
Heuristic Approaches to Minimize Tour Duration
for the TSP with Multiple Time Windows
Niklas Paulsen1,2, Florian Diedrich2, and Klaus Jansen1

1 Institut für Informatik, Christian-Albrechts Universität zu Kiel,
Christian-Albrechts-Platz 4, 24118 Kiel, Germany
{npau,kj}@informatik.uni-kiel.de

2 FLS GmbH, Schlosskoppelweg 8, 24226 Heikendorf, Germany

Abstract
We present heuristics to handle practical travelling salesman problems with multiple time win-
dows per node, where the optimization goal is minimal tour duration, which is the time spent
outside the depot node. We propose a dynamic programming approach which combines state
labels by encoding intervals to handle the larger state space needed for this objective function.
Our implementation is able to solve many practical instances in real-time and is used for heur-
istic search of near-optimal solutions for hard instances. In addition, we outline a hybrid genetic
algorithm we implemented to cope with hard or unknown instances. Experimental evaluation
proves the efficiency and suitability for practical use of our algorithms and even leads to improved
upper bounds for yet unsolved instances from the literature.

1998 ACM Subject Classification I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases TSPTW, minimum tour duration, dynamic programming, heuristics

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.42

1 Introduction

The Travelling Salesman Problem with Time Windows (TSPTW) is the problem of find-
ing a cost-minimal Hamiltonian cycle through a complete digraph on N nodes, which respects
time windows given for each node. The nodes are represented by the set V = {0, . . . , N − 1},
where 0 is called the depot, and we define V ′ := V \ {0} to be the other nodes. Each node
v ∈ V ′ has a given time window [av, bv] in which it has to be visited. To calculate times,
c : V × V → N assigns a travel time to each edge. Arriving at a node v before av will lead
to waiting there until the time window opens. Node dependent visit times can be encoded
in the travel times; distinct start and return nodes can be combined into the node 0 by
adjusting travel times from and to node 0; missing arcs can be encoded by high travel times.
The time windows constrain the set of feasible solutions; in general the presence of time
windows makes it NP-hard to even find a feasible tour [12]. A possible generalization from
TSP to TSPTW minimizes the same objective function, namely the sum of weights of the
chosen edges [4, 10]. Since we have edge weights as travel times, this objective corresponds
to minimization of the total travel time. However, in workforce planning, loans make a
major contribution to the planned costs and thus also waiting times are expected to have
an impact on the objective function. An important choice is whether a delayed start of
a given tour is counted as working time or not. If not, any tour can be started at some
earliest possible time. Then, minimizing the total travel time plus any waiting time along
the way corresponds to finding the tour which has the earliest return to the depot node.
We call this problem Minimum Completion Time Problem (MCTP). In this work, however,

© Niklas Paulsen, Florian Diedrich, and Klaus Jansen;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 42–55

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.42
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

N. Paulsen, F. Diedrich, and K. Jansen 43

we allow the start to be delayed without cost, searching a tour that can be traversed with
minimal tour duration from depot departure to return. We call the according problem
Minimum Tour Duration Problem (MTDP). This objective function is a generalization of
the completion time minimization, since the latter can be expressed by fixing the starting
time at the depot [3]. While for mathematical formulations, the difference between MCTP and
MTDP is just a slight change in the objective function, common heuristic approaches as well
as Dynamic Programming (DP) become more complicated for the latter. Modifying a given
tour with known optimal departure time, a new optimal departure time needs to be searched,
as Savelsbergh [13] pointed out. Despite its relevance for workforce planning, the MTDP has
been given only little attention until recently. Tilk et al. [15] treated the MTDP, using a new
Dynamic Programming (DP) based approach to solve many available instances to optimality
or provide bounds. Although they are more focused on optimal solution rather than real-time
processing in a practical use case, their solutions can serve as a good reference. We handle
an even further generalized version of the problem, allowing an arbitrary number of time
windows per node, as it occurs in practice for example at machine-related maintenance tasks
or simply due to opening hours with lunch breaks. This complicates the search of an optimal
departure time for a given tour [1].

Our focus is the development of fast algorithms for a practical workforce planning context.
Our two methods are a DP based heuristic and a strongly randomized genetic algorithm. In
practical workforce planning, we see multiple applications of fast heuristics for the MTDP:

When planning only a single worker,
as a frequently called local search in advance planning of big Vehicle Routing Problems
(VRPs),
real-time post-optimization of planned tours after changes in online VRPs, and
to obtain upper bounds that can be used by exact methods for small instances or for
evaluation purposes.

In Section 2 we discuss the state-space inflation for DP inherent with allowing multiple
time windows per node and propose an approach to encode multiple states into intervals. In
Section 3 we outline our Genetic Algorithm, GA, which allows solving diverse instances like
ones with very wide time windows. We report results on instance sets from the literature
and on new real-world instances in Section 4 and give a final conclusion in Section 5.

