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Abstract
This paper describes a synthesis algorithm tailored to the construction of choice-free Petri nets
from finite persistent transition systems. With this goal in mind, a minimised set of simplified
systems of linear inequalities is distilled from a general region-theoretic approach, leading to al-
gorithmic improvements as well as to a partial characterisation of the class of persistent transition
systems that have a choice-free Petri net realisation.
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1 Introduction, some examples, and basic notation

In system analysis, the main task is to examine a given system’s properties by means of a
behavioural description. By contrast, in system synthesis, the task is to construct – preferably
automatically – an implementing system from a given behavioural specification. The benefit
of such an approach is that a successfully synthesised system is “correct by design”. There
is no need to re-examine its behavioural properties, because they are known to hold by
construction. If synthesis fails, this may also help to delineate the true reasons of the failure,
paving the way to modifications of the given input behaviour allowing for a more successful
subsequent synthesis.

Synthesis is being applied in many different areas (e.g., [11, 19]). In general, however, since
behavioural descriptions may be extremely (even infinitely) large, synthesis algorithms could
be impossible to obtain by theoretical undecidability [14], or at least be very time-consuming.
Also, synthesis suffers from nondeterminism, since for a given behavioural specification, many
different implementations may exist. Moreover, if there is a desire for an implementation
to enjoy further properties, detecting the existence of a suitable one (if possible) tends to
increase the difficulty of a synthesis problem.

We investigate a special, decidable instance of system synthesis. It is assumed that a
behavioural specification is given in the form of a finite, edge-labelled transition system,
or lts, for short. For example, we could be interested in the transition system TS1 shown
on the left-hand side of Figure 1. We shall be asking whether or not such an lts can be
implemented by an unlabelled Petri net having a specific shape. The shape we shall be
aiming at is choice-freeness, meaning that every place has at most one outgoing transition.
For example, both Petri nets N1 and N ′1 shown in Figure 1 implement TS1, in the sense that
their reachability graphs are isomorphic to TS1. However, N1 is choice-free while N ′1 is not.
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Figure 1 The lts TS1 is solved by the Petri net N1. It is also solved by N ′
1. The net N ′′

1 is not
(in this paper) accepted as a solution of TS1 because its transitions are non-injectively labelled.
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Figure 2 The net N2 solves TS2. No plain solution of TS2 exists. No solution of TS0 exists.
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Figure 3 The Petri net N3 solves the lts TS3. No pure solution of TS3 exists.

Being related to arbiter-freeness [16], choice-freeness is interesting in a digital design
context [11]. Choice-free Petri nets are also precisely the class of nets allowing a fully
distributed [1] implementation. The problem has been addressed and solved for special
classes of choice-free nets in previous papers by the present authors, as follows: for connected
marked graphs and T-systems in [5, 7]; for bounded, reversible choice-free nets (i.e., where it
is always possible to come back to the initial state) in [6, 8]; and for connected, bounded,
live choice-free nets (i.e., where no transition may become dead) in [9]. In the present paper,
this framework will be generalised to bounded choice-free nets, also allowing for non-live
transitions.

We shall be concerned with exact synthesis, disallowing that two or more transitions carry
the same label. This excludes nets such as N ′′1 in Figure 1 as implementations. Moreover, we
shall take into consideration the full class of place/transition systems [18]. For example, the
lts TS2 depicted in Figure 2 can be solved by N2 with an arc having weight 2 from p3 to c,
but not by any plain (meaning: having arc weights at most 1) Petri net. Similarly, the lts
TS3 shown in Figure 3 can be solved by N3, but not by a pure (meaning: side-place free)
Petri net. Observe that there are also specifications which cannot be implemented by any
unlabelled Petri net, such as the lts TS0 shown on the right-hand side of Figure 2 ([3]). The
proofs of partial or full unsolvability are not hard and are left to the reader; [10] may help.

For easy reference, basic formal definitions are summarised in the remainder of this
section. Important concepts with strong impact on the formal development of this paper will
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130 Synthesis of Bounded Choice-Free Petri Nets

be introduced in-line, that is, in the text explaining their relevance. To facilitate spotting
them, such notions will be emphasised in italic at the point of their formal introduction.

I Definition 1.1 (Basic notations and conventions used in this paper). A finite labelled
transition system with initial state is a tuple TS = (S,→, T, s0) with nodes S (a finite set of
states), edge labels T , edges→⊆ (S×T ×S), and an initial state s0 ∈ S. A label t is enabled
at s ∈ S, written formally as s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→, and backward enabled at s,
written as [t〉s, if ∃s′ ∈ S : (s′, t, s) ∈→. A state s′ is reachable from s through the execution
of σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path from s to s′ whose edges are labelled
consecutively by σ. The set of states reachable from s is denoted by [s〉. A (firing) sequence
σ ∈ T ∗ is allowed from a state s, denoted by s[σ〉, if there is some state s′ such that s[σ〉s′.
The language of TS is the set L(TS) = {σ ∈ T ∗ | s0[σ〉}. Two lts TS1 = (S1,→1, T, s01)
and TS2 = (S2,→2, T, s02) are language-equivalent if L(TS1) = L(TS2), and isomorphic if
there is a bijection ζ : S1 → S2 with ζ(s01) = s02 and (s, t, s′) ∈→1⇔ (ζ(s), t, ζ(s′)) ∈→2,
for all s, s′ ∈ S1.

