∈ F}. Following [19], we assume that F is
given by a Boolean circuit whose inputs are S, which evaluates to true exactly on valuations
encoding subsets S ∈ F . We also use linear temporal logic (LTL) [24] to describe objectives.
LTL formulas are defined by φ := Gφ | Fφ | Xφ | φUφ | φWφ | S where S ⊆ S (We refer
to [14] for the semantics.) We consider the special case of Büchi objectives, given by
GF(B) = {ρ | B ∩ Inf(ρ) 6= ∅}. Boolean combinations of formulas GF(S) define Muller
conditions representable by polynomial-size circuits.

In any game G, a player i strategy σi is dominated by σ′i if for all σ−i ∈ Σ−i, G, σi, σ−i |= φi
implies G, σ′i, σ−i |= φi and there exists σ−i ∈ Σ−i, such that G, σ′i, σ−i |= φi and G, σi, σ−i 6|=
φi, (this is classically called weak dominance, but we call it dominance for simplicity). A
strategy which is not dominated is admissible. Thus, admissible strategies are maximal,
and incomparable, with respect to the dominance relation. We write Admi(G) for the set
of admissible strategies in Σi, and AdmP (G) =

∏
i∈P Admi(G) the product of the sets of

admissible strategies for P ⊆ P.
Strategy σi is dominant if for all σ′i, and σ−i, G, σ′i, σ−iφi implies G, σi, σ−i |= φi. The

set of dominant strategies for player i is written Domi(G). A Nash equilibrium for G is a
strategy profile σP such that for all i ∈ P, and σ′i ∈ Σi, G, σ−i, σ′i |= φi implies G, σP |= φi;
thus no player can improve its outcome by deviating from the prescribed strategy. A Nash
equilibrium for G from s, is a Nash equilibrium for G where the initial state is replaced by
s. A subgame-perfect equilibrium for G is a strategy profile σP such that for all histories h,
(σi ◦ h)i∈P is a Nash equilibrium in G from state last(h), where given a strategy σ, σ ◦ h
denotes the strategy last(h) · h′ 7→ σ(h · h′).

3 Synthesis Rules

In this section, we review synthesis rules proposed in the literature, and introduce a novel
one: the assume-admissible synthesis rule (AA). Unless stated otherwise, we fix for this
section a game G, with players P = {1, . . . , n} and their objectives φ1, . . . , φn.

Rule Coop. The objectives are achieved cooperatively if there is a strategy profile σP =
(σ1, σ2, . . . , σn) such that G, σP |=

∧
i∈P φi.
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104 Assume-Admissible Synthesis

This rule [21, 10] asks for a strategy profile that jointly satisfies the objectives of all the
players. This rule makes very strong assumptions: players fully cooperate and strictly follow
their respective strategies. This concept is not robust against deviations and postulates that
the behavior of every component in the system is controllable. This weakness is well-known:
see e.g. [6] where the rule is called weak co-synthesis.

Rule Win. The objectives are achieved adversarially if there is a strategy profile σP =
(σ1, . . . , σn) such that for all i ∈ P, G, σi |= φi.

This rule does not require any cooperation among players: the rule asks to synthesize for
each player i a strategy which enforces his/her objective φi against all possible strategies
of the other players. Strategy profiles obtained by Win are extremely robust: each player
is able to ensure his/her objective no matter how the other players behave. Unfortunately,
this rule is often not applicable in practice: often, none of the players has a winning strategy
against all possible strategies of the other players. The next rules soften this requirement by
taking into account the objectives of other players.

Rule Win-under-Hyp. Given a two-player game G with P = {1, 2} in which player 1
has objective φ1, player 2 has objective φ2, player 1 can achieve adversarially φ1 under
hypothesis φ2, if there is a strategy σ1 for player 1 such that G, σ1 |= φ2 → φ1.

The rule winning under hypothesis applies for two-player games only. Here, we consider
the synthesis of a strategy for player 1 against player 2 under the hypothesis that player 2
behaves according to his/her specification. This rule is a relaxation of the rule Win as player 1
is only expected to win when player 2 plays so that the outcome of the game satisfies φ2.
While this rule is often reasonable, it is fundamentally plagued by the following problem:
instead of trying to satisfy φ1, player 1 could try to falsify φ2, see e.g. [3]. This problem
disappears if player 2 has a winning strategy to enforce φ2, and the rule is then safe. We
come back to that later in the paper (see Lemma 1).