1.1 Formal Definitions
We want to formalize the timings for given tours. Be Kv > 0 the number of time windows for
v ∈ V ′, av,k and bv,k be the opening and closing time, respectively, for the k-th time window
of node v ∈ V ′, 0 ≤ k < Kv. The time windows of every node are presumed to be sorted,
non-overlapping, and of non-negative length (av,0 ≤ bv,0 < av,1 ≤ · · · < av,Kv−1 ≤ bv,Kv−1
for v ∈ V ′). Define Π to be the set of TSP-tours, represented by permutations of V , starting
in the depot (π(0) = 0 for π ∈ Π). For an arrival time t ∈ N at a node v ∈ V ′, the next
feasible schedule time at that node is given by:

T→(v, t) := min{x | x ≥ t ∧ ∃k < Kv : x ∈ [av,k, bv,k]}

For t > bv,Kv a minimum over ∅ leads to T→(v, t) =∞. For a TSP-tour π ∈ Π and departure
time t0 ∈ N the scheduled departure times tπt0 : V → N can be calculated as follows: For
the depot 0 it is tπt0(0) = t0 and for v ∈ V ′ it is, depending on the last node visited,
v− := π(π−1(v)− 1):

tπt0(v) := T→(v, tπt0(v−) + c(v−, v))

ATMOS’15

44 Minimizing Tour Duration for the TSP with Multiple Time Windows

Define tπt0(N) := tπt0(π(N − 1)) + c(π(N − 1), 0) to be the returning time at the depot.
Furthermore we define W→(v, t) := T→(v, t)− t for the waiting time at node v ∈ V ′, when
reached at time t. The optimization goal is then to find π ∈ Π and t0 ∈ N minimizing
tπt0(N)− t0.

I Lemma 1. For π ∈ Π, i < N, τ, δ ∈ N we have tπτ+δ(π(i)) ≥ tπτ (π(i)). (Proof in Appendix)

2 Adaption of Dynamic Programming for Tour Duration
Minimization

A common way to solve various variants of TSPs is via dynamic programming (DP), based
on the formulation for the classic TSP proposed decades ago by Bellman et al. [2]. Bellman’s
Principle states, generically speaking, that optimal solutions of a problem (instance) are
consisting of optimal solutions to smaller sub-problems. We call sub-problems states and
their solution a label of the state. The proceeding of forward-labelling is to label some initial
states and use recurrence relations to propagate given labels to labels for other states.

In case of the TSP, sub-problems are finding a minimum cost path originating in 0, going
through a given subset of nodes, S ⊂ V ′, and ending in a given node, ` ∈ V ′ \ S. We
call these paths S, `-paths. The calculation can be tackled in n stages, for increasing |S|
according to longer paths. A minimum path through a given S 6= ∅ can only be arising from
an optimal path through S \ {x} to x ∈ S, but with the presence of time windows, this
only holds for minimizing tour completion time (MCTP). To solve TSPTW regarding minimum
travel time, a two-dimensional labelling for (S, `)-states is necessary, as used by Dumas et
al. [4]. This is because all S, `-paths are relevant that are Pareto optimal concerning cost
and completion time, since during calculation it is not known which time at ` can lead to a
feasible completion of the tour through V ′ \ (S ∪ {`}). Recently, DP was adapted for the
MTDP (with single time windows per node) by Tilk et al. [15]. They use labels containing
3 resources for the earliest possible time to complete an S, `-path, the tour duration so far,
and a time slack. Labelling all (non-dominated) S, `-paths, Bellman’s Principle holds. In
the generalized case of an arbitrary number of time windows for each node, every S, `-path
extended to an S ∪{`}, `′-path must distinguish the times at which it is travelled: Compared
to the time leading to a minimal duration of the S, `-path, an earlier or later traversal with a
longer duration may bring along a smaller waiting time at node `′, if a different time window
of `′ can be taken possibly leading to a smaller tour duration. As a consequence, more labels
can arise for every S, `-path, corresponding to different choices of time windows for visited
nodes. We show that the number of labels for each tour is growing at most linearly with the
overall number of time windows. For a fixed tour π ∈ Π, the following definition is used to
model a specific choice of time windows for a prefix of π.

Define a time window path of length k ≤ |V ′| = N − 1 to be a tuple (s1, . . . , sk) with
si < Kπ(i) for 0 < i ≤ k choosing time window indices for the first k nodes visited by π after
the depot; we call it schedule, iff k = |V ′| and we call it reachable, iff a start time τ exists
such that all nodes are visited within their chosen time window:

tπτ (π(i)) ∈ [aπ(i),si , bπ(i),si] for 0 < i ≤ k. (1)

Note that reachable time window paths are only met by delaying the departure at the depot
while every other node is visited as early as possible by definition of tπτ .

I Theorem 2. With a given TSP-Tour π ∈ Π there are at most 1 +
∑
v∈V ′(Kv − 1) reachable

schedules.

N. Paulsen, F. Diedrich, and K. Jansen 45

A B

(0, 0, 0)

(0, 0, 1)

(0, 1, 1)

(1, 2, 2)

0

1

2

(0, 0, 0, 0)

(0, 0, 1, 0)

(0, 0, 1, 1)
(0, 0, 1, 2)

(0, 1, 1, 2)

(1, 2, 2, 2)

Figure 1 Illustration of an example bipartite graph H for i = 3.