An initially marked Petri net is denoted as N = (P, T, F,M0) where P is a finite set of
places, T is a finite set of transitions, F is the flow function F : ((P × T ) ∪ (T × P ))→ N
specifying the arc weights, and M0 is the initial marking (where a marking is a mapping
M : P → N, indicating the number of tokens in each place). N is plain if no arc weight
exceeds 1; pure or side-place free if ∀p ∈ P : (p•∩•p) = ∅, where p• = {t ∈ T | F (p, t)>0} and
•p = {t ∈ T | F (t, p)>0}; and CF (choice-free [12, 20]) or ON (place-output-nonbranching
[8]) if ∀p ∈ P : |p•| ≤ 1. A transition t ∈ T is enabled at a marking M , denoted by M [t〉,
if ∀p ∈ P : M(p) ≥ F (p, t). The firing of t leads from M to M ′, denoted by M [t〉M ′, if
M [t〉 and M ′(p) = M(p)− F (p, t) + F (t, p). This can be extended, as usual, to M [σ〉M ′ for
sequences σ ∈ T ∗, and [M〉 denotes the set of markings reachable from M . The reachability
graph RG(N) of N is the labelled transition system with the set of vertices [M0〉, initial
state M0, label set T , and set of edges {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧M [t〉M ′}. If an lts
TS is isomorphic to the reachability graph of a Petri net N , we say that N solves TS. All
notions defined for labelled transition systems apply to Petri nets through their reachability
graphs. J 1.1

2 Basic synthesis of Petri nets, recapitulated

Certain classes of lts can be excluded from consideration up front. For instance, it might
happen that in some transition system TS = (S,→, T, s0), some state s is not reachable from
the initial state s0. Such an lts can never be solved by a Petri net, since the reachability
graph is defined by adding all reachable markings (and no others). Hence we shall adopt, for
TS, total reachability, meaning that ∀s ∈ S : s ∈ [s0〉.

Nondeterminism can never occur in the reachability graph of a Petri net, because if
M [t〉M ′, then the successor marking M ′ is uniquely determined by M and t. Generalising
this, let Ψ(σ) denote the Parikh vector of a sequence σ ∈ T ∗, i.e., the vector with index set T
which returns the number of occurrences of t ∈ T in σ, and call an lts strongly deterministic
if, whenever Ψ(τ) = Ψ(τ ′) and either s[τ〉s′ and s[τ ′〉s′′ or s′[τ〉s and s′′[τ ′〉s, then s′ = s′′.

If some sequence τ is cyclic in the reachability graph of a Petri net, i.e., leads from some
marking M to itself, M [τ〉M , then (according to standard Petri net theory) any sequence
which is Parikh-proportional to τ is also cyclic, at any marking at which it is enabled. Let
us call an lts strongly cycle-consistent if the same property holds for it.

For the sake of brevity, let us call an lts decent if it is totally reachable, strongly
deterministic, and strongly cycle-consistent. A non-decent lts has no possible Petri net
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solution, and it can therefore be interesting to first check this structural constraint in order
to avoid applying uselessly a costly regional analysis. This observation is exploited by some
tools (e.g. [21]).

A very general (but also expensive) algorithm for synthesising a Petri net from a labelled
transition system can be described as follows.

For a given finite and decent lts TS = (S,→, T, s0), we start constructing a net by letting
it have T as its set of transitions, and no places. Such a net has the language T ∗, which
(normally) contains many more words than L(TS). In order to exclude words disallowed
in TS, and in order to guarantee a bijection between TS and the reachability graph of
the hoped-for net N , a place will be introduced for every separation problem in TS as
follows.

An event/state separation problem consists of an ordered pair (s, t) ∈ S×T with ¬(s[t〉).
There are at most |S|·|T | such problems. For every event/state separation problem,
N needs to have at least one place p such that M(p) < F (p, t) for the marking M

corresponding to state s, where F (p, t) is the weight of the arc from p to t.

A state separation problem consists of a pair of states {s, s′} with s 6= s′. There are
1
2 ·(|S|·(|S|−1)) such problems. For every state separation problem, N needs to contain
at least one place p such that M(p) 6= M ′(p) for the markings M and M ′ corresponding
to states s and s′, respectively.

The notion of a “place” is not known for TS. A region [2] of an lts (S,→, T, s0) is
a triple (R,B,F) ∈ (S → N, T → N, T → N) such that for all s[t〉s′, R(s) ≥ B(t) and
R(s′) = R(s)−B(t)+F(t). A region models a place p, in the sense that B(t) models F (p, t),
F models F (t, p), and R(s) models the token count of p in the marking corresponding to
s.

A straightforward algorithm inspects every separation problem in turn and tries to solve
a linear inequality system for it. The unknowns are the arc weights of a place p with
respect to every transition in T , and the initial marking M0(p). The inequality system
arises from the need to guarantee the region properties (giving rise to many inequalities),
and from the need to guarantee a separation property (giving rise to one or two additional
inequalities). If these systems are solvable for every separation problem, we find a net
which is isomorphic to TS, otherwise such a net does not exist. If they are solvable
for every event/state separation problem, then we can construct a Petri net which is
language-equivalent to TS.

Thus, in general, we need to solve O(|S|2) inequality systems, each with more than 2 · |T |
unknowns. In the present paper, we ask whether a given finite, decent lts has a choice-free
Petri net solution. If such a requirement is added, the algorithm could become more complex;
but the aim of this paper is to demonstrate that, knowing what solutions we are looking for
may also work the other way, namely focussing the search and speeding up the region-based
general algorithm.