Chatterjee et al. in [6] proposed synthesis rules inspired by Win-under-Hyp but avoid the
aforementioned problem. The rule was originally proposed in a model with two components
and a scheduler. We study here two natural extensions for n players.

Rules AG∧ and AG∨. The objectives are achieved by
(AG∧) assume-guarantee-∧ if there exists a strategy profile σP such that
1. G, σP |=

∧
i∈P φi,

2. for all players i, G, σi |= (
∧
j∈P\{i} φj)⇒ φi.

(AG∨) assume-guarantee-∨1 if there exists a strategy profile σP such that
1. G, σP |=

∧
i∈P φi,

2. for all players i, G, σi |= (
∨
j∈P\{i} φj)⇒ φi.

The two rules differ in the second requirement: AG∧ requires that player i wins whenever
all the other players win, while AG∨ requires player i to win whenever one of the other
player wins. Clearly AG∨ is stronger, and the two rules are equivalent for two-player games.
As shown in [8], for two-player games, a profile of strategy for AG∧ (or AG∨) is a Nash
equilibrium in a derived game where players want, in lexicographic order, first to satisfy

1 This rule was introduced in [5], under the name Doomsday equilibria, as a generalization of the AG rule
of [6] to the case of n-players.
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their own objectives, and then as a secondary objective, want to falsify the objectives of the
other players. As NE, AG∧ and AG∨ require players to synchronize on a particular strategy
profiles. As we will see, this is not the case for the new rule that we propose.

[16] and [20] introduce two versions of rational synthesis (RS). In the two cases, one of
the player, say player 1, models the system while the other players model the environment.
The existential version (RS∃) searches for a strategy for the system, and a profile of strategies
for the environment, such that the objective of the system is satisfied, and the profile for the
environment is stable according to a solution concept which is either NE, SPE, or Dom. The
universal version (RS∀) searches for a strategy for the system, such that for all environment
strategy profiles that are stable according to the solution concept, the objective of the system
holds. We write ΣNE

G,σ1
, resp. ΣSPE

G,σ1
, for the set of strategy profiles σ−1 = (σ2, σ3, . . . , σn)

that are NE (resp. SPE) equilibria in the game G when player 1 plays σ1, and ΣDom
G,σ1

for the
set of strategy profiles σ−1 where each strategy σj , 2 ≤ j ≤ n, is dominant in the game G
when player 1 plays σ1.

Rules RS∃,∀(NE,SPE,Dom) . Let γ ∈ {NE,SPE,Dom}, the objective is achieved by:
(RS∃(γ)) existential rational synthesis under γ if there is a strategy σ1 of player 1,

and a profile σ−1 ∈ ΣγG,σ1
, such that G, σ1, σ−1 |= φ1.

(RS∀(γ)) universal rational synthesis under γ if there is a strategy σ1 of player 1,
such that ΣγG,σ1

6= ∅, and for all σ−1 ∈ ΣγG,σ1
, G, σ1, σ−1 |= φ1.

Clearly, (RS∀(γ)) is stronger than (RS∃(γ)) and more robust. As RS∃,∀(NE,SPE) are derived
from NE and SPE, they require players to synchronize on particular strategy profiles.

Novel rule. We now present our novel rule based on the notion of admissible strategies.

Rule AA. The objectives are achieved by assume-admissible (AA) strategies if there is
a strategy profile σP such that:
1. for all i ∈ P, σi ∈ Admi(G);
2. for all i ∈ P, ∀σ′−i ∈ Adm−i(G). G, σ′−i, σi |= φi.

A player-i strategy satisfying conditions 1 and 2 above is called assume-admissible-winning
(AA-winning). A profile of AA-winning strategies is an AA-winning strategy profile. The rule
AA requires that each player has a strategy winning against admissible strategies of other
players. So we assume that players do not play strategies which are dominated, which is
reasonable as dominated strategies are clearly suboptimal options.

Contrary to Coop, AG∧, and AG∨, AA does not require that the strategy profile is winning
for each player. As for Win, this is a consequence of the definition:

I Theorem 1. For all AA-winning strategy profile σP , G, σP |=
∧
i∈P φi.