Proof. We show via induction over 0 < i ≤ |V ′| that there are at most

1 +
i∑

j=1
(Kπ(j) − 1) (I)

reachable time window paths of length i. The induction base is i = 1, with the visit of node
π(1) in one of its Kπ(1) time windows.
Now assume (I) holds for an 0 < i < |V ′|. To prove that (I) also holds for i+ 1 we need to
show that only up to Kπ(i+1) − 1 more time window paths of length i+ 1 arise than for i.
Define a bipartite graph H = (A,B, F ⊂ A×B) with A ⊆ N<Kπ(1) × · · ·×N<Kπ(i) being the
reachable time window paths of length i and B = N<Kπ(i+1) being the time window indices
of the next node, π(i+ 1). An edge f = ((c1, . . . , ci), k) ∈ F shall exist, if and only if the
time window path c′ := (c1, . . . , ci, k) is reachable. Since every reachable time window path
of length i+ 1 contains a reachable time window path of length i, the edges correspond to
the reachable time window paths of length i+ 1. An example for H is shown in Figure 1.

We show that H can be drawn without crossings in the sense of Eades et al. [5]. We use
the lexicographic order as ≺A on A, and the order ≺B on B which is given for the time
windows by their definition. Suppose an edge (a,w) exists. Then, an edge (a′, w′) with a ≺ a′
but w′ ≺ w cannot exist, since this would mean that starting later1 leads to reaching an
earlier time window at waypoint i+ 1, contradicting Lemma 1. This implies a crossing-free
drawing of H, and thereby absence of cycles in H [5]. Being cycle-free, H is a forest and has
at most |A|+ |B| − 1 edges. With the induction hypothesis, |A| ≤ 1 +

∑i
j=1(Kπ(j) − 1), and

with |B| = Kπ(i+1), (I) also holds for i+ 1. J

Consider the state space 2V ′ × V ′ × T with T ⊂ N, where each state (S, `, t) gets a scalar
label expressing the minimum S, `-path duration when ` is visited at time t. Even with a
bounding of T to actually relevant times, the size of this state-space is wasteful, especially
with the inherent growth with increasing temporal resolution of time encoding. Our approach
is to encode for each S and ` the function assigning the minimal S, `-path duration to each
departure time t. An example of this function is shown in Figure 2 in the lower left. The

1 With a ≺ a′, at some point a later time window (bigger index) is taken with a′, therefore starting times
leading to reaching a′ cannot be smaller than any starting time leading to reaching a (contraposition of
Lemma 1).

ATMOS’15

46 Minimizing Tour Duration for the TSP with Multiple Time Windows

1 5 time

D

a

b

`

time windows and path (a, b, `)

1 5 time

D

b

a

`

time windows and path (b, a, `)

1 5 10 time at `

minimum duration
up to ` after {a, b}

3

4

labeled intervals for ({a, b}, `):
([4, 5), 4)
([5, 6], 3)
([9, 9], 3)

Figure 2 Example for labelled intervals, for State (S = {a, b}, `). D is the depot, travelling time
between the depot and b is two hours, all others one hour.

notion is a shift of the T factor from the state space into the labels of the (S, `)-states. If an
S, `-path P can lead to a visit of ` at time t with (minimal) duration T , only the following
cases apply for the minimal duration T ′ for the “next” time t+ 1:
(C1) P can be traversed later without waiting times, leading to T ′ = T , (C2a) another path
leads to minimal duration when visiting ` at t + 1, (C2b) P with another time window
combination leads to minimal duration when visiting ` at t+ 1, or (C3) P traversed later is
optimal for t+ 1 but leads to increased waiting times along the path, with T ′ = T + 1.

Therefore the function consists (except for undefined values of t, before the arrival of the
first S, `-path) only of piecewise constant parts (starting with cases C2a or C2b, continued
with case C1) and piecewise linear parts with a slope of 1 (case C3). Our idea is to store only
the interval and assigned tour duration of constant parts to implicitly encode the function.
We can then handle multiple (S, `, t)-states by working with the encoded intervals.

A labelled interval I = ([ts, te], T) is a non-empty interval [ts, te] (te ≥ ts) of N and an
assigned tour duration. For a given (S, `)-state we use

Ints : S, ` 7−→ set of labelled intervals encoding labels of (S, `, ·)

to label (S, `)-states. An interval corresponds to a constant part of the function of minimal
S, `-path duration at different times. With Bellman’s Principle we can demand for S (
V ′, ` ∈ V ′ \ S:

[ts, te] ∩ [t′s, t′e] = ∅ f.a. ([ts, te], T) 6= ([t′s, t′e], T ′) ∈ Ints(S, `) (2)
t′s > te ⇒ t′s > te + (T ′ − T) f.a. ([ts, te], T), ([t′s, t′e], T ′) ∈ Ints(S, `). (3)

Clearly, disjoint intervals suffice: For state (S, `) only the minimum tour duration to reach `
at a time t after having visited the nodes in S is needed. To evince (3) we show:

I Lemma 3. Suppose ` ∈ V ′ can be visited at time t after all nodes in S ⊂ V ′ with a tour
duration of T1, but also such that it is left until t+ δ with tour duration T2 ≥ T1 + δ, for a
δ > 0. Then the latter is dominated by the former (it cannot lead to a tour with a smaller
duration).