The reachability graphs of choice-free Petri nets necessarily satisfy an additional set of
properties which are not shared by all finite labelled transition systems, even if they are
decent. This excludes many decent ones from consideration. In the next Section 3, we shall
gather a set of such properties. In Section 4, we describe how these properties and the special
shape of the places (and regions) of a choice-free net can be exploited in order to simplify
the region inequalities.
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132 Synthesis of Bounded Choice-Free Petri Nets

3 Persistent transition systems, small cycles, and CF Petri nets

The reachability graphs of choice-free Petri nets are persistent, and persistent lts enjoy a
property of small cycles, as will be described next.

An lts TS = (S,→, T, s0) is called persistent [17] if, whenever s[a〉 and s[b〉 with a 6= b,
then also s[ab〉s′ and s[ba〉s′ for some common state s′. For example, all of the lts shown in
figures 1–3 (including TS0) are persistent. Any choice-free net N = (S, T, F,M0) is persistent,
because if a 6= b for a, b ∈ T , then there is no common pre-place p of a and b, i.e., for all
p ∈ P , either F (p, a) = 0 or F (p, b) = 0, or both, which directly entails the persistence
property, if we add the strong determinism of any Petri net.

The property of small cycles generalises the following observations. First, define a home
state of TS to be a state s̃ ∈ S which satisfies ∀s ∈ [s0〉 : s̃ ∈ [s〉. Finite persistent lts always
have at least one home state (with an easy proof; see, e.g. corollary 2 of [4]). The sets of home
states of TS0, TS1, TS2 and TS3 of figures 1–3 are, respectively, {s5}, {s3}, {s1, s2, s3, s4},
and {s2}. Next, define a nontrivial cycle s[σ〉s around a state s ∈ [s0〉 to be small if there
is no nontrivial cycle s′[σ′〉s′ with s′ ∈ [s0〉 and Ψ(σ′) � Ψ(σ), where � = (≤ ∩ 6=). For
example, in TS2, both s3[bac〉s3 and s3[abc〉s3, and also s1[acb〉s1 (and others) are small
cycles, but s1[acabcb〉s1 (and others) are not. Notice that in TS2, all small cycles have the
same Parikh vector. In TS3, by contrast, s1[b〉s1 is small, s2[b〉s2 is small, s2[c〉s2 is small,
but s2[bc〉s2 is not. Notice that in TS3, all small cycles either have the same Parikh vectors,
or are label-disjoint, where two Parikh vectors are label-disjoint if their supports are disjoint,
and the support of a Parikh vector Ψ: T → N is defined as the set {t ∈ T | Ψ(t) > 0}.

This property is general, as follows.

I Theorem 3.1 (Cycle decomposition at home states). Let TS = (S,→, T, s0) be a finite,
decent, persistent lts. Then there exist a state s̃ ∈ [s0〉 and a finite set C = {s̃ [ρi〉s̃ | 1 ≤ i ≤ n}
of mutually label-disjoint small cycles around s̃, with n ≤ |T |, such that for any state s ∈ [s0〉,
the Parikh vector of any cycle s[ρ〉s decomposes as Ψ(ρ) =

∑n
i=1 ki ·Ψ(ρi) for some ki ∈ N.

Proof. From theorem 2 of [4], observing that the preconditions of this result are implied by
finiteness, decency, and persistence, and keeping in mind that small cycles have been called
hypersimple in [4]. J

In fact, the results of [4] also show that for s̃, any home state can be chosen and that the
set of Parikh vectors in C is independent of the choice of home state. For example, in TS2, we
may choose s̃ = s1 and C = {s1[acb〉s1} with |C| = 1, and in TS3, s̃ = s2 is the only possible
choice, and we get C = {s2[b〉s2, s2[c〉s2} with |C| = 2. In TS0 and TS1, s̃ = s5 and s̃ = s3
(respectively), and we have C = ∅ in both cases. If a persistent Petri net N = (S, T, F,M0)
is bounded, i.e., has a finite reachability graph RG(N), then it satisfies the premises of the
previous theorem. Hence the cycles of RG(N) can be decomposed in the same way.

The decomposition theorem has implications for the distribution of live transitions in
TS. A label t ∈ T is live if ∀s ∈ [s0〉∃s′ ∈ [s〉 : s′[t〉. If TS is finite, decent, and persistent,
then live transitions are exactly those that can be found in one of the cycles in C. All others
(for instance, a and d in TS3, but also a and b in TS0) can never again be executed, once a
home state has been reached. We cast these notions in the following definition.

I Definition 3.2 (The small cycles property P{Υ1, . . . ,Υn}). Let TS = (S,→, T, s0) be an
lts. For some n ∈ N and for all 1 ≤ i ≤ n, let Υi be a function Υi : T → N such that these
functions are mutually label-disjoint. TS satisfies property P{Υ1, . . . ,Υn} iff {Υ1, . . . ,Υn}
is the set of Parikh vectors of small cycles of TS. J 3.2
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If an lts TS satisfies P{Υ1, . . . ,Υn}, then we shall henceforth denote by Ti the support
of Υi and by T0 the set T \ (T1 ∪ . . . ∪ Tn). By definition, these n + 1 sets are mutually
disjoint. In case TS is finite, decent, and persistent, the set on non-live transitions is exactly
T0. For example, TS2 and TS0 in Figure 2 satisfy P{Υ1} and P∅, respectively, where Υ1
maps a, b and c to 1. Also, T0 is ∅ in TS2 and {a, b} in TS0. In Figure 3, TS3 satisfies
P{Υ1,Υ2} where Υ1 = (a 7→ 0, b 7→ 1, c 7→ 0, d 7→ 0), Υ2 = (a 7→ 0, b 7→ 0, c 7→ 1, d 7→ 0),
and T0 = {a, d}.