The condition that AA strategies are admissible is necessary for Thm. 1; it does not
suffice to have strategies that are winning against admissible strategies.

4 Synthesis Rules at the Light of an Example

We illustrate the synthesis rules on an example of a real-time scheduler with two tasks. The
system is composed of Sched (player 1) and Env (player 2). Env chooses the truth value for
r1, r2 (ri is a request for task i), and Sched controls q1, q2 (qi means that task i has been
scheduled). Our model is a turn-based game: first, Env chooses a value for r1, r2, then in
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106 Assume-Admissible Synthesis

the next round Sched chooses a value for q1, q2, and we repeat forever. The requirements for
Sched and Env are as follows:
1. Sched is not allowed to schedule the two tasks at the same time. When r1 is true, then

task 1 must be scheduled (q1) within three rounds. When r2 is true, task 2 must be
scheduled (q2) in exactly three rounds.

2. Whenever Env issues ri then it does not issue this request again before the occurrence of
the grant qi. Env issues infinitely many requests r1 and r2.

We say that a request ri is pending whenever the corresponding grant has not yet been issued.
Those requirements can be expressed in LTL as follows:

φSched = G(r1 → Xq1 ∨ XXXq1) ∧ G(r2 → XXXq2) ∧ G¬(q1 ∧ q2).
φEnv = G(r1 → X(¬r1Wq1)) ∧ G(r2 → X(¬r2Wq2)) ∧ (GFr1) ∧ (GFr2).

A solution compatible with the previous rules in the literature. First, we note that there
is no winning strategy neither for Sched, nor for Env. In fact, first let σ̂1 be the strategy of
Sched that never schedules any of the two tasks, i.e. leaves q1 and q2 constantly false. This is
clearly forcing ¬φEnv against all strategies of Env. Second, let σ̂2 be s.t. Env always requests
the scheduling of both task 1 and task 2, i.e. r1 and r2 are constantly true. It is easy to
see that this enforces ¬φSched against any strategy of Sched. So, there is no solution with
rule Win2. But clearly those strategies are also not compatible with the objectives of the
respective players, so this leaves the possibility to apply successfully the other rules. We now
consider a strategy profile which is a solution for all the rules except for AA.

Let (σ1, σ2) be strategies for player 1 and 2 respectively, such that the outcome of (σ1, σ2)
is "Env emits r1, then Sched emits q1, Env emits r2, then Sched waits one round and emits q2,
and repeat." If a deviation from this exact execution is observed, then the two players switch
to strategies σ̂1 and σ̂2 respectively, i.e. to the strategies that falsify the specification of the
other players. The reader can now convince himself/herself that (σ1, σ2) is a solution for Coop,
AG and RS∃(NE,SPE,Dom). Furthermore, we claim that σ1 is a solution for Win-under-Hyp
and RS∀(NE,SPE,Dom). But, assume now that Env is a device driver which requests the
scheduling of tasks by the scheduler of the kernel of an OS when the device that it supervised
requires it. Clearly (σ1, σ2), which is compatible with all the previous rules (but Win), makes
little sense in this context. On the other hand, φSched and φEnv are natural specifications for
such a system. So, there is clearly room for other synthesis rules!

Solutions provided by AA, our novel rule. For Env, we claim that the set of admissible
strategies, noted Adm(φEnv), are exactly those that (i) do not emit a new request before the
previous one has been acknowledged, and (ii) do always eventually emit a (new) request
when the previous one has been granted. Indeed as we have seen above, Env and Sched can
cooperate to satisfy φSched ∧ φEnv, so any strategy of Env which would imply the falsification
of φEnv is dominated and so it is not admissible. Also, we have seen that Env does not have
a winning strategy for φEnv, so Env cannot do better.