N. Paulsen, F. Diedrich, and K. Jansen 47

No matter how the rest of the tour is constructed through V ′ \ (S ∪ {`}), the forward
propagation of the first state is able to reach the same time windows as the forward
propagation of the second. Since the waiting times can only be larger by the lead δ, this will
conduct at most the same tour duration (formal proof in Appendix).

To read out the label, i.e. the minimal tour duration, for a state (S, `, t), we use a function
Cost to interpret the set of labelled intervals I = Ints(S, `) at the time t:

Cost(I, t) := min
([ts,te],T)∈I

ts≤t

T + max{0, t− te} (4)

With I satisfying Equations (2) and (3) we can write (proof in Appendix):

Cost(I, t) = T + max{0, t− te} for ([ts, te], T) = arg max
([ts,te],T)∈I

ts≤t

te (5)

This means, to evaluate the minimum tour duration at time t, only the last labelled interval
starting before t needs to be considered, which can be retrieved efficiently when the labelled
intervals are stored in suitable data structures.

The labelled intervals can be initialized by

Ints(∅, `) = {([a`,k, b`,k], c(0, `)) : k < K`} (6)

Forward propagation can be done for aggregated times in intervals and time windows (a
pseudocode can be seen in the Appendix). When multiple labels (as labelled intervals) occur
for a state (S, `), the intervals can be merged, choosing for each time t the interval with the
best label and respecting Equation (3), as can be seen in Figure 2.

Heuristic Adaption. To heuristically reduce the search space for larger instances, Malandraki
et al. [9] used a cutoff on the number of states to keep track of after each stage in their DP
heuristic for the time dependent TSP. By retaining only the most promising H labels after
each step, the run time can be minimized drastically. For H = 1 it resembles a Nearest
Neighbour Heuristic, for H =∞ the Dynamic Programming for an optimal solution is not
affected. We call this approach DPH in the following. Note that we retain H labels, containing
generally more than H intervals. In our implementation the labels are simply ranked by the
minimal possible duration for each (S, `)-State: mint Cost(Ints(S, `), t).

Adapted Cost Function. It is an easy step to generalize the DPH to minimize a more generic
objective function, being a weighted sum of working time and travelled distance.

Preprocessing and Trimming the Search Space. The search space can be trimmed by
preprocessing the instance, see [3]. Also, when calculating the labelled intervals for a
state (S, `), only times need to be considered, which allow to reach all unvisited nodes
v ∈ V ′ \ (S ∪ {`}) before the end of their last time windows, bv,Kv−1. Assuming the triangle-
inequality (which holds often, especially with visit times present), an easy bound for relevant
departure times at ` is:

BS,` := min{bv,Kv−1 − c(`, v) : v ∈ V ′ \ (S ∪ {`})}. (7)

ATMOS’15

48 Minimizing Tour Duration for the TSP with Multiple Time Windows

Algorithm 1: Dynamic Programming for tour duration minimization.
1 H ← empty hashtable for labels assigned to S, `-states;
2 label (∅, `) with {([a`,k, b`,k], c(0, `)) : k < K`} for ` ∈ V ′;
3 for stage from 1 to N − 2 do
4 for state (S, `) with label I and |S| = stage− 1 do
5 for `′ ∈ V ′ \ (S ∪ {`}) do
6 calculate new interval set I ′ by propagating I towards `′;
7 Trim interval ranges to be ≤ BS∪{`},`′ ;
8 if H contains label I ′′ for (S ∪ {`}, `′) then
9 H(S ∪ {`}, `′)← Merged intervals of I ′ and I ′′;

10 else
11 H(S ∪ {`}, `′)← I ′;

12 retain only best H labels with |S| = stage in H;
13 return min`∈V ′ min([ts,te],T)∈H(V ′\{`},`) T + c(`, 0);

2.1 Pseudocode

Algorithm 1 illustrates the principal DPH flow. States are expressed by a combined binary
representation of S and `. Order constraints between nodes are also saved in a binarily
represented set of nodes that have to be visited before a given node. It can be checked with
little computation whether all required nodes have been visited when extending toward a
node `′ (not shown, line 5). The hashtable lookup in line 8 can be done very efficiently. The
merge step in line 9 only takes time linear in the number of intervals to be merged. By
iterating all times ts, te for ([ts, te], ·) ∈ I ∪ I ′ in ascending order, one simply has to chose
the minimal intervals between the times and trim them to fit Equation (3). Note that with
merging labels each state gets at most one label. Backtracking information is included for
every labelled interval.