A coherent notion of distance between states can be introduced as follows.

I Definition 3.3 (Modulo vectors and distances). Let TS = (S,→, T, s0) be a finite, decent,
and persistent lts satisfying P{Υ1, . . . ,Υn}.
For a natural T -vector Υ, let

Υ mod {Υ1, . . . ,Υn} = Υ−
∑

i∈{1,...,n}

( min
t∈Ti

( Υ(t)÷Υi(t) ) ) ·Υi

be the natural T -vector obtained by subtracting each of the vectors Υi as often as possible
from Υ (in the formula, ÷ denotes integer division). Let r ∈ S, s ∈ [r〉 and r[α〉s be a path
of TS. Then ∆r,s = Ψ(α) mod {Υ1, . . . ,Υn} is called the distance between r and s. J 3.3

The following lemma shows that ∆r,s does not depend on the path chosen between r
and s.

I Lemma 3.4 (istances are well-defined). Let TS = (S,→, T, s0) be a finite, decent, and
persistent lts satisfying P{Υ1, . . . ,Υn}.
Let r[σ〉s and r[σ′〉s be two paths between the same states r, s ∈ [s0〉.
Then Ψ(σ) mod {Υ1, . . . ,Υn} = Ψ(σ′) mod {Υ1, . . . ,Υn}.

For the proof of this lemma, we use Keller’s theorem [15], a basic tool for analysing
persistent systems. For sequences σ, τ ∈ T ∗, let τ−• σ denote the sequence left after erasing
successively in τ the leftmost occurrences of all symbols from σ, read from left to right.
Keller’s theorem states that in a deterministic and persistent lts, if s[τ〉 and s[σ〉 for some
s ∈ [s0〉, then Ψ(τ(σ−• τ)) = Ψ(σ(τ−• σ)) and s[τ(σ−• τ)〉ŝ and s[σ(τ−• σ)〉ŝ for some state
ŝ ∈ [s0〉.

Proof. Applied to r[σ〉s and r[σ′〉s, Keller’s theorem yields s[σ−• σ′〉ŝ and s[σ′−• σ〉ŝ. The
definition of −• implies that σ−• σ′ and σ′−• σ are label-disjoint. Lemma 4 in [4] states that in
a finite, deterministic, strongly cycle-consistent and persistent lts, two paths between two
different states always have a common label. This implies s = ŝ.

Thus, both s[σ−• σ′〉s and s[σ′−• σ〉s are cyclic, and by Theorem 3.1, both Ψ(σ−• σ′) and
Ψ(σ′−• σ) are linear combinations of Υ1, . . . ,Υn. On T0, they both must be null, so that
Ψ(σ) and Ψ(σ′) coincide on T0. On each Ti with i ∈ {1, . . . , n}, since σ−• σ′ and σ′−• σ are
label-disjoint, at least one of them must be the empty sequence; hence, on Ti, one of Ψ(σ) or
Ψ(σ′) must be greater or equal to the other, by a multiple of Υi. J

In Figure 4, TS4 satisfies P{Υ1,Υ2} where Υ1 = (a 7→ 0, b 7→ 1, c 7→ 1, d 7→ 0, e 7→
0) = Ψ(bc) and Υ2 = (a 7→ 0, b 7→ 0, c 7→ 0, d 7→ 1, e 7→ 1) = Ψ(de). There are two Parikh-
incomparable paths s0[bac〉s and s0[dae〉s, and no smaller ones from s0 to s. Yet the distance
∆s0,s is uniquely defined as the Parikh vector ∆s0,s = (a 7→ 1, b 7→ 0, c 7→ 0, d 7→ 0, e 7→ 0) =
Ψ(a), and it can be obtained either by subtracting Υ1 from Ψ(bac) or by subtracting Υ2
from Ψ(dae).
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Figure 4 Upper part: Two lts which are PN-solvable but have no choice-free Petri net solutions.
Lower part: Solutions N4 of TS4 (left-hand side) and N5 of TS5 (right-hand side).

The properties defined thus far (total reachability, determinism, cycle-consistency, per-
sistence, and the small cycle property) are shared by all reachability graphs of bounded
persistent Petri nets. The reachability graphs of bounded choice-free Petri nets enjoy further
(stronger) properties, two of which, the prime cycle property and the distance property, are
described in the remainder of this section. If any of these properties is violated for some lts,
then it is certain that choice-free synthesis (to be defined in the next section) will fail for it.

I Definition 3.5 (Prime cycles). Let TS = (S,→, T, s0) be any lts and s[σ〉s a cycle in
it. This cycle is called prime if gcd{Ψ(σ)(t) | t ∈ T} = 1 (where gcd denotes the greatest
common divisor). J 3.5

I Lemma 3.6 (Prime cycle property). In the reachability graph of a bounded choice-free net,
all small cycles are prime.