Now, let us consider the following strategy for Sched. (i) if pending requests r1 and r2
were made one round ago, then grant q1; if pending requests r1 and r2 were made three rounds
ago, then behave arbitrarily (it is no more possible to satisfy the specification); (ii) if pending
request r2 was made three rounds ago, but not r1, then grant q2; (iii) if pending r1 was

2 Also, it is easy to see that Env does not have a dominant strategy for his specification. So, considering
dominant strategies as best-effort strategies would not lead to a solution for this example. To find a
solution, we need to take into account the objectives of the other players.
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made three rounds ago, but not r2, then grant q1. We claim that this strategy is admissible
and while it is not winning against all possible strategies of Env, it is winning against all
admissible strategies of Env. So, this strategy enforces φSched against all reasonable strategies
of Env w.r.t. to his/her own objective φEnv. In fact, there is a whole set of such strategies
for Sched, noted WinAdmSched. Similarly, there is a whole set of strategies for Env which are
both admissible and winning against the admissible strategies of Sched, noted WinAdmEnv.
We prove in the next section that the solutions to AA are rectangular sets: they are exactly
the solutions in WinAdmSched×WinAdmEnv. This ensures that AA leads to resilient solutions:
players do not need to synchronize with the other players on a particular strategy profile but
they can arbitrarily choose inside their sets of strategies that are admissible and winning
against the admissible strategies of the other players.

5 Comparison of Synthesis Rules

AA AG∨,∧ Coop

RS∃,∀(NE, SPE,Dom)Win

Figure 1 Comparison of synthe-
sis rules.

In this section, we compare the synthesis rules to un-
derstand which ones yield solutions more often, and to
assess their robustness. Some relations are easy to estab-
lish; for instance, rules Win,AG∨,AG∧,AA imply Coop by
definition (and Thm. 1). We summarize the implication
relations between the rules in Fig. 1. We present the rules
AG∨,AG∧, and the variants of RS·(·) in one group, respec-
tively. A dashed arrow from A to B means that rule A
implies some rule in B; while a plain arrow means that A implies all rules in B (e.g. AA
implies AG∧ but not AG∨; while Win implies both rules.) An absence of path means that A
does not imply any variant of B. Thus the figure explains which approaches yield solutions
more often, by abstracting away the precise variants. The following theorem states the
correctness of our diagram.

I Theorem 2. The implication relations of Fig. 1 hold.

In the controller synthesis framework using two-player games between a controller and its
environment, some works advocate the use of environment objectives which the environment
can guarantee against any controller [7]. Under this assumption, Win-under-Hyp implies AA:

I Lemma 3. Let G = 〈A, φ1, φ2〉 be a two-player game. If player 2 has a winning strategy
for φ2 and Win-under-Hyp has a solution, then AA has a solution.

We now consider the robustness of the profiles synthesized using the above rules. An
AA-winning strategy profile σP is robust in the following sense: The set of AA-winning
profiles is rectangular, i.e. any combination of AA-winning strategies independently chosen
for each player, is an AA-winning profile. Second, if one replaces any subset of strategies
in AA-winning profile σP by arbitrary admissible strategies, the objectives of all the other
players still hold. Formally, a rectangular set of strategy profiles is a set that is a Cartesian
product of sets of strategies, given for each player. A synthesis rule is rectangular if the set of
strategy profiles satisfying the rule is rectangular. The RS rules require a specific definition
since player 1 has a particular role: we say that RS∀,∃(γ) is rectangular if for any strategy σ1
witnessing the rule, the set of strategy profiles (σ2, . . . , σn) ∈ ΣγG,σ1

s.t. G, σ1, . . . , σn |= φ1 is
rectangular. We show that apart from AA, only Win and RS∀(Dom) are rectangular.
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108 Assume-Admissible Synthesis

I Theorem 4. We have:
1. Rule AA is rectangular; and for all games G, AA-winning strategy profile σP , coalition

C ⊆ P, if σ′C ∈ AdmC(G), then G, σ−C , σ′C |=
∧
i∈−C φi.

2. The rules Win and RS∀(Dom) are rectangular; the rules Coop, AG∨, AG∧, RS∃(NE,SPE,Dom),
and RS∀(NE,SPE) are not rectangular.

6 Algorithm for Assume-Admissible Synthesis

We now recall the characterization of the outcomes of admissible strategy profiles given in [4],
and derive algorithms for the AA rule. We use the game of Fig. 2 as a running example for
this section. Clearly, none of the players of this game has a winning strategy for his own
objective when not taking into account the objective of the other player, but, as we will see,
both players have an admissible and winning strategy against the admissible strategies of
the other player, and so the AA rule applies.

s1 s2 s3

Figure 2 Game G with two players P =
{1, 2}. Player 1 controls the round states,
and has objective GFs2, and player 2 con-
trols the square state and has objective
GFs1.