3 A Genetic Algorithm

To find high-quality solutions for instances with arbitrary or unknown properties in real-
time, we developed a genetic algorithm that builds and refines a set of solutions, called the
population. It builds on the general concepts of genetic algorithms, like the one of Sengoku
et al. [14]. In iterations called generations, mutation is trying to bring some randomly chosen
solutions to near local optima, selection focuses the search by removing the least promising
solutions from the population, and multiplication makes up for deletions by combining
existing solutions into crossovers, in hope of finding new local optima. An initial population
is generated with randomized Insertion heuristics inserting nodes iteratively at a position
which is chosen with higher probabilities towards positions that lead to lower overall cost.
For an additional start solution, the DPH is run with H = 200. Mutation of the population
makes use of local search strategies on one third of the solutions picked randomly. The
main local search is a repeated search in randomly chosen fixed-size subsets of 3-Opt [8]
neighbourhoods. We experienced a randomized 3-Opt to be more effective than searching
in the full neighbourhood of weaker local searches like 2-Opt. The fixed number of checked
neighbours leads to execution times growing only about linearly in the number of nodes,
for relevant instance sizes. The basic crossover operation is CommonEdgesCrossover, which

N. Paulsen, F. Diedrich, and K. Jansen 49

chooses randomly three parent solutions from the population and constructs a new tour
by choosing randomly the edges to traverse. Edges occurring in more parent solutions are
chosen with a higher probability and infeasible tours are prohibited if possible. Selection
removes the worst fifth of the population, but is also allowed to eliminate solutions based on
their affinity to the other solutions in the population to encourage diversity. The said affinity
is valued by computing the longest common subsequence shared with some randomly picked
solutions from the rest of the population. The population size and the number of generations
can be set with a single aggregated parameter, γ, which controls the overall number of
performed mutations, with γ = 0 leading to 750 mutations. For instances with more nodes,
those mutations are deployed over more generations but with a smaller population, which
we found to be more efficient. We suppose that this is due to bigger neighbourhoods with
possibly more potential for bigger instances. The execution of the genetic algorithm can
generally be stopped any time leading to the return of the best solution so far, which allows
for interruption by users or timing. Infeasible solutions are tolerated but highly penalized: If
for a tour π ∈ Π and start time τ , a node v ∈ V ′ is reached after its last time window, we
correct adjust the timing to be (v− := π(π−1(v)− 1)):

tπτ (v) = tπτ (v−) + c(v−, v) + P∞,

where P∞ is a soft infinity penalty, higher than any feasible tour duration. As a consequence,
the tour duration increases by the number of nodes not yet visited (N − π−1(v)) times P∞.
This allows to improve infeasible tours while always favouring tours that (feasibly) visit more
nodes.

4 Experimental Results

The following experimental analysis was conducted based on the rationale of [7]. The test
system is a Dell OptiPlex 980 equipped with 16 GB RAM and an Intel Core i7-880 CPU
(8MB Cache, 3.06 GHz clock rate) running Windows 7. The algorithms were implemented
in Microsoft C# 4.0 and compiled with Microsoft Visual Studio 2010. To evaluate the
computation times and solution quality and provide comparable results, we use available
instances from the literature and additional real-world instances to rate suitability for use.

We use the instances from Gendreau [6] and Potvin+Bengio [11]2 and processed them
according to Tilk et al. [15]. The former are 120 instances with different parameters for
node count (21–101) and width of time windows; the latter are 30 instances with 4 to 46
nodes. All instances have only single time windows per node. The other instances treated by
Tilk et al. [15] were omitted since one set originates from a stacker crane context and the
other one has instances with more than 126 nodes, for which the current DPH implementation
is not capable (and which may arise for mobile workforce day trips only in very special
circumstances).

Being interested in practicability of the algorithms for real-world scenarios, we adduce
another test set consisting of 332 stops assigned to 17 tours with 16 to 24 nodes. The data
originates from a logistics company bringing goods from and to collecting points within an
urban area. Time windows in most cases resemble a full workday, a half workday, or a full
one with a midday closure, with varying times. Around 30% of the nodes have a midday
closure leading to two time windows. A fixed-time lunch break for the drivers has already

2 Both sets downloaded from http://iridia.ulb.ac.be/~manuel/tsptw-instances.

ATMOS’15

50 Minimizing Tour Duration for the TSP with Multiple Time Windows

Table 1 Aggregated results for different instance groups. (∗)-marked averages are only taken
over the found solutions. Stats for GA are reported as averages of 5 runs.

Instances UBGAP [%] Time [s]
Program #Feas. #UB #Imp ∅ max ∅ max

Gendreau small DPH H=1500 75 52 2 1.1 16.0 0.4 1.4
(75 instances) DPH H=5k 75 62 3 0.5 8.3 1.6 5.3

DPH H=15k 75 64 3 0.2 6.4 4.7 17.2
GA γ= -10 75 44 3 0.2 2.7 0.6 1.0
GA γ = 0 75 53 3 0.0 1.1 2.1 3.4

Gendreau big DPH H=1500 45 19 1 2.6 10.8 1.9 3.5
(45 instances) DPH H=5k 45 28 2 1.7 10.6 7.5 13.3

DPH H=15k 45 29 3 1.2 7.7 23.5 40.0
GA γ = -10 45 17 1 0.8 5.8 1.9 2.8
GA γ = 0 45 25 1 0.2 3.0 6.5 9.4

Potvin+Bengio DPH H=1500 29 19 1.6∗ 15.5 0.2 1.3
(30 instances) DPH H=5k 29 21 1.3∗ 13.7 0.8 5.3

DPH H=15k 28 21 1 0.8∗ 13.4 2.5 13.9
GA γ = -10 30 15 1 0.2 2.3 0.3 0.6
GA γ = 0 30 18 2 0.0 1.0 1.3 1.8

Real data DPH H=1500 17 5 3.4 11.2 0.2 0.3
(17 instances) DPH H=5k 17 9 1.6 10.9 0.7 1.5

DPH H=15k 17 10 1.0 9.6 2.6 5.5
GA γ = -10 17 15 0.1 0.8 0.6 1.1
GA γ = 0 17 17 0.0 0.0 2.6 4.5

been incorporated into the time windows. Compared to the other instances, time windows
are rather broad (7:53 hours open spread over the day on average). Other properties differ
from the simulated instances, like that 200 of 332 nodes have their first time window starting
exactly at 8 o’clock, instead of time windows more randomly scattered around the day or
simulated around a reference tour. The sum of travel costs assigned to edges and working
time loans plus overtime fees are to be minimized.

Table 1 shows results for the Genetic Algorithm and the DPH, with different parameters
H aggregating the instances according to Tilk et al. [15] #Feas. is the number of instances,
for which a solution was found; #UB and #Imp the count of upper bounds (including optima)
reported by Tilk et al. [15] which were hit exactly or improved, respectively. For the new
instance set, optima were instead previously calculated using the DPH with H =∞. Since, for
real-time post-processing of tours, we are interested in good solutions rather than guaranteed
optimality, the solution qualities for yet unsolved instances are reported in relation to the
upper bounds from Tilk et al. [15], which we consider a good reference due to the overall
quality of their algorithm (and effort expended for calculation). UBGAP for a given upper
bound u and a solution value v is defined as v−u

u . Averages of UBGAP are over all respective
instances, including those, where the upper bound was hit (zero gap) or improved (negative
gap). Although the DPH leads to satisfying solution quality, it is outperformed by the GA on
these instance sets, especially the real-world one with very wide time windows. However,
this also depends on the composition of the test sets: Table 2 shows results on the Gendreau

N. Paulsen, F. Diedrich, and K. Jansen 51

Table 2 Aggregated results for Gendreau instances with narrow time windows. GA* is GA without
the DPH start solution. Stats for GA(*) are reported as averages of 5 runs.

Instances UBGAP [%] Time [s]
Program #UB #Imp ∅ max ∅ max

Gendreau DPH H=1500 38 1 0.40 5.71 0.9 2.5
w120 + w140 DPH H=5000 46 2 0.01 0.77 3.3 9.4
(50 instances) GA γ= -10 28 0.36 2.85 1.2 2.9

GA γ = 0 34 2 0.13 1.73 4.3 10.0
GA* γ = -10 22 0.54 2.94 1.0 2.7
GA* γ = 0 31 1 0.16 1.69 4.2 9.8

instances with rather tight time windows, for which the DPH solves the instances very close to
optimality within seconds. The GA is noticeably weaker, and when ran without its additional
start solution from DPH (marked with *), even more.
Regarding execution times, not only for instances presented here, we found that the GA has a
running time roughly linear in the number of nodes (tested up to 200) that grows by about
15% when incrementing the parameter γ by one. The running times of DPH are varying
stronger and also expectedly depend on the time window width.
We conclude that a combination of both algorithms is promising, for example by running
DPH on visibly easier (few nodes and/or tight time windows) instances.

Improving Upper Bounds of Unsolved Instances

We ran the DPH on the instances with no more than 101 nodes that have not been solved
to optimality yet. These are 17 instances with 36 to 101 nodes from the Gendreau and
Potvin+Bengio instance sets. Running the DPH with increasing parameterH ∈ {103, 105, 106}
(stopping, if the lower bound was reached) we tried to improve the upper bounds reported by
Tilk et al. [15]. Detailed results are shown in Table 3. LB and UB are the bounds previously
reported. Time is the sum of the execution times in case multiple parameters were run. For
the two Potvin+Bengio instances we also ran the GA, since the DPH seemed less effective.
For five instances, the upper bound was met exactly and for ten it was improved (values
underlined in Table 3), with an average improvement of 2.44%. In five cases our upper bound
equals the known lower bound, so that those instances are now solved to optimality. The
other five reduced the gap of the best upper bound to the best lower bound by more than
half, on average.

5 Conclusion

We presented two algorithmic concepts to treat TSPs with (multiple) time windows for which
the tour duration is to be minimized, like it is common in many areas of mobile workforce
planning. The DP approach is based on aggregating state labels into efficient data structures
by encoding intervals of times. It can be used to seek (and prove) optimal solutions, but
also as a heuristic for harder instances. Our genetic algorithm applies local searches in a
strongly randomized manner leading to good solution qualities, even with very broad time
windows. It has a simple parameter to balance running time and (expected) solution quality
and can be interrupted, e.g. for online problems, if the input needs to be modified. Both

ATMOS’15

52 Minimizing Tour Duration for the TSP with Multiple Time Windows

Table 3 Results on open instances with up to 101 nodes, all times in seconds.

Result for H = for Time Improved
Instance n [LB,UB] 1K 100K 1M GA [s] UB [%]

n40w200.5 41 [347,350] 347 1 0.9
n60w180.5 61 [466,486] 501 466 150 4.1
n60w200.3 61 [497,525] 497 1 5.3
n80w140.2 81 [588,591] 592 589 589 765 0.3
n80w140.3 81 [615,617] 632 617 617 912
n80w140.4 81 [549,561] 583 550 550 962 2.0
n80w160.2 81 [603,609] 637 629 629 1659
n80w160.3 81 [633,638] 676 651 633 2061 0.8
n80w160.5 81 [583,584] 627 584 584 1771
n80w180.2 81 [564,570] 615 591 570 2059
n80w180.5 81 [570,571] 573 571 571 2210
n80w200.1 81 [559,584] 620 566 564 2809 3.4
n80w200.2 81 [549,550] 603 582 560 2901
n100w120.2 101 [843,846] 843 2 0.4
n100w140.2 101 [948,949] 954 949 949 1722
rc_208.1 38 [73432,79904] - - 83683 79348 524 0.7
rc_208.3 36 [61302,67902] 84723 64499 64123 63436 1604 6.6

implementations are applicable for practical real-time optimization and post-processing.
Computational results showed that very satisfying solutions can be found with minimal
computing times. We even improved the best solution reported so far for 10 out of the 17
unsolved instances from the Gendreau and Potvin+Bengio benchmarks.

Acknowledgements. The authors would like to thank Thomas Brechtel for many fruitful
discussions. Furthermore, the authors would like to thank the anonymous referees for many
helpful suggestions which led to the improvement of the presentation.

References

1 Slim Belhaiza, Pierre Hansen, and Gilbert Laporte. A hybrid variable neighborhood tabu
search heuristic for the vehicle routing problem with multiple time windows. Computers &
Operations Research, 52:269–281, 2014.

2 Richard Bellman. Dynamic programming treatment of the travelling salesman problem.
Journal of the ACM (JACM), 9(1):61–63, 1962.

3 Jacques Desrosiers, Yvan Dumas, Marius M Solomon, and François Soumis. Time con-
strained routing and scheduling. Handbooks in operations research and management science,
8:35–139, 1995.

4 Yvan Dumas, Jacques Desrosiers, Eric Gelinas, and Marius M Solomon. An optimal
algorithm for the traveling salesman problem with time windows. Operations research,
43(2):367–371, 1995.

5 Peter Eades, Brendan D McKay, and Nicholas C Wormald. On an edge crossing problem.
In Proc. 9th Australian Computer Science Conference, volume 327, page 334, 1986.

N. Paulsen, F. Diedrich, and K. Jansen 53

6 Michel Gendreau, Alain Hertz, Gilbert Laporte, and Mihnea Stan. A generalized insertion
heuristic for the traveling salesman problem with time windows. Operations Research,
46(3):330–335, 1998.

7 David S Johnson. A theoretician’s guide to the experimental analysis of algorithms. Data
structures, near neighbor searches, and methodology: fifth and sixth DIMACS implementa-
tion challenges, 59:215–250, 2002.

8 Shen Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, The, 44(10):2245–2269, 1965.

9 Chryssi Malandraki and Robert B Dial. A restricted dynamic programming heuristic al-
gorithm for the time dependent traveling salesman problem. European Journal of Opera-
tional Research, 90(1):45–55, 1996.

10 Gilles Pesant, Michel Gendreau, Jean-Yves Potvin, and Jean-Marc Rousseau. On the
flexibility of constraint programming models: From single to multiple time windows for the
traveling salesman problem. European Journal of Operational Research, 117(2):253–263,
1999.

11 Jean-Yves Potvin and Samy Bengio. The vehicle routing problem with time windows part
II: genetic search. INFORMS journal on Computing, 8(2):165–172, 1996.

12 Martin WP Savelsbergh. Local search in routing problems with time windows. Annals of
Operations research, 4(1):285–305, 1985.

13 Martin WP Savelsbergh. The vehicle routing problem with time windows: Minimizing
route duration. ORSA journal on computing, 4(2):146–154, 1992.

14 Hiroaki Sengoku and Ikuo Yoshihara. A fast TSP solver using GA on Java. In Third
International Symposium on Artificial Life, and Robotics (AROB III’98), pages 283–288,
1998.

15 Christian Tilk and Stefan Irnich. Dynamic programming for the minimum tour duration
problem. Technical Report LM-2014-04, Chair of Logistics Management, Gutenberg School
of Management and Economics, Johannes Gutenberg University Mainz, Mainz, Germany,
2014.

A Appendix: Proofs

Proof of Lemma 1. We show the claim by induction over i; fix τ, δ ∈ N.
The equality tπτ+δ(π(0)) = τ + δ ≥ τ = tπτ (π(0)) yields the induction base.
For the induction step, let 0 < i < N, v := π(i), v− = π(i− 1) and assume

tπτ+δ(v−) ≥ tπτ (v−). (H)

Then it follows, by definitions of T→ and tπt0 and (H):

tπτ+δ(v) = T→(v, tπτ+δ(v−) + c(v−, v))
= min{x | x ≥ tπτ+δ(v−) + c(v−, v) ∧ ∃k < Kv : x ∈ [av,k, bv,k]} (T→)
≥ min{x | x ≥ tπτ (v−) + c(v−, v) ∧ ∃k < Kv : x ∈ [av,k, bv,k]} (H)
= T→(v, tπτ (v−) + c(v−, v)) (T→)
= tπτ (v) J

Proof of Lemma 3. Construct states s1 := (S, `, t) and s2 := (S, `, t+ δ) according to the
supposition.

Case 1). It is clear that for S ∪ {`} = V ′, state s1 leads, by extension towards the depot,
to a TSP-Tour with tour duration T1 + c(`, 0) which dominates the extension of s2 to the
depot, concluding a TSP-Tour with duration T2 + c(`, 0) ≥ T1 + c(`, 0).

ATMOS’15

54 Minimizing Tour Duration for the TSP with Multiple Time Windows

Case 2). For S ∪ {`} (V ′, fix an arbitrary `′ ∈ V ′ \ (S ∪ {`}) and regard the forward
propagation of s1 and s2 towards `′, leading to labelling of states s1′ and s2′, respectively.
State s1′ = (S ∪ {`}, `′, T→(`′, t + c(`, `′))) is labelled with T ′1 = T1 + c(`, `′) + W→(`′, t +
c(`, `′)).
s2′ = (S ∪ {`}, `′, T→(`′, t+ δ + c(`, `′))) is labelled with T ′2 = T2 + c(`, `′) +W→(`′, t+ δ +
c(`, `′)).
Set δ′ := T→(`′, t+ δ + c(`, `′))− T→(`′, t+ c(`, `′)). Then:

T ′2 − T ′1 = T2 + c(`, `′) +W→(`′, t+ δ + c(`, `′))
− (T1 + c(`, `′) +W→(`′, t+ c(`, `′)))

= T2 − T1 +W→(`′, t+ δ + c(`, `′))−W→(`′, t+ c(`, `′))
≥ δ +W→(`′, t+ δ + c(`, `′))−W→(`′, t+ c(`, `′))
= δ + T→(`′, t+ δ + c(`, `′))− (t+ δ + c(`, `′))
− T→(`′, t+ c(`, `′)) + (t+ c(`, `′))

= T→(`′, t+ δ + c(`, `′))− T→(`′, t+ c(`, `′)) = δ′

The initial situation is reiterated. Since S is of increasing cardinality this iteration converges
to Case 1). J

Proof of Equation 5. We prove that Equation 5 follows from Equation 4, if (2),(3) hold. It
is to be shown that of the labelled intervals from I with ts ≤ t, the one with maximal te
(uniquely defined with (2) holding) also maximizes T + max{0, t− te}. This is clear, if there
is only one labelled interval in I with ts ≤ t. Otherwise, fix two distinct labelled intervals
([ts, te], T), ([t′s, t′e], T ′) ∈ I with ts, t′s ≤ t. With (2), one of them is earlier, say te < t′e and
te < t′s. With (3) we have t′s > te + (T ′ − T). This leads to:

T ′ + max{0, t− t′e} ≤ T ′ + max{0, t− t′s} (t′e ≥ t′s)
= T ′ + t− t′s (t′s ≤ t)
< T + t− te (t′s > te + (T ′ − T))
= T + max{0, t− te} (te < t′s ≤ t)

J

B Appendix: Additional Pseudocode

Propagation of labelled intervals. The forward propagation of labels is shown in Algorithm
2. Adjusting the intervals to conform to Equation 3 is omitted here. We write I[i] for the
i-th labelled interval of a sorted set I of labelled intervals, and write a labelled interval i as
([i.ts, i.te], i.T).

N. Paulsen, F. Diedrich, and K. Jansen 55

Algorithm 2: Propagation of labelled intervals.
Data: Labelled intervals I for (S, `) satisfying equations (2) and (3),
Travel time c = c(`, `′) from node ` to next node `′ ∈ V ′ \ (S ∪ {`}).
Result: I ′: Propagated intervals I towards node `′.

1 i← 0;
2 for k from 0 to K`′ − 1 do
3 while i < |I| − 1 and I[i+ 1].ts + c ≤ a`′,k do
4 i++;
5 if i ≥ |I| then
6 break;
7 if I[i].te + c < a`′,k then
8 Add ([a`′,k, a`′,k], I[i].T + a`′,k − I[i].te) to I ′;
9 i++;

10 while i < |I| and I[i].ts + c ≤ b`′,k do
11 t′s ← max(I[i].ts + c, a`′,k);
12 t′e ← min(I[i].te + c, b`′,k);
13 Add ([t′s, t′e], I[i].T + c) to I ′;
14 i++;

ATMOS’15

	Introduction
	Formal Definitions

	Adaption of Dynamic Programming for Tour Duration Minimization
	Pseudocode

	A Genetic Algorithm
	Experimental Results
	Conclusion
	Appendix: Proofs
	Appendix: Additional Pseudocode

