Interactive 3D Reconstruction: New Opportunities for Getting CAD-ready Models

Author Julius Schöning



PDF
Thumbnail PDF

File

OASIcs.ICCSW.2015.54.pdf
  • Filesize: 15.33 MB
  • 8 pages

Document Identifiers

Author Details

Julius Schöning

Cite AsGet BibTex

Julius Schöning. Interactive 3D Reconstruction: New Opportunities for Getting CAD-ready Models. In 2015 Imperial College Computing Student Workshop (ICCSW 2015). Open Access Series in Informatics (OASIcs), Volume 49, pp. 54-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
https://doi.org/10.4230/OASIcs.ICCSW.2015.54

Abstract

A multitude of image-based 3D reconstruction and modeling techniques exist, which have achieved significant success in recent years. However, these techniques still lack certain abilities. For example, current 3D reconstruction techniques cannot decompose an object into its individual subparts. Thus, a printed model will consist of one single monolithic piece, which does not allow composing or decomposing parts, does not allow movable or flexible parts, and does not allow manufacturing the model from multiple different materials like wood, metal, or plastic. I reviewed the work in the research area of 3D reconstruction and provide an analysis of neglected research objectives and current drawbacks. Furthermore, I propose a mock-up of an interactive tool as a guideline for future research which describes a possible architecture, user interfaces, and processing pipeline, to overcome existing drawbacks of 3D reconstruction techniques.
Keywords
  • 3D Reconstruction
  • 3D Modeling
  • Interactive Reconstruction
  • CAD-ready