The notion of value associated to the states of a
game plays an important role in the characterization
of admissible strategies and their outcomes [2, 4].
Fix a game G. A state s has value 1 for player i,
written Vali(s) = 1, if player i has a winning strategy
from s; Vali(s) = −1 if for all strategy profiles σP ∈
ΣP , OutG,s(σP) does not satisfy φi; and otherwise
Vali(s) = 0. A player j decreases its own value in
history h if there is a position k such that Valj(hk) >
Valj(hk+1) and hk ∈ Sj . We proved in [4], that admissible strategies do not decrease their
own values. Let us call such strategies value-preserving. In fact, if the current state has
value 1, there is a winning strategy which stays within the winning region; if the value is 0,
then although other players may force the play into states of value −1, a good strategy for
player i will not do this by itself.

I Lemma 5 ([4, Lem. 1]). For all games G, players i, and histories ρ, if last(ρ) ∈ Si and
σi ∈ Admi then Vali(δ(last(ρ), σi(ρ))) = Vali(last(ρ)).

For player i, let us define the sets Vi,x = {s | Vali(s) = x} for x ∈ {−1, 0, 1}, which
partition S. We define the set of value-preserving edges for player i as Ei = {(s, a) ∈ S×Act |
s ∈ Si ⇒ Vali(δ(s, a)) = Vali(s)}. Observe that value-preserving strategies for player i are
exactly those respecting Ei.

In our running example of Fig. 2, it should be clear that any strategy that chooses a
transition that goes to s3 is not admissible nor for Player 1 neither for Player 2, as by making
this choice both players are condemned to lose their own objective while their other choices
leave a chance to win; so the choice of going to s3 would decrease their own value. So, we
can already conclude that Player 2 always chooses s2 7→ s1, his only admissible strategy.

Not all value-preserving strategies are admissible: for Müller objectives, staying inside
the winning region does not imply the objective. Moreover, in states of value 0, admissible
strategies must visit states where other players can “help” satisfy the objective. Formally,
help states for player i are other players’ states with value 0 and at least two different
successors of value 0 or 1. Let Hi = {s ∈ S \ Si | Vali(s) = 0 ∧ ∃s′ 6= s′′. s′ ∈ δ(s,Act) ∧ s′′ ∈
δ(s,Act) ∧ Vali(s′) ≥ 0 ∧ Vali(s′′) ≥ 0}. Given this, the following lemma, adapted from [4],
characterizes the outcomes of admissible strategies. We denote by G(Ei) the set of runs that
respect Ei, i.e. G(

∨
(s,a)∈Ei

s ∧ X(δ(s, a))).
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I Lemma 6. For all games G, and players i, OutG ∩ Φi = OutG(Admi,Σ−i), where
Φi = G(Ei) ∧ (GF(Vi,1)⇒ φi) ∧ (GF(Vi,0)⇒ φi ∨ GF(Hi)).

In our running example of Fig. 2, a strategy of Player 1 which, after some point, always
chooses s1 7→ s1 is dominated by strategies that chose infinitely often s1 7→ s2. This is a
corollary of the lemma above. Indeed, while all those strategies only visit states with value 0
(and so do not decrease the value for Player 1), the strategy that always chooses s1 7→ s1
has an outcome which is loosing for Player 1 while the other strategies are compatible with
outcomes that are winning for Player 1. So, outcome of admissible strategies for Player 1
that always visit states with values 0, also visits s2 infinitely often. Using the fact that
strategies are value-preserving and the last observation, we can now conclude that both
players have (admissible) winning strategies against the admissible strategies of the other
players. For instance when Player 1 always chooses to play s1 7→ s2, he wins against the
admissible strategies of Player 2.

Note that Φi can be decomposed into a safety condition Si = G(Ei) and a prefix indepen-
dent condition Mi = (GF(Vi,1)⇒ φi) ∧ (GF(Vi,0)⇒ (φi ∨ GF(Hi)) which can be expressed by
a Müller condition described by a circuit of polynomial size.

For player i, we let Ωi = OutG(Admi)∧(OutG(Adm−i)⇒ φi), which describes the outcomes
of admissible strategies of player i, which satisfy objective φi under the hypothesis that they
are compatible with other players’ admissible strategies. In fact, it follows from [4] that Ωi
captures the outcomes of AA-winning strategies for player i.

I Lemma 7. A player i strategy is AA-winning iff it is winning for objective Ωi.

Objective Ωi is not directly expressible as a Müller condition, since Φi and
∧
j Φj contain

safety parts. Nevertheless, the information whether G(Ei), or G(∪j 6=iEj) has been violated
can be encoded in the state space. Formally, for each player i, we define game G′i by taking
the product of G with {>, 0,⊥}; that is, the states are S× {>, 0,⊥}, and the initial state
(sinit, 0). The transitions are defined as for G for the first component; while from state (s, 0),
any action a outside Ei leads to (δ(s, a),⊥), and any action a outside Ej , j 6= i, leads to
(δ(s, a),>). The second component is absorbing at ⊥,>. We now rewrite the condition Ωi
for G′i as Ω′i =

(
GF(S× {0}) ∧M ′i ∧ (∧j 6=iM ′j ⇒ φ′i)

)
∨ (GF(S× {>}) ∧M ′i), where M ′i is the

set of runs of G′i whose projections to G are in Mi, and similarly for φ′i.
Now, checking AA-synthesis is reduced to solving games with Müller conditions. Moreover,

we also obtain a polynomial-time algorithm when all objectives are Büchi conditions, by
showing that Ω′i is expressible by a parity condition with four colors.

I Theorem 8. AA-synthesis in multiplayer games is PSPACE-complete, and P-complete for
Büchi objectives. Player i wins for objective Ωi in G iff he wins for objective Ω′i in G′i.

7 Abstraction

We present abstraction techniques to compute assume-admissible strategy profiles following
the abstract interpretation framework [11]; see [18] for games. Abstraction is a crucial feature
for scalability in practice, and we show here that the AA rule is amenable to abstraction
techniques. The problem is not directly reducible to computing AA-winning strategies in
abstract games obtained as e.g. in [13]; in fact, it can be easily seen that the set of admissible
strategies of an abstract game is incomparable with those of the concrete game in general.
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Overview. Informally, to compute an AA-winning strategy for player i, we construct an
abstract game A′i with objective Ω′i s.t. winning strategies of player i in A′i map to AA-
winning strategies in G. To define A′, we re-visit the steps of the algorithm of Section 6 by
defining approximations computed on the abstract state space. More precisely, we show how
to compute under- and over-approximations of the sets Vx,k, namely V x,k and V x,k, using
fixpoint computations on the abstract state space only. We then use these sets to define
approximations of the value preserving edges (Ek and Ek) and those of the help states (Hk

and Hk). These are then combined to define objective Ω′k s.t. if player k wins the abstract
game for Ω′k, then he wins the original game for Ω′k, and thus has an AA-winning strategy.

Abstract Games. Consider G = 〈A, (φi)i∈P〉 with A = 〈P, (Si)i∈P , sinit, (Acti)i∈P , δ〉 where
each φi is a Müller objective given by a family of sets of states (Fi)i∈P . Let Sa =

⊎
i∈P Sa

i

denote a finite set, namely the abstract state space. A concretization function γ : Sa 7→ 2S is
a function such that:
1. the abstract states partitions the state space:

⊎
sa∈Sa γ(sa) = S,

2. it is compatible with players’ states: for all players i and sa ∈ Sa
i , γ(sa) ⊆ Si.

We define the corresponding abstraction function α : S→ Sa where α(s) is the unique state
sa s.t. s ∈ γ(sa). We also extend α, γ naturally to sets of states; and to histories, by replacing
each element of the sequence by its image.

We further assume that γ is compatible with all objectives Fi in the sense that the
abstraction of a set S is sufficient to determine whether S ∈ Fi: for all i ∈ P , for all S, S′ ⊆ S
with α(S) = α(S′), we have S ∈ Fi ⇔ S′ ∈ Fi. If the objective φi is given by a circuit, then
the circuit for the corresponding abstract objective φa

i is obtained by replacing each input on
state s by α(s). We thus have ρ ∈ φi if, and only if, α(ρ) ∈ φa

i .
The abstract transition relation ∆a induced by γ is defined by: (sa, a, ta) ∈ ∆a ⇔

∃s ∈ γ(sa),∃t ∈ γ(ta), t = δ(s, a). We write post∆(sa, a) = {ta ∈ Sa | ∆(sa, a, ta)}, and
post∆(sa,Act) = ∪a∈Actpost∆(sa, a). For each coalition C ⊆ P, we define a game in which
players C play together against coalition −C; and the former resolves non-determinism in ∆a.
Intuitively, the winning region for C in this abstract game will be an over-approximation of
the original winning region. Given C, the abstract arena AC is 〈{C,−C}, (SC , S−C), α(sinit),
(ActC ,Act−C), δa,C〉, where SC =

(⋃
i∈C Sa

i

)
∪
(⋃

i∈P Sa
i × Acti

)
, S−C =

⋃
i 6∈C Sa

i ; and ActC =(⋃
i∈C Acti

)
∪ Sa and Act−C =

⋃
i∈−C Acti. The relation δa,C is given by: if sa ∈ Sa,

then δa,C(sa, a) = (sa, a). If (sa, a) ∈ Sa × Act and ta ∈ Sa satisfies (sa, a, ta) ∈ ∆a then
δa,C((sa, a), ta) = ta; while for (sa, a, ta) 6∈ ∆a, the play leads to an arbitrarily chosen state ua

with ∆(sa, a, ua). Thus, from states (sa, a), coalition C chooses a successor ta.
We extend γ to histories of AC by first removing states of (Sa

i × Acti); and extend α

by inserting these intermediate states. Given a strategy σ of player k in AC , we define its
concretization as the strategy γ(σ) of G that, at any history h of G, plays γ(σ)(h) = σ(α(h)).
We write WinD(AC , φa

k) for the states of Sa from which the coalition D has a winning strategy
in AC for objective φa

k, with D ∈ {C,−C}. Informally, it is easier for coalition C to achieve
an objective in AC than in G, that is, WinC(AC , φa

k) over-approximates WinC(A, φk):

I Lemma 9. If the coalition C has a winning strategy for objective φk in G from s then it
has a winning strategy for φa

k in AC from α(s).

Value-Preserving Strategies. We now provide under- and over-approximations for value-
preserving strategies for a given player. We start by computing approximations V k,x and V k,x
of the sets Vk,x, and then use these to obtain approximations of the value-preserving edges Ek.
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Fix a game G, and a player k. Let us define the controllable predecessors for player k
as CPREAP\{k},k(X) = {sa ∈ Sa

k | ∃a ∈ Actk, post∆(sa, a) ⊆ X} ∪ {sa ∈ Sa
P\{k} | ∀a ∈

Act−k, post∆(sa, a) ⊆ X}. We let

V k,1 = Win{k}(A{k}, φa
k), V k,−1 = Win∅(A∅,¬φa

k),
V k,0 = WinP\{k}(AP\{k},¬φa,k) ∩WinP(AP , φa

k),
V k,1 = Win{k}(AP\{k}, φa

k), V k,−1 = Win∅(AP ,¬φa
k)

V k,0 = νX.
(
CPREAP\{k},k(X ∪ V k,1 ∪ V k,−1) ∩ F

)
,

where F = WinP\{k}(A{k},¬φa
k) ∩WinP(A∅, φa

k).

The last definition uses the νX.f(X) operator which is the greatest fixpoint of f . These sets
define approximations of the sets Vk,x. Informally, this follows from the fact that to define
e.g. V k,1, we use the game A{k}, where player k resolves itself the non-determinism, and
thus has more power than in G. In contrast, for V k,1, we solve AP\{k} where the adversary
resolves non-determinism. We state these properties formally:

I Lemma 10. For all players k and x ∈ {−1, 0, 1}, γ(V k,x) ⊆ Vk,x ⊆ γ(V k,x).

We thus have ∪xγ(V k,x) = S (as ∪xVk,x = S) but this is not the case for V k,x; so let us
define V = ∪j∈{−1,0,1}V k,j . We now define approximations of Ek based on the above sets.

Ek = {(sa, a) ∈ Sa × Act | sa ∈ Sa
k ⇒ ∃x, sa ∈ V k,x, post∆(sa, a) ∩ ∪l≥xV k,l 6= ∅},

Ek = {(sa, a) ∈ Sa × Act | sa ∈ Sa
k ⇒ ∃x, sa ∈ V k,x, post∆(sa, a) ⊆ ∪l≥xV k,l}

∪{(sa, a) | sa 6∈ V }.

Intuitively, Ek is an over-approximation of Ek, and Ek under-approximates Ek when
restricted to states in V (notice that Ek contains all actions from states outside V ). In fact,
our under-approximation will be valid only inside V ; but we will require the initial state to
be in this set, and make sure the play stays within V . We show that sets Ek and Ek provide
approximations of value-preserving strategies.

I Lemma 11. For all games G, and players k, Stratk(Ek) ⊆ γ(Stratk(Ek)), and if sinit ∈
γ(V ), then ∅ 6= γ(Stratk(Ek)) ⊆ Stratk(Ek).

Abstract Synthesis of AA-winning strategies. We now describe the computation of AA-
winning strategies in abstract games. Consider game G and assume sets Ei, Ei are computed
for all players i. Roughly, to compute a strategy for player k, we will constrain him to play
only edges from Ek, while other players j will play in Ej . By Lemma 11, any strategy of
player k maps to value-preserving strategies in the original game, and all value-preserving
strategies for other players are still present. We now formalize this idea, incorporating the
help states in the abstraction.

We fix a player k. We construct an abstract game in which winning for player k
implies that player k has an effective AA-winning strategy in G. We also define A′k =
〈{{k},−k}, (S′ak,S′

a
−k ∪ S′a × Act), α(sinit), (Actk,Act−k), δAk〉, where S′a = Sa × {⊥, 0,>};

thus we modify AP\{k} by taking the product of the state space with {>, 0,⊥}. Intuitively, as
in Section 6, initially the second component is 0, meaning that no player has violated the value-
preserving edges. The component becomes ⊥ whenever player k plays an action outside of Ek;
and > if another player j plays outside Ej . We extend γ to A′k by γ((sa, x)) = γ(sa)× {x},
and extend it to histories of A′k by first removing the intermediate states S′a × Act. We thus
see A′k as an abstraction of A′ of Section 6.
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In order to define the objective of A′k, let us first define approximations of the help states
Hk, where we write ∆(sa,Act, ta) to mean ∃a ∈ Act,∆(sa, a, ta).

Hk = {sa ∈ V k,0 \ Sa
k | ∃ta, ua ∈ V k,0 ∪ V k,1. ∆(sa,Act, ta) ∧∆(sa,Act, ua)}

Hk = {sa ∈ V k,0 \ Sa
k | ∃a 6= b ∈ Act, post∆(sa, a) ∩ post∆(sa, b) = ∅,

post∆(sa, a) ∪ post∆(sa, b) ⊆ V k,0 ∪ V k,1}.

We define the following approximations of the objectives M ′k and Ω′k in A′k.

M ′k = (GF(V k,1)⇒ φa
k) ∧

(
GF(V k,0)⇒ (φa

k ∨ GF(Hk))
)
,

M
′
k = (GF(V k,1)⇒ φa

k) ∧
(
GF(V k,0)⇒ (φa

k ∨ GF(Hk))
)
,

Ω′k =
(

GF(Sa × {0}) ∧M ′k ∧
(∧

j 6=kM
′
j ⇒ φa

k

))
∨ (GF(Sa × {>}) ∧M ′k) .

I Theorem 12. For all games G, and players k, if sinit ∈ V , and player k has a winning
strategy in A′k for objective Ω′k, then he has a winning strategy in G′k for Ωk; and thus a
AA-winning strategy in G.

Now, if Theorem 12 succeeds to find an AA-winning strategy for each player k, then the
resulting strategy profile is AA-winning.

8 Conclusion

In this paper, we have introduced a novel synthesis rule, called the assume admissible
synthesis, for the synthesis of strategies in non-zero sum n players games played on graphs
with omega-regular objectives. We use the notion of admissible strategy, a classical concept
from game theory, to take into account the objectives of the other players when looking
for winning strategy of one player. We have compared our approach with other approaches
such as assume guarantee synthesis and rational synthesis that target the similar scientific
objectives. We have developed worst-case optimal algorithms to handle our synthesis rule
as well as dedicated abstraction techniques. As future works, we plan to develop a tool
prototype to support our assume admissible synthesis rule.
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