Proof. Lemma 16 in [20] states that in a choice-free net (P, T, F,M0), if there is a T-semiflow
X (i.e., a T -indexed vector X ≥ 0 such that ∀p ∈ P :

∑
t∈T (F (t, p) − F (p, t)) ·X(t) = 0),

and a firing sequence M0[σ〉M with Ψ(σ) ≥ X, then it is possible to rearrange σ in such
a way that M0[σ′〉M [ρ〉M with Ψ(ρ) = X and Ψ(σ′ρ) = Ψ(σ). This implies that at home
states, non-prime cycles can be factored out into a nontrivial initial part followed by a prime
cycle executing exactly X, and hence are not small. J

This is illustrated by TS5 shown on the right-hand side of Figure 4. It is finite, decent,
persistent, and satisfies P{Υ1} with Υ1 = (a 7→ 2, b 7→ 2, c 7→ 2). It is PN-solvable by N5,
as also shown in Figure 4, but, as a consequence of Lemma 3.6, may not be solved by a
choice-free net.

I Definition 3.7 (Parikh-minimal paths). Let TS = (S,→, T, s0) be any lts, let r ∈ S, let
s ∈ [r〉, and let r[σ〉s be a path from r to s. The latter is called Parikh-minimal if there is
no path r[σ′〉s with Ψ(σ′) � Ψ(σ). J 3.7

The following lemma implies that in choice-free nets, the distance ∆r,s between two states
r and s agrees with the minimal Parikh vector of any path from r to s. In particular, unlike
in TS4, there are no Parikh-incomparable Parikh-minimal paths between the same states.
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Figure 5 A general pure (h = 0) or non-pure (h > 0) choice-free place with initial marking µ0.

I Lemma 3.8 (Distance property). In the reachability graph RG(N) of a bounded choice-free
net N , if r[σ〉s is a Parikh-minimal path, then Ψ(σ) = ∆r,s. Also, if q[ρ〉q is a small cycle
in RG(N), then Ψ(σ) 6≥ Ψ(ρ).

Proof. This again follows from an iterated application of Lemma 16 in [20]. J

For example, the lts TS4 shown in Figure 4 is PN-solvable (by N4, also shown in
the figure), finite, decent, persistent, and satisfies P{Υ1,Υ2} as already mentioned, but
may not be solved by a choice-free net, since, for instance, s0[bac〉s is Parikh-minimal but
Ψ(bac) 6= ∆s0,s = Ψ(a); also, Ψ(bac) ≥ Υ1 = (a 7→ 0, b 7→ 1, c 7→ 1, d 7→ 0, e 7→ 0).

4 Choice-free synthesis

In this section, it will be shown how the special form of the target places of a hoped-for
choice-free Petri net solving a given lts can be exploited in order to reduce the number, and
to simplify the shape, of the linear inequality systems that need to be solved. Concretely,
let us consider an lts TS = (S,→, T, s0) which is finite, decent, persistent, and satisfies
P{Υ1, . . . ,Υn}. We shall analyse when and how one can synthesise a corresponding choice-
free net N = (P, T, F,M0). As before, the set of transitions of N is the same as the set of
labels of TS. Since N is intended to be choice-free, every place p ∈ P has the general form
shown in Figure 5, with x ∈ T as its only outgoing transition, and {a1, . . . , am} = T \ {x}.
All arc weight parameters k, h, k1, k2, . . . , km and the initial marking µ0 of p are required to
be semipositive, and they are the unknowns of the synthesis. If p is used for preventing x at
some state s, i.e., for solving some event/state separation problem ¬(s[x〉), we must have
k + h > 0; but, for the time being, any of these parameters could also be zero.
Let T = T0 •∪T1 •∪ . . . •∪Tn be the partition of T induced by P{Υ1, . . . ,Υn}. For 0 ≤ i ≤ n,
we denote by Ii = {j | aj ∈ Ti} the indices of transitions aj for which Υi(aj) > 0.
In the following, we shall also denote by ` the unique index such that x ∈ T`.

Ensuring that cycles are preserved. Since the net effect of firing x on p is−k = (−(k+h)+h)
and all Parikh vectors in {Υ1, . . . ,Υn} are cyclic, we must have

∀i ∈ {1, . . . , n} :
∑
j∈Ii

kj ·Υi(aj) = k ·Υi(x) (1)

ensuring that if every transition t is fired Υi(t) times, the marking on p is reproduced. Note
that this implies k ≥ 0, and even k > 0 unless all the kj ’s for j ∈ Ii are null.

If x ∈ T0, i.e., ` = 0, all the right-hand sides of (1) are null, so that all kj for j 6∈ I0
must be null too; in other words, if p• ⊆ T0, then •p ⊆ T0. Thus, if x is non-live, then all
transitions in •p are also non-live. If x ∈ T` for ` ∈ {1, . . . , n}, the right-hand sides of (1) are
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null when i ∈ {1, . . . , n} \ {`}, so that all kj for j 6∈ I0 ∪ I` must be null too; in other words,
if p• ⊆ T`, then •p ⊆ T0 ∪ T`. Thus, if x is live and part of a small cycle, then all transitions
in •p are either non-live, or live and part of the same small cycle.

Ensuring that the marking on p does not prevent enabled transitions. By the shape of
the place shown in Figure 5, by •p ⊆ T0 ∪ T`, and by the firing rule, the marking of place p
at (the marking corresponding to) an arbitrary state r ∈ [s0〉 is

Mr(p) = µ0 +
∑

j∈I0∪I`

kj ·∆s0,r(aj)− k·∆s0,r(x) (2)

This sum must always be nonnegative. Let us start by analysing what it means that p may
never prevent any enabled x. Thus, consider an edge r[x〉r′ in TS. Then the marking Mr(p)
has to be at least k+h, and Mr′(p) is at least h. More generally, if l > 0 and r[xl〉r′, then we
must have Mr(p) ≥ l · k + h, or equivalently, Mr′(p) ≥ h. For this reason, when considering
the marking of p at a state r with r[x〉, we first try to follow x-chains in forward direction
as long as possible. If r[x〉r′[x〉r′′ with r 6= r′, then by strong determinism, r′′ is necessarily
different from r and from r′, so that x-chains starting with two different states can never hit
an x-cycle, nor an x-branch, and necessarily have a unique last state. We may have infinite
x-paths, but only in case r[x〉r (like those for b or for c in Figure 3), where state r can never
be left by an x-edge. Thus, we are interested in the following subset of states:

XNX(x) = {r ∈ S | [x〉r ∧ ¬r[x〉} ∪ {r ∈ S | r[x〉r}

which either are produced by x but do not enable x, or have an x-loop. The above
considerations amount to a proof of the following corollary:

I Corollary 4.1 (XNX and enabling condition).
(
∀r ∈ S : r[x〉 ⇒Mr(p) ≥ k+h

)
⇐⇒

(
∀r ∈

XNX(x) : Mr(p) ≥ h
)
.

In other words, we only need to require Mr(p) ≥ h for states r ∈ XNX(x) in order to
guarantee that place p allows x whenever it is enabled. But we can do more. Suppose that
r, r′ ∈ XNX(x) and r ∈ [r′〉, and consider the case that r′[α〉r where α is x-free. Then α
acts semipositively on p, and we only need to require Mr′(p) ≥ h on r′, in order to have
Mr(p) ≥ h on r. For this reason, before imposing the requirement Mr(p) ≥ h on some
r ∈ XNX(x), we may try to follow x-free backward chains starting at r, hoping to find some
r′ ∈ XNX(x) such that imposing Mr′(p) ≥ h on r′ implies Mr(p) ≥ h for r. In doing so,
we may hit a cycle. However, by Theorem 3.1, such a cycle may not contain any transition
from T0 ∪ T`. This is because cycles may never contain transitions from T0 anyway, and
because, while a cycle might intersect T` if ` > 0, it would then also have to contain x (but
we only follow x-free backward chains). Thus, the cycle we may be hitting could at most be
formed by transitions in T \ (T0 ∪ T`); however, this has no importance since – as we already
know – such cycles do not modify the marking of p. Let us therefore consider the following
equivalence relation between states q, q′:

q ≡` q
′ ⇐⇒ q[β〉q′ and q′[β′〉q with β, β′ ∈ (T \ (T0 ∪ T`))∗

and let us define

MXNX(x) = {r ∈ XNX(x) |6 ∃r′ ∈ XNX(x) : r′ 6≡` r and r′[α〉r with α ∈ (T \ {x})+}
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i.e., we only consider states in XNX(x) which do not lie x-freely after another (non-≡`-
equivalent) one. This set may contain many ≡`-equivalent states, but we need only keep one
of them. Let us therefore choose some set

mXNX(x) ⊆ MXNX(x) with a single representative of each ≡`-equivalent class in it

These considerations amount to a proof of

I Corollary 4.2 (mXNX and enabling condition).
(
∀r ∈ S : r[x〉 ⇒ Mr(p) ≥ k + h

)
⇐⇒(

∀r ∈ mXNX(x) : Mr(p) ≥ h
)
.

In other words, we only need to require Mr(p) ≥ h for states r ∈ mXNX(x) in order to
guarantee that place p allows x whenever it is enabled. Combining Corollary 4.2 with the
formula (2) relating any Mr(p) to µ0 yields the following set of constraints:

∀r ∈ mXNX(x) : µ0 ≥ k ·∆s0,r(x)−
∑

j∈I0∪I`

kj ·∆s0,r(aj) + h (3)

Let us now re-examine the constraint that ∀r ∈ [s0〉 : Mr(p) ≥ 0. By r ∈ [s0〉, there is a path
s0[α〉r. If α contains an x, let s be the visited state before the last x; from the previous
constraints, Ms(p) ≥ k+h and Mr(p) ≥ h ≥ 0. If α contains no x, then it has a semipositive
effect on p and thus, µ0 ≤ Mr(p). It is then enough to impose µ0 ≥ 0 to get the desired
property Mr(p) ≥ 0. However, µ0 ≥ 0 can always be ensured by adding, if necessary, an
adequate shift to all markings of p, as well as to h.

In sum, requiring the non-negative solvability of (3) suffices in order to find parameters
k, h, k1, . . . , km, µ0 in such a way that the corresponding region (and then, a corresponding
place p with initial marking M0(p) = µ0) allows all the paths that are possible in TS.

Ensuring that place p solves an event/state separation problem. For each state s not
enabling x, there should be a place p which does not have enough tokens to allow to perform
x when reaching the state corresponding to s. That is, in addition to the constraints derived
in the previous section, p should satisfy Ms(p) < k + h, i.e., using (2) with r = s:

µ0 < k + h+ k ·∆s0,s(x)−
∑

j∈I0∪I`

kj ·∆s0,s(aj) (4)

Again, it is possible to reduce the number of such inequalities. For any α ∈ (T \ {x})∗ with
s′[α〉s, we have Ms′(p) ≤Ms(p). Hence, if (4) is ascertained for s, it is no longer necessary
to bother about s′. Again, we may have cycles of equivalent states allowing to progress
indefinitely while staying in states non-enabling x. Note that, by persistence, if s ≡` s

′, then
s[x〉 ⇐⇒ s′[x〉; moreover, if s[a〉r with r 6≡` s, then s′[a〉r′ with r ≡` r

′; i.e., ≡`-equivalent
states behave equivalently, as far as (non-) enabling of x is concerned. Hence, it makes sense
to define MNX(x) = {s ∈ S | ¬s[x〉 and ∀s[a〉r : (s ≡` r) ∨ r[x〉} and

mNX(x) ⊆ MNX(x) with a single representative of each ≡`-equivalence class in it

i.e., we consider states not allowing x such that no non-equivalent successor still excludes
performing x, and we keep one representative of each class. Thus, if the event/state separation
problems can be solved for the states s in mNX(x), then they are solved for all s ∈ S with
¬s[x〉. Hence, for every s ∈ mNX(x), we need to find a place satisfying (3) and (4).

Combining the constraints (3) and (4) allows to eliminate both µ0 and h:

∀r∈mXNX(x) : 0 < k · [1 + ∆s0,s(x)−∆s0,r(x)] +
∑

j∈I0∪I`
kj · [∆s0,r(aj)−∆s0,s(aj)] (5)
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input a finite, decent, persistent lts TS = (S,→, T, s0) satisfying P{Υ1, . . . ,Υn};
initially T is the set of transitions, and P is empty;
for every x ∈ T` (0 ≤ ` ≤ n) and s ∈ mNX(x) do
construct a set mXNX(x) and the corresponding system (5/6);
if there is no natural solution to this system then
{output “TS is not CF-solvable, due to x, s, and system (5/6)”; stop};

choose a set of natural numbers (k, k1, . . . , km) satisfying (5), as well as (1) if ` 6= 0,
and compute h and µ0;

add to P a place as in Fig. 5, with weights k1, . . . , km, k + h, h, and initial marking µ0;
end for
output “The net with transitions T and places P CF-solves TS”.

Figure 6 An algorithm checking CF-solvability and constructing an adequate solution.

If the system (5) is solvable in the domain of natural numbers (with kj = 0 if j 6∈ I0 ∪ I`),
let us define µ = max{k ·∆s0,r(x)−

∑
j∈I0∪I`

kj ·∆s0,r(aj) | r ∈ mXNX(x)}. If µ ≥ 0, by
choosing h = 0 and µ0 = µ we shall get a solution to the systems (3) and (4), with µ0 ≥ 0.
If µ < 0, it is not possible to create a suitable pure place from this solution, but we may
choose h = −µ and µ0 = 0 (realising the “adequate shift” referred to above), and we shall
again get a solution to the systems (3) and (4), with µ0 ≥ 0.

If x 6∈ T0, the constraints (1) need to be fulfilled as well. Combining (1) and (5), we get

∀r ∈ mXNX(x) :
0 <

∑
j∈I0∪I`

kj · [Υ`(aj)·(1 + ∆s0,s(x)−∆s0,r(x))−Υ`(x)·(∆s0,s(aj)−∆s0,r(aj))]
(6)

If the system (6) is solvable in the domain N, it is also possible to find a natural solution to
both (1) and (5), by choosing a suitable value for k using (1), and, if necessary, multiplying
the solution found by a common factor. Then we may choose h and µ0 as described above.

Figure 6 summarises the resulting algorithm, where by “system (5/6)” we mean “system
(5)” if x ∈ T0 and “system (6)” if x ∈ T` for 1 ≤ ` ≤ n.

I Theorem 4.3 (Validity of the construction). If, for some x ∈ T and s ∈ mNX(x), the
corresponding system (5/6) is not solvable, then TS has no CF solution. Otherwise, the
constructed net is a CF solution of TS.

Proof. If the system (5/6) associated with some x ∈ T and s ∈ mNX(x) is not solvable, then
from the analysis above there is no place of a CF net both allowing all valid evolutions and
excluding the invalid transition x from s. Let us thus assume all those systems are solvable
and let us consider the net constructed as above.

We have seen that for any s ∈ S, if s[x〉, there is a state r ∈ mXNX(x) and a state
s′ ∈ XNX(x) such that r[α〉s′ and s[x`〉s′, with ` > 0 and α ∈ (T \{x})∗. By the construction
of each place p, Mr(p) ≥ h, Ms′(p) ≥ h, and Ms(p) ≥ k + h. We have also seen that, for
any s ∈ S, there is an x-free sequence α such that either s0[α〉s and Ms(p) ≥M0(p) ≥ 0, or
there is some r ∈ XNX(x) with r[α〉s so that Ms(p) ≥Mr(p) ≥ h. As a consequence, place p
allows all valid evolutions specified by the lts. If ¬s′[x〉, we know there is some s ∈ mNX(x)
such that Ms′(p) ≤ Ms(p). From the choice of M0(p) for the corresponding place p, and
from (5), we have (4) whatever h, which excludes to perform x from s as well as from s′.

Thus, the solvability of all systems (5/6) implies that all event/state separation problems
can be solved, and we get a CF net N with the same language as TS. The only way to
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have non-isomorphism is that some state separation problem cannot be solved, i.e., that two
states s1 and s2 correspond to the same marking. In that case, let s1[β〉q1 be a path to a
home state q1 of TS. Since s1 and s2 correspond to the same marking and L(N) = L(TS),
s2[β〉q2 for some state q2 corresponding to the same marking as q1. Since q1 is a home state,
there is a path q2[α〉q1. Since the language is the same and q1, q2 correspond to the same
marking, we have q2[α〉q1[α〉q3[α〉q4 . . ., and from finiteness and cycle consistency, we must
have q1 = q2. But then, by strong determinism, we also have s1 = s2. J

Two examples
Consider TS3 (Figure 3). For x = a, we get x ∈ T0 = {a, d}, I` = I0 = {1} if a1 = d,
mXNX(a) = {s1}, mNX(a) = {s2} and equation (5) reduces to 0 < k·[1+1−1]+k1 ·[0−1],
which leads to the solution k = 1, k1 = 0, µ0 = 1 and h = 0, corresponding to place
p1 in N3. For x = b, we get x ∈ T1 = {b}, T0 = {a, d}, I0 = {1, 2} if a1 = a

and a2 = d, I1 = ∅, mXNX(b) = {s1}, mNX(b) = {s0} and equation (6) reduces to
0 < k1 · [0−1 · (0−1)] +k2 · [0−1 · (0−0)], which leads to the solution k1 = 1, k = k2 = 0,
µ0 = 0 and h = 1, corresponding to place p2 in N3. The treatments of c and d are similar.
Consider TS4 (Figure 4). For x = a, we get x ∈ T0 = {a}, I` = I0 = ∅, MXNX(a) =
{s4, s5, s6} (all states are ≡0-equivalent), mXNX(a) = {s4} (for example), MNX(a) =
{s0, s4, s5, s6, s}, mNX(a) = {s0, s} (for example), and for x = s0, equation (5) reduces
to 0 < k · [1 + 0− 1] + 0, which is unsolvable.

Some special cases
All transitions are live. Then T0 = ∅; ≡0 is identity; and any aj ∈ •p corresponds to
the same small cycle as x ∈ p•. If synthesis succeeds, the resulting CF net is a disjoint
composition of n individual CF nets, each one connected by itself and corresponding to
one of the Parikh vectors Υi (for 1 ≤ i ≤ n). In essence, therefore, this reduces to the
next case.
All transitions are live and n = 1 (cf. [9]). Then both ≡0 and ≡1 reduce to identity. All
sets mXNX(x) and mNX(x) are unique and can be simplified as follows:

XNX(x) = {s ∈ S | [x〉s ∧ ¬s[x〉}
mXNX(x) = {s ∈ XNX(x) |6 ∃s′ ∈ XNX(x) : s′[α〉s with α ∈ (T \ {x})+}
mNX(x) = {s ∈ S | ¬s[x〉 ∧ ∀s′ ∈ S, a ∈ T : s[a〉s′ ⇒ s′[x〉}

Such transition systems are “almost reversible” (i.e., they consist of an initial acyclic part,
followed by a single strongly connected component, such as TS2 in Figure 2).
TS is reversible, i.e., s0 is a home state (cf. [6, 8]). All previous simplifications hold and,
additionally, if there is a CF solution, then there is also a pure solution. Nevertheless
(despite the simpler setting), it is possible to construct reversible persistent transition
systems which can be solved by a plain and pure Petri net, but not by a CF net.
TS belongs to a marked graph (a plain net with ∀p ∈ P : |p•| = 1 ∧ |•p| = 1) or to a
T-system (a plain net with ∀p ∈ P : |p•| ≤ 1 ∧ |•p| ≤ 1) (cf. [5, 7]). Such transition
systems have full characterisations for bounded as well as for unbounded Petri nets.

5 Concluding remarks

The first part of this paper describes a partial characterisation – more precisely, an upper
approximation – of the state spaces of bounded choice-free Petri nets. The reachability graphs
of such Petri nets are finite, totally reachable, strongly deterministic, strongly cycle-consistent,
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persistent, and enjoy the small cycle, the prime cycle, and the distance properties. A full
structural characterisation seems to be very difficult to obtain. Even for finite words, such as
TS0 in Figure 2, it is very difficult to obtain exact structural (i.e., so to speak, free of linear
algebra) conditions characterising the PN-solvable ones amongst them [3].

In its second part (starting with Section 4), the paper describes how choice-freely solvable
transition systems can be detected and their Petri net solutions be constructed if possible.
The aim here was to use structural knowledge in order to limit the set of states for which
event/state separation problems need to be solved, and also to reduce the number of linear
inequalities needed for each one of these problems.

The algorithmic gains are threefold: (1) It is possible to check, before starting synthesis,
some of the properties given by the upper state space characterisation and to discard any
given lts failing to satisfy one of them as not being solvable choice-freely. Such an algorithm
has already been included for marked graphs in APT [10] and performs very satisfactorily. In
general, though, these properties may not be easy to check. (2) State separation problems all
but disappear (though this came as no surprise, given the result described in [13]). (3) The
number of unknowns and the number of systems is reduced for the event/state separation
problems that remain. This allows more efficient synthesis, and our first experiments confirm
that our algorithm exhibits interesting performances. However, even for the special cases
discussed at the end of Section 4, it seems difficult to estimate exactly how much can be
gained, and in particular how the size of the essential sets mXNX(x) and mNX(x) evolves
with the size of the lts, and possibly with some of its specific characteristics (like the out-
and in-degrees of its nodes, symmetries of the structure, etc.).

There are many extensions and potential applications of choice-free synthesis. One
particularly promising generalisation is to allow partially non-injective transition labellings
for Petri nets (for instance, by forbidding equally labelled transitions in parallel components).

Acknowledgements. We are indebted to the reviewers for valuable comments.
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