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. A. Aouina, M. Devy, and A. M. Hernandez. 3D modeling with a moving tilting laser sensor for indoor environments. International Federation of Automatic Control World Congress, 2014. Google Scholar
  2. M. Arikan, M. Schwärzler, S. Flöry, M. Wimmer, and St. Maierhofer. O-Snap: Optimization-based snapping for modeling architecture. ACM T GRAPHIC, 32(1):1-15, 2013. Google Scholar
  3. A. Barmpoutis. Tensor body: Real-time reconstruction of the human body and avatar synthesis from RGB-D. IEEE Transactions on Cybernetics, 43(5):1347-1356, 2013. Google Scholar
  4. D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. iCoseg: Interactive co-segmentation with intelligent scribble guidance. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010. Google Scholar
  5. S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder, P. Perona, and S. Belongie. Visual recognition with humans in the loop. In European conference on Computer vision (ECCV), pages 438-451. Springer, 2010. Google Scholar
  6. T. Chen, Z. Zhu, S.-M. Shamir, A.and Hu, and D. Cohen-Or. 3-weep. ACM T GRAPHIC, 32(6):1-10, 2013. Google Scholar
  7. Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt. 3D shape scanning with a time-of-flight camera. In IEEE Computer Vision and Pattern Recognition (CVPR), pages 1173-1180. IEEE, 2010. Google Scholar
  8. P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. Computer graphics and interactive techniques - SIGGRAPH, 1996. Google Scholar
  9. P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping: Using kinect-style depth cameras for dense 3D modeling of indoor environments. INT J ROBOT RES, 31(5):647-663, 2012. Google Scholar
  10. P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. In Experimental Robotics, pages 477-491. Springer, 2014. Google Scholar
  11. B. Höferlin, M. Höferlin, D. Weiskopf, and G. Heidemann. Scalable video visual analytics. Information Visualization Journal, 2013. Google Scholar
  12. N. Kholgade, T. Simon, A. Efros, and Y. Sheikh. 3D object manipulation in a single photograph using stock 3D models. ACM T GRAPHIC, 33(4), 2014. Google Scholar
  13. K. Konolige. Projected texture stereo. In IEEE Robotics and Automation (ICRA), pages 148-155. IEEE, 2010. Google Scholar
  14. A. Kowdle, Y.-J. Chang, D. Batra, and T. Chen. Scribble based interactive 3D reconstruction via scene co-segmentation. In IEEE Image Processing (ICIP), pages 2577-2580. IEEE, 2011. Google Scholar
  15. A. Kowdle, Y.-J. Chang, A. Gallagher, D. Batra, and T. Chen. Putting the user in the loop for image-based modeling. INT J COMPUT VISION, 108(1-2):30-48, 2014. Google Scholar
  16. Microsoft Research. 3D surface reconstruction http://research.microsoft.com/en-us/projects/surfacerecon/, Nov 2014.
  17. P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. Gool, and W. Purgathofer. A survey of urban reconstruction. In Computer Graphics Forum, volume 32, pages 146-177. Wiley Online Library, 2013. Google Scholar
  18. R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion: Real-time dense surface mapping and tracking. In IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages 127-136, 2011. Google Scholar
  19. J. Ning, L. Zhang, D. Zhang, and C. Wu. Interactive image segmentation by maximal similarity based region merging. Pattern Recognition, 43(2):445-456, 2010. Google Scholar
  20. Q. Pan, G. Reitmayr, and T. Drummond. ProFORMA: Probabilistic feature-based on-line rapid model acquisition. British Machine Vision Conference (BMVC), 2009. Google Scholar
  21. G. Pintore and E. Gobbetti. Effective mobile mapping of multi-room indoor structures. The Visual Computer, 30(6-8):707-716, 2014. Google Scholar
  22. M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp, C. Engels, D. Gallup, S.-J. Kim, P. Merrell, and et al. Detailed real-time urban 3D reconstruction from video. INT J COMPUT VISION, 78(2-3):143-167, 2008. Google Scholar
  23. M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and R. Koch. Visual modeling with a hand-held camera. INT J COMPUT VISION, 59(3):207-232, 2004. Google Scholar
  24. L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B. Kang. Image-based plant modeling. In ACM T GRAPHIC, volume 25, pages 599-604. ACM, 2006. Google Scholar
  25. J. Schöning and G. Heidemann. Evaluation of multi-view 3D reconstruction software. In Computer Analysis of Images and Patterns (CAIP). In Press, Sep. 2015. Google Scholar
  26. J. Schöning and G. Heidemann. Interactive 3D modeling - a survey-based perspective on interactive 3D reconstruction. In Pattern Recognition Applications and Methods (ICPRAM), volume 2, pages 289-294. SCITEPRESS, 2015. Google Scholar
  27. N. Snavely, St. M. Seitz, and R. Szeliski. Photo tourism: Exploring photo collections in 3D. ACM T GRAPHIC, 25(3):835, 2006. Google Scholar
  28. P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, and M. Pollefeys. Live metric 3D reconstruction on mobile phones. In IEEE Computer Vision (ICCV), pages 65-72. IEEE, 2013. Google Scholar
  29. S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In IEEE Robotics and Automation (ICRA), volume 1, pages 321-328. IEEE, 2000. Google Scholar
  30. M. van den Bergh and L. van Gool. Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In IEEE Workshop on Applications of Computer Vision (WACV), pages 66-72. IEEE, 2011. Google Scholar
  31. A. van den Hengel, A. Dick, T. Thormählen, B. Ward, and P. H. S. Torr. VideoTrace:rapid interactive scene modelling from video. ACM T GRAPHIC, 26(3):86, 2007. Google Scholar
  32. A. van den Hengel, R. Hill, B. Ward, and A. Dick. In situ image-based modeling. IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2009. Google Scholar
  33. Visual Geometry Group, University of Oxford. Multi-view and oxford colleges building reconstruction - dinosaur http://www.robots.ox.ac.uk/~vgg/data/data-mview.html, Aug. 2014.
  34. M. Zollhöfer, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, and M. Stamminger. Real-time non-rigid reconstruction using an RGB-D camera. ACM T GRAPHIC, 33(4):1-12, 2014. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail