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Abstract
We propose an information theoretically secure secret-key quantum money scheme in which the
verification of a coin is classical and consists of only one round; namely, a classical query from
the user to the bank and an accept/reject answer from the bank to the user. A coin can be
verified polynomially (on the number of its qubits) many times before it expires. Our scheme is
an improvement on Gavinsky’s scheme [5], where three rounds of interaction are needed and is
based on the notion of quantum retrieval games.

Moreover, we propose a public-key quantum money scheme which uses one-time memories as
a building block and is computationally secure in the random oracle model. This construction is
derived naturally from our secret-key scheme using the fact that one-time memories are a special
case of quantum retrieval games.
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1 Introduction

Wiesner [15] in the early ’80s proposed the idea of creating money whose unforgeability
is guaranteed by the laws of quantum mechanics. Quantum states seemed an ideal way
to encode money, since the no-cloning theorem of quantum states could possibly lead to a
no-cloning theorem of money.

Informally, a quantum money scheme consists of two main processes; a process Bank that
creates valid coins and a process Ver that verifies whether a coin is valid. The use of such
a scheme is straightforward; the authorized bank will produce valid money by running the
process Bank and the users will be able to pay each other and verify that a coin $ is valid by
running the process Ver($).

In Wiesner’s construction a coin consists of several BB84 states (that form a big state
ρ) together with a classical identification string s. The verification of the coin (ρ, s) is a
simple one round protocol in which the user of a coin sends the full coin to the bank and
the bank replies with a yes/no answer. The answer of the bank depends on its secret key
(which corresponds to s) as well as the outcomes it gets by applying a measurement on the
computational or Hadamard basis to ρ. These kinds of schemes are known as (secret-key)
quantum money with quantum verification since the user has to communicate quantumly
with the bank.

Until recently, the question of whether there exist quantum money schemes where the
verification protocol consists only of classical communication was open. Gavinsky [5] answered

© Marios Georgiou and Iordanis Kerenidis;
licensed under Creative Commons License CC-BY

10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015).
Editors: Salman Beigi and Robert König; pp. 92–110

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TQC.2015.92
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


M. Georgiou and I. Kerenidis 93

this question in the affirmative by creating the first secret-key quantum money scheme with
classical verification. His scheme makes use of a new quantum cryptographic idea, that of
quantum retrieval games (QRGs) and its security is information theoretic. However, a clear
drawback in contrast to Wiesner’s scheme is that the verification of a coin consists of three
rounds of interaction between the user and the bank, thus forcing the bank to maintain
a temporary memory for each verification session. In 2013 Molina et al. [11] proposed a
new quantum money scheme with classical verification. In this scheme two rounds (four
messages) are needed for the verification of a coin. Moreover, a drawback of the scheme is
that it requires the bank to be stateful and keep track of which coin belongs to which user.

In 2012, Aaronson and Christiano [1] proposed the idea of public-key quantum money
where no communication with the bank is needed in order to verify the coin. In such a scheme,
although information theoretic security is impossible, computationally secure schemes may
still exist. Classically, it is impossible to create public key money schemes since, in that
case, a coin would consist only of a bitstring and, therefore, the copy of a coin would be
trivial. Public-key quantum money are essentially the optimal kind of money we could hope
for since they can be used as ordinary cash. Although some schemes have been proposed
as candidates for public-key quantum money [1, 4], all of them are based on non-standard
computational hardness conjectures. Moreover, recently one of the two schemes proposed
in [1] was cryptanalyzed by Pena et al. [14].

Our contributions are twofold. First, we give the first information theoretically secure
quantum money scheme that requires only classical communication with the bank, tolerates
errors and the verification consists of a single round, a query to the bank and an answer.
The important contribution of this scheme compared to that of Gavinsky [5] is that in the
latter, the verification requires a three-round interaction with the bank and, therefore, the
bank has to maintain a temporary session memory. Moreover, we have made the proof more
modular and conceptually simpler by introducing a new cryptographic primitive as tool for
the security analysis.

Second, we create a public-key quantum money scheme from one-time memories in the
random oracle model. Considering hash functions as random oracles is a common tool for
the security proofs of cryptographic schemes which is invoked when standard properties of
hash functions (such as collision resistance) are not enough. Briefly, a hash function behaves
as a random oracle if on each query it returns a uniformly random element in its range, being
in the same time consistent with the previous queries; e.i. on the same query it returns the
same answer.

One-time memories are a very natural special case of quantum retrieval games and,
thus, our public-key construction is a simple modification of our secret-key scheme. In our
construction we also make use of the notion of a quantum money mini-scheme proposed by
Aaronson and Christiano [1] (see subsection 2.2). A clear advantage of this scheme compared
to other works in the literature [3, 7, 12] is the direct application of one-time memories to
quantum money without going through one-time programs and this makes our scheme more
efficient. In both our schemes the number of allowed verifications is polynomial on the size
of the coins. Our contributions, compared to previous work are summarized in Table 1.

The paper is structured as follows; in section 2 we give the definitions of secret-key and
public-key quantum money as well as the corresponding secret-key and public-key mini-
schemes. In section 3 we give the necessary tools for the security analysis of our schemes.
Last, in sections 4 and 5 we present our secret-key and public-key constructions respectively.
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Table 1 Comparison between different quantum money schemes. The “Verif.” column indicates
whether the interaction of the verification protocol is Quantum or Classical, the “#Ver.” column
indicates the number of verifications allowed before the coin expires, where n is the number of qubits
of the coin and the “Rounds” column indicates the number of rounds of interaction needed in order
to verify a coin.

Scheme Key Verif. Security #Ver. Rounds

[15] Secret Quantum cryptanalyzed [13, 11] exp(n) 1
[5] Secret Classical Information theoretic poly(n) 3
[11] Secret Classical Information theoretic poly(n) 2
Ours Secret Classical Information theoretic poly(n) 1

[1] (noise-free) Public – cryptanalyzed [14] exp(n) –
[1] (noisy) Public – conj. on polynomials exp(n) –

[4] Public – conj. on knots exp(n) –
Ours Public – security of OTM poly(n) –

2 Quantum Money Definitions

In this section we give the definitions for quantum money. We first define secret-key quantum
money schemes where there is a verification protocol run between a user and the bank in
order to verify a coin. We give a definition of secret-key quantum money mini-schemes, and
claim that there is a direct way to go from a mini-scheme to a full scheme [5], similar to the
public-key case [1]. Then, we give the definition proposed by Aaronson and Christiano [1] of
a public-key quantum money scheme as well as the mini-scheme and we state their standard
construction theorem that makes a full public-money scheme out of a mini-scheme using
signatures.

2.1 Secret-key Quantum Money

Informally, a secret-key quantum money scheme consists of an algorithm that is used by the
bank in order to create valid coins, and a protocol that is run between a holder of a coin and
the bank in order for the holder to verify that the coin is valid. The security requirement
states that it is impossible for an algorithm to create more coins than what it had in the
beginning.

I Definition 1 (Secret-key Quantum Money). A quantum money scheme with classical
verification consists of an algorithm Bank and a verification protocol Ver such that
1. Bank(1n) = $ = (ρ, sn) is the algorithm that creates a quantum coin $ where ρ is a

quantum state and sn is a classical serial number.
2. Ver is a protocol with classical communication, run for a coin $, between a holder H of a

number of coins and the bank B. The final message of this protocol is a bit b sent by the
bank, that corresponds to whether the coin is valid or not. Denote by VerBH($) this final
bit.

Correctness: The scheme is correct if for every honest holder H, Pr[VerBH(Bank(1n)) =
1] = 1− negl(n).
Security: The scheme is secure if for any quantum adversary F who possesses q coins,
interacts at most t times with the bank and finally produces q′ coins $1, · · · , $q′ it holds
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that

Pr

 ∧
i∈[q′]

VerBH($i) = 1

 ∧ (q′ > q)

 ≤ poly(t) · negl(n)

where H is any honest holder.
In general, the security parameter n corresponds to the number of qubits a valid coin consists
of. Note that, although the adversary F may deviate from the verification protocol in an
attempt to create more coins, these coins will be checked for validity by an honest holder
who will correctly follow the protocol. Note that the previous definition gives information
theoretic security; the adversary F is not restricted to be computationally efficient.

As studied by Aaronson and by Gavinsky, it is enough to prove the security of a smaller
scheme (mini-scheme) in order to guarantee security of the full scheme. In the mini-scheme,
the adversary F possesses only one coin $ and interacts t times with the bank in order to
create two coins. Therefore, the security game of the mini-scheme is as before, but the
adversary is allowed to run Ver only for its unique coin $. In this case where the verification
includes interaction with the bank, note that the coin does not need to have a classical serial
number.

I Definition 2 (Secret-key Quantum Money Mini-Scheme). A quantum money mini-scheme
with classical verification consists of an algorithm Bank and a verification protocol Ver such
that
1. Bank(1n) = $ = ρ is the algorithm that creates a quantum coin $ where ρ is a quantum

state.
2. Ver is a classical protocol, run between a holder H of $ and the bank B. The final

message of this protocol is a bit b ∈ {0, 1} sent by the bank, that corresponds to whether
the coin is valid or not. Denote by VerBH($) this final bit.

Correctness: The scheme is correct if for every honest holder H, Pr[VerBH(Bank(1n)) =
1] = 1− negl(n).
Security: The scheme is secure if for any quantum adversary F who interacts at most t
times with the bank and finally produces two coins $1, $2 it holds that

Pr
[(

VerBH($1) = 1 ∧VerBH($2) = 1
)]
≤ poly(t) · negl(n)

where H is any honest holder.
In order to go from a secret-key quantum money mini-scheme to a full scheme, it is enough
for the bank to add a serial number to a coin of the mini-scheme. Then, consulting that
serial number the bank can run the verification protocol of the mini-scheme for that coin.

I Lemma 3 (Mini-scheme to full scheme [5]). There exists a secure secret-key quantum money
full scheme with classical verification if and only if there exists a secure secret-key quantum
money mini-scheme with classical verification.

2.2 Public-key Quantum Money
We now give the definition of a public-key quantum money scheme [1]. In this case we have
three algorithms; one that creates a public key and a secret key, one that uses the secret key
to create coins, and one that uses the public key to verify that a coin is valid.

I Definition 4 (Quantum Money [1]). A public-key quantum money scheme M consists of
three algorithms:

TQC’15
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1. KeyGen(1n) = (sk,pk) that returns a secret key sk and a public key pk.
2. Bank(sk) = $ a randomized algorithm that takes as input the secret key and returns a

coin $.
3. Ver(pk, $) = 0/1 that takes as input the public key pk, and a potential coin $ and either

accepts or rejects.

Correctness: M is correct if for a pair (sk,pk) that is output of KeyGen it holds that

Ver(pk,Bank(sk)) = 1− negl(n)

Security: M is secure if for any polynomial time quantum adversary F that takes as input
the public key pk and q valid coins $1, · · · , $q and outputs q′ potential coins $′1, · · · , $′q′
it holds that

Pr

 ∧
i∈[q′]

Ver(pk, $′i) = 1

 ∧ (q′ > q)

 = negl(n)

Here, n is the security parameter of the scheme and corresponds to the number of bits of sk
as well as the number of qubits of each coin.

Now, as before, we give the notion of public key mini-schemes. A mini-scheme consists
only of an algorithm that creates a coin and an algorithm that verifies a coin. Here the
coin is of the form (s, ρ) where s is a classical string and ρ is a quantum state. Although
anyone can create a coin that passes the verification test (the creation algorithm is public),
the security property states that no algorithm that takes a coin with serial number s can
create an extra valid coin with the same serial s.

I Definition 5 (Quantum Money mini-scheme [1]). A public-key quantum money mini-scheme
M consists of two algorithms:
1. Bank(1n) = $ = (s, ρ) a randomized algorithm that returns a coin $, where s is a classical

serial number and ρ is a quantum state.
2. Ver($) = 0/1 that takes as input a potential coin $ and either accepts or rejects.

Correctness: M is correct if it holds that Ver(Bank(1n)) = 1
Security: M is secure if for any polynomial time quantum adversary F that takes as
input a coin (s, ρ) and outputs two quantum states ρ1, ρ2 it holds that

Pr [(Ver(s, ρ1) = 1 ∧Ver(s, ρ2) = 1)] = negl(n)

Here, n corresponds to the number of qubits of ρ.
The tool that Aaronson and Christiano use in order to go from a public money mini-scheme

to a full scheme is digital signatures that are secure against quantum adversaries.

I Definition 6. A signature scheme S consists of three algorithms:
1. KeyGen(1n) = (sk,pk) that returns a secret key sk and a public key pk.
2. Sign(sk,m) = s that takes as input a secret key and a message m and returns its signature

s.
3. Ver(pk,m, s) = 0/1 that takes as input the public key pk, a message m and a potential

signature s and either accepts or rejects.

Correctness: S is correct if for a pair (sk,pk) that is output of KeyGen it holds that

Ver(pk,m,Sign(sk,m)) = 1
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Security: The security of S is defined by the following game between a Challenger C
and an adversary F . C runs KeyGen(1n) and creates a pair (sk,pk) and gives pk to
F . F picks messages m1, · · · ,mq of its choice and gives them to C. C using sk signs
these messages and replies with their signatures s1, · · · , sq. Finally, F outputs a message-
signature pair (m∗, s∗) and wins if this pair is different from all other pairs (mi, si) for
all i ∈ [q] and if Ver(pk,m∗, s∗) = 1. S is existentially unforgeable under non-adaptive
chosen message attacks if for every polynomial time quantum adversary F it holds that
Pr[Ver(pk,m∗, s∗) = 1] = negl(n).

Here, n is the security parameter of the scheme and corresponds to the number of bits of sk.

I Theorem 7 (Standard Construction [1]). If there exists a secure public-key quantum money
mini-scheme and if there exists an existentially unforgeable under non-adaptive chosen
message attacks signatures scheme, then there exists a secure public-key quantum money
scheme.

Briefly, in this standard construction, a full coin consists of a coin from the mini-scheme
combined with a signature of its serial number.

In the following, therefore, we focus on constructing a secret-key and a public-key
mini-scheme and these can be extended to full schemes using the previous constructions.

3 Tools for security analysis

In this section we define an important tool towards the construction of quantum money, that
of quantum retrieval games (QRG). From a QRG we go through some intermediate notions
of QRG that are more convenient for our money schemes and prove the equivalence between
them.

3.1 Quantum Retrieval Games
Suppose that we have an encoding function that takes as input a classical string x and gives
as output an encoding ρ̃x, which in the quantum case is a mixed quantum state. Suppose,
furthermore, that x is chosen from some distribution and is described by a random variable
X. How easy is it for an algorithm that takes as input only ρ̃x to answer a question about
x? A good way to formalize this question is via a relation σ. Then, we would like to know
how well an optimal algorithm can find an answer a such that (x, a) ∈ σ. For example, σ
could be the identity ((x, a) ∈ σ if and only if x = a) or a function g ((x, a) ∈ σ if and only
if a = g(x)). In the most general setting σ is a relation and therefore there are several valid
answers. Informally, in a quantum retrieval game, an algorithm takes as input ρ̃x and wants
to find an answer for x. In order to succeed in this, it has to find the best decoding procedure
that, when applied to ρ̃x, will give a valid answer. In the quantum case, the best decoding
procedure corresponds to the best measurement of the state ρ̃x and the probability that this
best measurement will give a valid answer is called the physical value of the game.

Note that if ρ̃x is a mixed quantum state it holds that Tr[ρ̃x] = 1. By defining ρx = Pr[X =
x] · ρ̃x we can integrate the randomness of x into the state ρx. Note that ρx � 0, Tr[ρx] ≤ 1,
Pr[X = x] = Tr[ρx] and Tr[

∑
x ρx] = Tr[

∑
x Pr[X = x] · ρ̃x] =

∑
x Pr[X = x] · Tr[ρ̃x] = 1.

It is common to call the string x a secret that takes values from a set of secrets S, a a
potential answer that takes values from a set of answers A and ρx the quantum state that
is the encoding of x. A decoding procedure is a general measurement on the state ρx with
operators {ma}a∈A, each one corresponding to a possible answer.

TQC’15
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maximize
∑

(x,a)∈σ

〈ma, ρx〉

subject to
∑
a∈A

ma = I

ma � 0 ∀a ∈ A

Figure 1 Physical value.

maximize
∑

(x,a)∈σ〈ma, ρx〉∑
x,a〈ma, ρx〉

subject to
∑
a∈A

ma � I

ma � 0 ∀a ∈ A

Figure 2 Selective value.

I Definition 8 (Quantum Retrieval Games [5]). Let S,A ⊆ N, σ ⊆ S × A and ∀x ∈ S let
ρx � 0 such that Tr[

∑
x∈S ρx] = 1. Then the tuple G = (S,A, {ρx}x∈S , σ) is called a

quantum retrieval game (QRG). The physical value of G is denoted by PVal(G) and is the
maximum probability of correctly decoding a state; i.e. producing an answer a ∈ A such
that (x, a) ∈ σ (where the probability is taken over the randomness of x and the randomness
of the decoding procedure).

The physical value of a game can be expressed as the solution of the semidefinite program
of Figure 1. In several cases we are interested in an upper bound of the physical value of
a game. Towards this, it is convenient to define the selective value of the game SVal(G)
which describes the best decoding probability when the measurements {ma}a∈A satisfy the
property:

∑
a∈Ama � I. In other words, the selective value of the game corresponds to the

solution of the relaxation of the SDP of the physical value (Figure 2) and in general it is not
achievable, yet easier to manipulate. It is clear that the selective value of a game is always
greater or equal to its physical value and, thus, an upper bound of the selective value gives
also an upper bound of the physical value. The following theorem by Pastawski et al. [16]
suggests an easy way to compute the selective value of a game.

I Theorem 9 (Selective Value [16]). Let G = (S,A, {ρx}x∈S , σ) be a QRG and let ρ =∑
x∈S ρx. If ρ is invertible then SVal(G) = maxa ‖Oa‖, where Oa =

∑
x:(x,a)∈σ ρ

−1/2ρxρ
−1/2

and ‖ · ‖ denotes the operator norm.

This equality is useful since it is possible to find the selective value of a game without going
through any specific measurement.

In the case we want to play a big QRG that consists of playing in parallel many small
QRGs, it is useful to know what happens to the physical value of that big game. The
following lemma states that the selective value of such a game is multiplicative and therefore
the probability of winning all the QRGs drops exponentially fast on the number of small
games.

I Lemma 10 (Parallel Repetition [16]). Let G1 = (S1, A1, {ρ1x1}x1∈S1 , σ1) and G2 =
(S2, A2, {ρ2x2}x2∈S2 , σ2) be two QRGs. Let also S = S1×S2, A = A1×A2, ρx1x2 = ρ1x1⊗ρ2x2

and (x1x2, a1a2) ∈ σ if and only if (x1, a1) ∈ σ1 and (x2, a2) ∈ σ2. Then for the game
G = (S,A, {ρx1x2}(x1,x2)∈S , σ) it holds that SVal(G) = SVal(G1) · SVal(G2).

Let M1,M2 be the solutions that optimize the selective value for the games G1, G2
respectively. Then the previous equality states that the optimal solution for the product
game G is just the product of the two solutions. This provides an upper bound on the
physical value of the product game G, which is the product of the selective values of the
games G1, G2. It is clear that by taking the product of n games with constant selective value
ε, we can create a game whose physical value is at most εn.

For the construction of our money scheme, it is useful to define another notion of a
QRG, that of 1-out-of-2 QRG. Here, an algorithm is given as before a state ρx, but now
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two relations σa, σb. The basic property that we expect from such a game is that it should
be impossible for any quantum algorithm (quantum measurement), to answer with high
probability both relations correctly, but it is still possible to answer correctly one of them.

I Definition 11 (1-out-of-2 QRG). For a set of secrets S, set of answers A, and two
relations σa, σb we define: Ga = (S,A, {ρx}x∈S , σa), Gb = (S,A, {ρx}x∈S , σb), Gc = (S,A×
A, {ρx}x∈S , σ) where (x, (a, b)) ∈ σ if and only if (x, a) ∈ σa and (x, b) ∈ σb. We say that
G = (S,A, {ρx}x∈S , σa, σb, σ) is an ε−

(2
1
)
QRG if it satisfies the following properties:

1. Correctness: There exist measurements M (a),M (b) such that (M (a)(ρx), x) ∈ σa and
(M (b)(ρx), x) ∈ σb. Equivalently: PVal(Ga) = PVal(Gb) = 1

2. Security: PVal(Gc) ≤ ε
3. Independence: Each answer in σb is independent of the set of answers in σa. Formally, let

Sa be the random variable containing all answers in σa and let B be the random variable
of any answer in σb. Then for any set of answers A′ ⊆ A and any answer b ∈ A, it holds
that

Pr[Sa = A′ ∧B = b] = Pr[Sa = A′] · Pr[B = b]
where the probability is taken over the randomness of the secret x. Symmetrically, each
answer in σa is independent of the set of answers in σb.

In the independence property note that the two sets of answers for the two relations are not
necessarily mutually independent, therefore knowing all answers to σa may give the adversary
an advantage if he wants to find more than one answer to σb. This property will be useful
for a technical part of our proof below. We will call a

(2
1
)
QRG secure if c = 1− negl(n) and

ε ≤ negl(n) where n is the size of the secret x.
Theoretically, it is possible to create games with perfect correctness. However, in practice

it is reasonable to assume that errors may occur and therefore, the correctness may not be
guaranteed. In this case, we can assume that the games Ga and Gb cannot be answered
correctly with probability 1 but only with a constant probability c < 1. Then, we can define
an 1-out-of-2 game as (c, ε)−

(2
1
)
QRG where ε is again the security of the scheme. We can

show that if we repeat such a game n times, we can create a (c′, ε′)−
(2

1
)
QRG where c′ is

now exponentially close to 1 and ε′ is exponentially close to 0.

I Lemma 12. Let c, ε, δ be positive constants such that δ = 2c−ε−1
3 . If there exists a

(c, ε)−
(2

1
)
QRG G, then there exists a

(
1− e− cn

2 δ
2
, e−

εn
3 δ

2
)
−
(2

1
)
QRG G′.

Note that even though the original “small” game may have a considerably large error
probability, we can achieve a quantum retrieval game that tolerates the errors with probability
exponentially close to 1.

3.2 QRGs with Verification
We now define a new version of QRG, that of QRG with verification (

(2
1
)
QRGv) that is

useful for the construction of our money schemes. Informally, in a
(2

1
)
QRGv, an adversary

has some extra help for finding an answer to σa and σb; he is allowed to ask multiple queries
of whether an answer is correct for a relation. What we require from such a game, is that
the winning probability of any such adversary does not increase more than polynomially on
the number of queries it asks.

I Definition 13 (
(2

1
)
QRGv). Let G = (S,A, {ρx}x∈S , σa, σb, σ) be a (c, ε) −

(2
1
)
QRG. We

define the following game G between an adversary F and an algorithm C. C prepares a
normalized state ρx/Tr[ρx] of the game G and gives it to F . Then F is allowed to interact
with C at most t times in the following way:

TQC’15



100 New Constructions for Quantum Money

1. F picks a σ′ ∈ {σa, σb}, generates an answer d and sends (σ′, d) to C.
2. C returns 1 if and only if (x, d) ∈ σ′.
After t interactions F outputs (a∗1, a∗2) and wins if and only if (x, (a∗1, a∗2)) ∈ σ. We say that
G is a (c, ε) −

(2
1
)
quantum retrieval game with verification (

(2
1
)
QRGv) if it satisfies the

following properties:
1. Correctness: Given any state ρx/Tr[ρx] the probability of answering σa (or σb) is at least

c.
2. Soundness: For any t and for any adversary F interacting the way defined above, it holds

that Pr[F wins] ≤ poly(t) · ε

We would like to argue the following: allowing such an adversary F to check whether a
query (σ′, d) is correct, does not increase considerably his probability of winning. Therefore,
for an exponentially small ε an adversary would require a superpolynomial number of such
interactions in order to have a non-negligible probability of winning. Towards this, we define
below a more restricted version of the game and we show that this definition is equivalent to
that of a

(2
1
)
QRGv.

We now restrict the adversary F in the following manner. Suppose that F is allowed to
interact with C as previously and the i-th interaction is the first interaction when he sends to
C some (σ′, a) such that (x, a) ∈ σ′ (without loss of generality we can assume that σ′ = σa).
Then, for the remaining t − i interactions F is allowed to play only with σb. We call this
game a restricted 1-out-of-2 quantum retrieval game with verification (

(2
1
)
rQRGv) and the

adversary F a restricted adversary. It can be proven that since finding an answer for σa is
independent from any answer of σb, these two games are equivalent. In other words, allowing
the adversary to succeed in more than one interaction with the same relation σ′ does not
help him win the game more than succeeding only once for σ′.

I Lemma 14. Let G = (S,A, {ρx}x∈S , σa, σb, σ) be a (c, ε) −
(2

1
)
QRGv. Then G is also a

(c, ε)−
(2

1
)
rQRGv.

Using the previous lemma we can show that an adversary that is allowed to ask at most t
queries regarding the relations σa, σb does not increase significantly his probability of winning.
More specifically, it can be shown that if the original

(2
1
)
QRG has security ε then allowing

interaction, increases the winning probability at most quadratically in t.

I Theorem 15. If there exists a (c, ε)−
(2

1
)
QRG G′ then there exists a (c, ε)−

(2
1
)
QRGv G.

In particular, any adversary against G has winning probability of at most 4t2 · ε, where t is
the number of queries.

3.3 One-time Memories
For the creation of our public-key scheme we will use the notion of one-time memories (OTM)
defined by Goldwasser et al in [7]. OTM are essentially devices which contain two secrets
xa, xb, however, we are able to extract only one of these secrets. There is a very natural
connection between

(2
1
)
QRG and OTMs as we will see below.

I Definition 16. A (c, ε)−one-time memory (OTM) is a device that has the following
behavior. Suppose that the device is programmed with two n-bit messages xa, xb chosen
from some distribution D. Then:
1. Correctness: There exists an honest strategy M (a) that interacts with the device and

recovers the message xa with probability c. Likewise, there is an honest strategy M (b)

that interacts with the device and recovers the message xb with probability c.
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2. Security: For any strategy M , if X is the random variable corresponding to the classical
output of M , then Pr[X = (xa, xb)] ≤ ε.

We will call the OTM secure if c = 1− negl(n) and ε = negl(n).
Note that in this paper, we deal with quantum OTM, namely the “device” is a quantum

state ρxa,xb
. Although secure OTM are impossible in the plain quantum model even with

computational assumptions, Liu [8, 9, 10] has shown that OTM are possible in the isolated
qubits model, where an adversary can use only local operations and classical communication.
His OTM construction is a quantum state that consists of qubits that do not need to be
entangled and thus it is easier and more efficiently implementable.

It is not hard to see that OTM are equivalent to
(2

1
)
QRG restricted so that the relations

σa, σb are, in fact, functions.

I Lemma 17. There exists a secure
(2

1
)
QRG G = (S,A, {ρx}x∈S , σa, σb, σ) such that the

relations σa, σb are functions if and only if there exists a secure OTM.

Proof. Using G we can create an OTM with secrets xa = σa(x) and xb = σb(x). The OTM
device is simply ρx. Clearly, if there exists an algorithm that can retrieve both secrets from
the OTM then this algorithm can also break G. For the opposite direction, the role of the
encoding ρx is played by the OTM device, which is a quantum state. The secret x of G is
defined as the concatenation of xa and xb and the functions σa, σb are defined such that
σa(xa|xb) = xa and σb(xa|xb) = xb. Clearly, if there exists an algorithm that can retrieve
answers for both σa and σb from the encoding ρx then this algorithm can also break the
OTM. J

Similarly to the QRG with verification, we can define (c, ε)−one-time memories with
verification (OTMv); where the adversary is allowed to choose d ∈ {a, b} and y ∈ {0, 1}n
and ask whether xd = y. Again, a secure OTMv means that c ≥ 1− negl(n) and ε ≤ negl(n).
However, as we have shown, such a power does not really help the adversary.

Finally, a hash based OTMv (hOTM) is an OTMv where the adversary instead of being
allowed to interact in order to find an answer, it is given as input the hashes of the two
answers H(xa), H(xb). This way, if an answer is correct, the adversary can verify that on its
own. It can be shown that if the original OTMv is secure, then the hash based OTMv is
still secure in the random oracle model.

A random oracle is essentially an oracle that behaves as follows. First, it keeps a list L of
pairs of the form (x, y) where x is an element of its domain and y is an element of its range.
In the beginning L is empty. On input x0, first it searches L for a pair of the form (x0, y0),
and if such a pair exists in L then it returns y0. Otherwise, it picks a uniformly random
element y0 from its range, inserts (x0, y0) in the list L, and returns y0. Hash functions are
usually assumed to have this ideal property when other properties such as one-wayness or
collision resistance are not enough for a security proof. When hash functions are used as
random oracles in a proof that a scheme is secure, we say that the scheme is secure in the
random oracle model.

I Definition 18. A hash based one-time memory (hOTM) is a device that has the following
behavior. Suppose that the device is programmed with two n-bit messages xa, xb chosen
from some distribution D. Then:
1. Correctness: There exists an honest strategy M (a) that interacts with the device and

recovers the message xa with probability c = 1− negl(n). Likewise, there is an honest
strategy M (b) that interacts with the device and recovers the message xb with probability
c = 1− negl(n).
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(2
1
)
QRG

(2
1
)
QRGv secret-key

mini-scheme
secret-key
full scheme

Figure 3 From a
(2

1

)
QRG to a secret-key quantum money scheme.

2. Security: For any polynomial time strategy M that takes as input the hash values
H(xa), H(xb), if X is the random variable corresponding to the classical output of M ,
then Pr[X = (xa, xb)] ≤ negl(n)

Note that in contrast to the previous definitions, the security of a hOTM is computational.

I Lemma 19. A secure OTMv is also a secure hOTM in the random oracle model.

Proof. Suppose that there exists a polynomial algorithm F that is able to break the hOTM
property. We can create an algorithm A against the OTMv property. A takes as input a
state ρxa,xb

and is allowed to ask verification queries of the form (d, y), where d ∈ {a, b} and
receive an answer 1 if and only if xd = y. A initiates F by choosing two random values (α, β)
as the hashes of the answers and giving to F the tuple (ρxa,xb

, α, β). When F asks for the
hash of a value y, A makes two queries of the form (a, y), (b, y) and if one of them accepts, A
returns to F the value α or β depending on which of the two queries accepted. If none of the
two accepted, then A returns a random (but consistent with the previous queries) value to F
as a hash of y. When F outputs its two final answers (x∗a, x∗b), A also outputs (x∗a, x∗b). We
can see that F always takes proper answers to its queries (F is allowed to ask only for hash
values) and therefore works as if it attacks the hOTM. Since F is a polynomial algorithm,
it cannot ask more that a polynomial number of hash values and therefore A cannot have
asked more than a polynomial number of queries. Thus, if the winning probability of F is
non-negligible, A has also a non-negligible winning probability. J

4 Secret-key Quantum Money Construction

In this section we create a secret-key mini-scheme and we analyze its security. Our scheme,
in contrast to that proposed by Gavinsky [5], allows a one-round protocol between the bank
and the user to accomplish the verification of a coin: a query to the bank and an answer by
the bank that states whether the coin is valid or not. Therefore, in our scheme the bank
does not need to maintain memory during the verification procedure; it just consults its
secret database and returns the result. In the scheme of Gavinsky, however, the verification
protocol consists of three rounds during which, the bank has to maintain a temporary memory
associated with a specific coin. Furthermore, unlike the scheme of Gavinsky, our proof of
security is simpler, more modular and it includes noise and losses.

Gavinsky has shown that a
(2

1
)
QRG with the following parameters exists:

I Theorem 20 (Hidden Matching QRG [5, 6]). There exists a (1− 2−n, 2−n)−
(2

1
)
QRG G.

Starting from this and using theorem 15 we can create a
(2

1
)
QRGv with the same

parameters. Our construction is essentially a way of going from a
(2

1
)
QRGv to a mini-scheme.

Then, using the reduction from a mini-scheme to a full-scheme, the existence of a
(2

1
)
QRG

leads to the existence of a full quantum money scheme. The sequence of reductions appears
in Figure 3.

We now propose our construction that uses a
(2

1
)
QRGv to create a mini-scheme. The

algorithm Bank and the protocol Ver are defined as follows:
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Bank(1n2) :
1. For i ∈ [n] create Gi = (S,A, {ρxi

}xi
, σa, σb, σ), (1− 2−n, 2−n)−

(2
1
)
QRGv.

2. Create a classical binary register r of size n and initialize it to 0n.
3. Return the state $ = (

⊗
i ρxi

, r) as a coin for the mini-scheme.

Verification protocol for a coin $ = (
⊗

i ρxi
, r):

1. The holder creates an empty set L. Then, for each i ∈ [n] such that ri = 0, the
holder puts i in the set L with probability 1/n1/3. For each i ∈ L the holder picks at
random a relation σ′i ← {σa, σb} and applies to ρxi the measurement M (a) if σ′i = σa
or M (b) if σ′i = σb, in order to retrieve an answer di. Furthermore, for all i ∈ L the
holder sets ri = 1. Finally, the holder sends to the bank the i’s he has picked, the
relation he has picked for each i, as well as the answers di.

2. The bank compares the answers it has received with its secret x1 · · ·xn and accepts
if all answers are correct; namely if for all i ∈ L it holds that (xi, di) ∈ σ′i.

I Remark. The coin is returned to the bank for replacement when the hamming weight of r
is greater than n/4 (more than n/4 of the ρxi

are marked as used). Note that the scheme
consists of O(n2) qubits in total (there are n states ρxi

and each state consists of O(n) qubits)
and that the verification protocol consists of only one round.

I Theorem 21. The scheme is secure; namely any (even computationally unbounded)
adversary who interacts with the bank at most t times has winning probability of at most
e−n

1/3/8 + 4t2 · n · 2−n.

Proof. Suppose there is an adversary F for the mini-scheme, namely when F receives as
input a valid coin $ and after running t verification protocols with the bank, he can produce
two coins $′ = (ρ′1, · · · , ρ′n, r′), $′′ = (ρ′′1 , · · · , ρ′′n, r′′) that can pass the verification protocol
with non-negligible probability ε greater than p(t) · 2−n, for all polynomials p. Then, one
can create an adversary A for the (1− 2−n, 2−n)−

(2
1
)
QRGv, namely when A receives from

the algorithm C as input a state ρ∗ that is the encoding of a secret x∗, and after interacting
t times with the algorithm C, he can win the game with probability greater than p(t) · 2−n
for all polynomials p. By theorem 15 this also implies breaking the security of the

(2
1
)
QRG.

Let A receive as input the state ρ∗, that is the encoding of a secret x∗. He creates an
input for F in the following way:

Bank(1n2):
1. Pick at random i∗ ← [n].
2. For i ∈ [n]−{i∗} create Gi = (S,A, {ρxi

}xi
, σa, σb, σ) where Gi is a (1− 2−n, 2−n)−(2

1
)
QRGv.

3. Create a classical binary register r of size n and initialize it to 0n.
4. Return to F the coin $ = (ρ, r), where ρ = ρx1 ⊗· · ·⊗ρxi∗−1 ⊗ρ∗⊗ρxi∗+1 ⊗· · ·⊗ρxn .

In other words, A creates a totally valid coin, but in the i∗-th position he puts the state
he has as input. For clarity we will denote the secret x∗ as xi∗ . Note that A is able to pretend
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to be the honest bank during the verification protocol with F , since for all i ∈ [n]− {i∗} he
knows the answers to the relations, whereas for the i∗-th state, he can use his own interaction
with the algorithm C in order to decide whether the query asked by F is correct. Therefore,
A simulates the verification protocol between the bank and F in the following way:

1. A receives from F a set L of i’s, a set of challenges σ′i ∈ {σa, σb} and a set of answers
di for each i ∈ L.

2. A returns 1 if all answers are correct; namely, if (xi, di) ∈ σ′i for all i ∈ L. Note that
for those i’s that are different from i∗, A can easily consult his own secret xi in order
to find if the answer is correct. However, for i = i∗, A can make a query (σ′i∗ , di∗) to
the algorithm C in order to find if the answer di∗ is correct.

Hence, A can provide F with a valid initial coin and simulate the bank in the t verification
protocols with F , and in the end, he receives from F two coins $′ = (ρ′1, · · · , ρ′n, r′), $′′ =
(ρ′′1 , · · · , ρ′′n, r′′) that can pass a verification protocol with an honest verifier with non-negligible
probability ε. For the two coins $′, $′′ to be considered as valid, there must be at least 3/4n of
the ρ′i’s denoted as valid and at least 3/4n of the ρ′′i ’s denoted as valid (a state ρ′i is denoted
as valid if r′i = 0). Therefore, there are at least n/2 indices i such that r′i = r′′i = 0. We want
to argue that there must be an index i among them for which A can win the

(2
1
)
QRGv game

with probability greater than p(t) · 2−n for all polynomials p, otherwise the probability that
the adversary F could create two valid coins is negligible.

Let I = {i : r′i = r′′i = 0}. Since the coins $′, $′′ are denoted as valid, it holds that
|I| ≥ n/2. Assume now that two honest verifiers Ver′ and Ver′′ run the verification protocol
for the two coins respectively. Let La, Lb be the sets chosen by the honest verifiers and
L′ = {i ∈ La ∩ Lb : σ′i = σa ∧ σ′′i = σb}, where σ′i, σ′′i are the relations chosen for the index
i by the verification protocols for the two coins. In other words, L′ contains the indices
that where chosen by both Ver′ and Ver′′ in such a way that Ver′ chose σa for this i and
Ver′′ chose σb for this i. It holds that Pr[i ∈ La ∩ Lb] = 1/n2/3 and Pr[i ∈ L′] = 1/4n2/3.
Therefore, Pr[∀i ∈ I : i /∈ L′] = Pr[L′ = ∅] ≤ (1 − 1/4n2/3)n/2 = e−n

1/3/8, since |I| = n/2.
In other words, the probability that there exists an i with r′i = r′′i = 0 such that Ver′ chose
it during the verification protocol and picked the relation σa for it and Ver′′ also chose it
and picked σb for it, is exponentially close to 1. Now it holds that

Pr[F wins] = Pr[Ver′($′) = 1 ∧Ver′′($′′) = 1]
= Pr[L′ = ∅] · Pr[Ver′($′) = 1 ∧Ver′′($′′) = 1|L′ = ∅]
+ Pr[Ver′($′) = 1 ∧Ver′′($′′) = 1 ∧ L′ 6= ∅]

≤ e−n
1/3/8 + Pr[Ver′($′) = 1 ∧Ver′′($′′) = 1 ∧ L′ 6= ∅]

≤ e−n
1/3/8 + Pr[∃i ∈ L′ : (M (a)(ρ′i), xi) ∈ σa ∧ (M (b)(ρ′′i ), xi) ∈ σb]

where M (a),M (b) are the measurements applied to the states of the QRG’s in order to
retrieve an answer to σa, σb respectively. The last line comes from the fact that if L′
is not empty and both verifications succeed, then both verifications must succeed for all
i ∈ L′. Therefore, if Pr[F wins] = ε is non-negligible then Pr[∃i ∈ L′ : (M (a)(ρ′i), xi) ∈
σa ∧ (M (b)(ρ′′i ), xi) ∈ σb] ≥ ε− e−n

1/3/8 is non-negligible as well. This trivially implies that
Pr[∃i ∈ [n] : (M (a)(ρ′i), xi) ∈ σa ∧ (M (b)(ρ′′i ), xi) ∈ σb] ≥ ε− e−n

1/3/8. In other words, with
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OTM
+

random oracle
hOTM

public-key
mini-scheme

public-key
full scheme

signatures [1]

Figure 4 From an OTM to a full public-key quantum money scheme. OTMs in the random
oracle model give hOTM. hOTM imply public-key mini-schemes which, together with signatures,
imply public-key quantum money.

non-negligible probability there exists an index i for which both verifications succeed. At this
point it is clear that the goal of A is just to guess that index i and put ρ∗ in that position.

Overall, the adversary A works as follows: Upon receiving as input the state ρ∗, he picks
a random position i∗, creates the valid coin for F as we described above, receives the states
ρ′i∗ and ρ′′i∗ from F and returns the answers

(
M (a)(ρ′i∗),M (b)(ρ′′i∗)

)
. Now it holds that

Pr[A wins] = Pr[(M (a)(ρ′i∗), xi∗) ∈ σa ∧ (M (b)(ρ′′i∗), xi∗) ∈ σb]
≥ Pr[(M (a)(ρ′i∗), xi∗) ∈ σa ∧ (M (b)(ρ′′i∗), xi∗) ∈ σb|

∃i ∈ [n] : (M (a)(ρ′i), xi) ∈ σa ∧ (M (b)(ρ′′i ), xi) ∈ σb]
· Pr[∃i ∈ [n] : (M (a)(ρ′i), xi) ∈ σa ∧ (M (b)(ρ′′i ), xi) ∈ σb]

≥ 1
n
· Pr[∃i ∈ L′ : (M (a)(ρ′i), xi) ∈ σa ∧ (M (b)(ρ′′i ), xi) ∈ σb]

≥
(
ε− e−n

1/3/8
)
/n

which contradicts the fact that the security of the
(2

1
)
QRGv is 2−n.

Therefore, since by theorem 15 the maximum winning probability of A is 4t2 · 2−n, the
maximum winning probability of F is e−n1/3/8 + 4t2 · 2−n · n. J

5 Public-key Quantum Money Construction

In the construction of a public key scheme, it suffices to create a secure public-key mini-
scheme, and this, combined with signatures, can give a full scheme [1]. The advantage
of our construction is that it is a simple modification of the previous secret key one: the
answers of the bank are encoded in their hash values. Therefore, instead of requiring from
the user to communicate with the bank in order to find out if an answer is valid, the bank
announces the hash values of the answers. It is clear that for a regular QRG there may exist
too many answers and hence giving all these hashes as part of the coin would violate the
correctness of the scheme. Hence, for our construction, we need to use QRG with functions
or equivalently one-time memories. Despite the fact that quantum one-time memories do
not exist unconditionally, they exist in the isolated qubits model.

I Theorem 22 ([8, 9, 10]). There exists a secure OTM in the isolated qubits model.

Using this, together with lemma 19, we get the following corollary.

I Corollary 23. There exists a secure hOTM in the isolated qubits-random oracle model.

Our purpose, now, is to go from hOTM to a public-key mini-scheme. The sequence of
reductions appears in Figure 4.

Since for each OTM there are only two secrets, a hashing of each answer can be given as
part of the coin. Then the verification algorithm works similarly to the secret key scheme. It
chooses each state-game with probability 1/n1/3, it chooses at random whether to retrieve
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the first (xa) or the second (xb) secret for each game, it measures the OTM (using M (a) or
M (b)) in order to retrieve an answer and finally it verifies that the hash value of that answer
is the same as the one given. So the two algorithms Bank and Ver of the mini-scheme are
the following:

Bank(1n2) :
1. For i ∈ [n] create the OTM ρi with secrets xai , xbi ∈ {0, 1}n.
2. Create a classical binary register r of size n and initialize it to 0n.
3. Return $ = ((h1, g1), · · · , (hn, gn), ρ1, · · · , ρn, r) as a coin for the mini-scheme, where

hi = H(xai ), gi = H(xbi ) and H is the hash function. The string (h1, g1), · · · , (hn, gn)
corresponds to the classical serial number of the coin (that has to be signed in order
to give a full coin), and (ρ1, · · · , ρn, r) is the quantum state.

Ver((h1, g1), · · · , (hn, gn), ρ1, · · · , ρn, r):
1. Create an empty set L. Then, for each i ∈ [n] such that ri = 0, put i in the set L

with probability 1/n1/3.
2. For each i ∈ L pick at random di ← {a, b} and measure ρi in order to retrieve an

answer xi ∈ {xai , xbi}; i.e. xi = M (di)(ρi).
3. For all i ∈ L set ri = 1.
4. Accept if for all i ∈ L it holds that H(xi) = hi (if di = a) or H(xi) = gi (if di = b).

As before, the coin is returned to the bank for replacement when the hamming weight of
r is greater that n/4.

I Theorem 24. The scheme is secure.

Proof sketch. The proof follows the same steps as that of the secret-key scheme; a good
adversary F against the mini-scheme can lead to a good adversary A against the hOTM. F
takes as input a coin $ = (sn, ρ), where sn = (h1, g1), · · · , (hn, gn) and ρ = (ρ1, · · · , ρn, r).
At the end, F outputs two states ρ′ = (ρ′1, · · · , ρ′n, r′), ρ′′ = (ρ′′1 , · · · , ρ′′n, r′′) such that both
$′ = (sn, ρ′) and $′′ = (sn, ρ′′) pass the verification test with non-negligible probability. Note
that these two states pass successfully the verification algorithm with the same serial sn and
therefore with the same hash values. As before, we can show that the number of indices that
are denoted as valid in both coins are at least n/2. Furthermore, the probability that none
of them is able to pass the two verification algorithms is negligible (otherwise the winning
probability of F would be negligible). Thus, a non-negligible counterfeiting probability ε of
F implies a non-negligible probability of A to break the hOTM. J

6 Conclusions

We created a secret-key quantum money scheme that is unconditionally secure and has
optimal communication: a single round of classical communication. We also provided a
conceptually simpler and more modular proof. Moreover, if we instantiate the

(2
1
)
QRG with

the Hidden Matching
(2

1
)
QRG, we can tolerate an error rate of up to 12.5%; see lemma 12

in Appendix A. Note that in every verification of the coin we invalidate on average n1/3

quantum states (each consisting of n qubits) and thus the number of allowed verifications
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before the coin is returned to the bank is n/(4 · n1/3) = n2/3/4. Therefore, for a coin of say
1012 qubits, we succeed 2,500 verifications on average. A polynomial number of verifications
is optimal for unconditionally secure schemes, nevertheless, a natural question that still
remains open is whether we can have computationally secure secret-key schemes that allow
exponentially many classical verifications.

In addition, we showed how a simple extension of our secret key construction can give
rise to a public-key quantum money scheme that is computationally secure against quantum
adversaries in the random oracle model given one-time memories. We note that previous
schemes were also based on non-standard computational assumptions. The main open
question is to construct public-key quantum money that are provably secure based on some
standard cryptographic assumptions such as one-way functions.

Acknowledgements. We thank Jamie Sikora for bringing to our attention the semidefinite
approach of QRG. This work was partially supported by the ERC project QCC, the ANR
project RDAM and the EU project QAlgo.

References
1 Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In Proceed-

ings of the 44th Symposium on Theory of Computing, pages 41–60. ACM, 2012.
2 Ziv Bar-Yossef, Thathachar S Jayram, and Iordanis Kerenidis. Exponential separation of

quantum and classical one-way communication complexity. In Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages 128–137. ACM, 2004.

3 Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-time programs. Ad-
vances in Cryptology–CRYPTO 2013, pages 344–360, 2013.

4 Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, and Peter Shor.
Quantum money from knots. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, pages 276–289. ACM, 2012.

5 Dmitry Gavinsky. Quantum money with classical verification. In Computational Complexity
(CCC), 2012 IEEE 27th Annual Conference on, pages 42–52. IEEE, 2012.

6 Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf. Ex-
ponential separations for one-way quantum communication complexity, with applications
to cryptography. In Proceedings of the thirty-ninth annual ACM symposium on Theory of
computing, pages 516–525. ACM, 2007.

7 Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. One-time programs. Advances
in Cryptology–CRYPTO 2008, pages 39–56, 2008.

8 Yi-Kai Liu. Building one-time memories from isolated qubits. In Proceedings of the 5th
conference on Innovations in theoretical computer science, pages 269–286. ACM, 2014.

9 Yi-Kai Liu. Privacy amplification in the isolated qubits model. arXiv preprint
arXiv:1410.3918, 2014.

10 Yi-Kai Liu. Single-shot security for one-time memories in the isolated qubits model. arXiv
preprint arXiv:1402.0049, 2014.

11 Abel Molina, Thomas Vidick, and John Watrous. Optimal counterfeiting attacks and
generalizations for wiesner’s quantum money. In Theory of Quantum Computation, Com-
munication, and Cryptography, pages 45–64. Springer, 2013.

12 Michele Mosca and Douglas Stebila. Quantum coins. Error-Correcting Codes, Finite Geo-
metries and Cryptography. Contemporary Mathematics, volume 523, pages 35-47. Amer-
ican Mathematical Society, 2010, 2009.

13 Daniel Nagaj and Or Sattath. An adaptive attack on wiesner’s quantum money based on
interaction-free measurement. arXiv preprint arXiv:1404.1507, 2014.

TQC’15



108 New Constructions for Quantum Money

14 Marta Conde Pena, Jean-Charles Faugère, and Ludovic Perret. Algebraic cryptanalysis
of a quantum money scheme the noise-free case. In Public-Key Cryptography–PKC 2015,
pages 194–213. Springer, 2015.

15 Stephen Wiesner. Conjugate coding. ACM Sigact News, 15(1):78–88, 1983.
16 Norman Yao, Fernando Pastawski, Liang Jiang, Mikhail Lukin, and Ignacio Cirac. Un-

forgeable noise-tolerant quantum tokens. Bulletin of the American Physical Society, 57,
2012.

A Instantiating a QRG

As shown above, the existence of a (c, ε) −
(2

1
)
QRG implies the existence of a secret-key

quantum money scheme as long as c is reasonably large and ε is any constant smaller than
1. To instantiate such a quantum money scheme one has to give specific quantum retrieval
games with this property.

Hidden Matching QRG [2, 5]
I Definition 25. The Hidden Matching

(2
1
)
QRG G = (S,A, {ρx}x∈S , σa, σb, σ) is defined the

following way: S = {0, 1}4, A = {0, 1} × {0, 1}, |ψx〉 = 1
2
∑
i∈[4](−1)xi |i〉, ρx = 1

16 |ψx〉〈ψx|.
The relation σa is defined as (x, (a, b)) ∈ σa if and only if the following holds: if a = 0 then
x1 ⊕ x2 = b; if a = 1 then x3 ⊕ x4 = b. Similarly, the relation σb is defined as (x, (a, b)) ∈ σb
if and only if the following holds: if a = 0 then x1 ⊕ x3 = b; if a = 1 then x2 ⊕ x4 = b.

I Lemma 26. The Hidden Matching is a (1, 3
4 )−

(2
1
)
QRG.

Proof. The correctness in a noise-free environment we can be succeeded with zero error
probability. Indeed, if we want to find an answer for the relation σa we measure in the basis
{ |1〉+|2〉√

2 , |1〉−|2〉√
2 , |3〉+|4〉√

2 , |3〉−|4〉√
2 } and we return the values (a, b) = (0, 0), (0, 1), (1, 0), (1, 1)

respectively. If we want to find an answer for the relation σb we measure in the basis
{ |1〉+|3〉√

2 , |1〉−|3〉√
2 , |2〉+|4〉√

2 , |2〉−|4〉√
2 } and we return (a, b) = (0, 0), (0, 1), (1, 0), (1, 1) respectively.

For the security of the game, we use Theorem 9. By definition, we have (x, (a1, b1), (a2, b2)) ∈
σ if and only if (x, (a1, b1)) ∈ σa and (x, (a2, b2)) ∈ σb. It holds that ρ =

∑
x∈{0,1}4 ρx = 1

4I

and therefore ρ 1
2 = 2I. In order to find the selective value of the game (S,A×A, {ρx}x∈S , σ)

it is enough to consider one value of Oa for some possible answer a ∈ A×A. For example,
by taking a = ((0, 0), (0, 0)) the values of x that satisfy (x, a) ∈ σ are 0000, 0001, 1110, 1111

and the corresponding density matrices are 1
16

1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

, 1
16

1
4


1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1

,

1
16

1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

, 1
16

1
4


1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1

. Therefore, O((0,0),(0,0)) = 1
4


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1


and thus it holds that ‖O((0,0),(0,0))‖ = 3

4 = SVal(G).
For the independence property, we know that for any a12, a34 ∈ {0, 1} it holds that

Pr[x1⊕x2 = a12 ∧x3⊕x4 = a34] = 1/4 and for any bit b ∈ {0, 1}, it holds that Pr[x1⊕x3 =
b] = 1/2. Moreover, Pr[x1 ⊕ x2 = a12 ∧ x3 ⊕ x4 = a34 ∧ x1 ⊕ x3 = b] = 1/8 and thus we see
that the event x1⊕ x3 = b is independent from the event x1⊕ x2 = a12 ∧ x3⊕ x4 = a34. The
same of course holds for the event x2 ⊕ x4 = b. J
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By Lemma 12, it is enough to guarantee that c ≥ 7
8 + δ for some constant δ in order succeed

an exponentially good error tolerance. Thus, the hidden matching
(2

1
)
QRG can tolerate up

to 12.5% of errors.

B Technical proofs

Proof of lemma 12. Let G = (S,A, {ρx}x∈S , σa, σb, σ). We create the following game G′ =
(S′, A′, {ρ′x}x∈S′ , σ′a, σ′b, σ′) by taking the product of n games G. Then we require that
(x1 · · ·xn, a1 · · · an) ∈ σ′a if at least c− δ of the (xi, ai) are in σa and (x1 · · ·xn, b1 · · · bn) ∈
σ′b if at least c − δ of the (xi, bi) are in σb. Furthermore, by definition, it holds that
(x1 · · ·xn, (a1 · · · an, b1 · · · bn)) ∈ σ′ if (x1 · · ·xn, a1 · · · an) ∈ σ′a and (x1 · · ·xn, b1 · · · bn) ∈ σ′b.

Since δ > 0, we have c > (1 + ε)/2 and hence c− δ > 1/2. This implies there exist at least
2c− 2δ − 1 = ε+ δ common values (i’s such that (xi, ai) ∈ σa and (xi, bi) ∈ σb). Therefore,
(x1 · · ·xn, (a1 · · · an, b1 · · · bn)) ∈ σ′ implies that there exist at least ε + δ of the (xi, ai, bi)
that are in σ.

We then analyze its Correctness and its Security. The Correctness c′ of G′ is guaranteed
via the straightforward strategy of independently measuring each of the n states in the basis
that corresponds to σa or to σb. Let Xi be the binary random variable that equals to 1 if
and only if the i-th measurement was successful. Let X =

∑
i∈[n] Xi. Then E[X] = cn and,

since the Xi’s are independent, using Chernoff bound, we have that

c′ ≥ 1− e− cn
2 δ

2

For the Security ε′ of the game, we know that the selective value is always greater or equal
to the physical value and that the former is equal to the product of the individual selective
values. Therefore, as mentioned before, the best measurement strategy that answers correctly
both questions, cannot be better than independently playing the optimal strategy for each of
the n small games. Let Yi be the binary random variable that equals to 1 if and only if the
i-th measurement was successful. Let, also, Y =

∑
i∈[n] Yi. Then, as before, E[Y ] = εn and,

since the Yi’s are independent

ε′ ≤ e− εn
3 (2c−2δ−1−ε)2

= e−
εn
3 δ

2

which is exponentially small in n. J

Proof of lemma 14. The correctness of
(2

1
)
QRGv and

(2
1
)
rQRGv is exactly the same. Fur-

thermore, it is clear that if a non-restricted adversary has probability ε to win, this probability
cannot increase by restricting this adversary. In order to show the equivalence between the
two definitions, it remains to show that a non-restricted adversary has no more power than a
restricted adversary. Without loss of generality, we assume that the first successful query
was for σa. Then, one more success for σa does not help the adversary towards finding an
answer for σa (since, it already knows one). Furthermore, by the independence property, even
knowing all the answers for σa does not give the adversary extra power to find an answer
to σb. Therefore, restricting the adversary to one successful query per relation, does not
decrease his winning probability. More details will appear in the full version of the paper. J

Proof of Theorem 15. The proof of correctness is straightforward. We focus on the security
of G. By lemma 14 it suffices to show that G’ implies an

(2
1
)
rQRGv. By contradiction,

assume that there exists an adversary F against the
(2

1
)
rQRGv G, who interacts t times

with C and wins the game with probability q > p(t) · ε for all polynomials p. We can use

TQC’15
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F in order to create an adversary F ′ who is able to attack the original
(2

1
)
QRG G′ with

probability greater than ε. Since F is restricted after succeeding one interaction with σa it
will continue interacting only by picking σb in its queries. Let E1, E2, E3, E4 be the events
that F does not succeed in any interaction, F succeeds only in a σa interaction, F succeeds
only in a σb interaction, F succeeds in both σa and σb interactions, respectively. Note that,
since F is restricted, only these four events may occur. Denote the probabilities of these
events by p1, p2, p3, p4 respectively. The idea is for F ′ to guess a priori which of the four
events will occur and which queries will be successful. If these guesses are correct then F will
not notice any difference with a real scenario (where F is playing a real

(2
1
)
rQRGv game).

These guesses can succeed with probability proportional to an inverse polynomial and if
they succeed then F ′ can break the QRG. Thus, F ′ can break the non-interactive game the
following way.
1. F ′ takes as input ρx and forwards it to F .
2. F ′ guesses uniformly at random i← [4] which corresponds to which of the four types of

attacks F will play.
a. If i = 1 then in every interaction F ′ returns a 0 to F . When F returns its final answers

(a∗1, a∗2), F ′ returns (a∗1, a∗2).
b. If i = 2 then F ′ chooses at random one of the σa queries and answers it with 1. To all

the others, F ′ answers with 0. When F returns its final answers (a∗1, a∗2), F ′ returns
(a∗1, a∗2).

c. If i = 3 then F ′ chooses at random one of the σb queries and answers it with 1. To all
the others, F ′ answers with 0. When F returns its final answers (a∗1, a∗2), F ′ returns
(a∗1, a∗2).

d. If i = 4 then F ′ chooses at random one of the σa and one of σb questions and answers
them with 1. After the second positive answer, F ′ stops simulating F and returns as
(a∗1, a∗2) the queries that he answered with 1.

Then the winning probability of F ′ can be computed as follows

q = Pr[Fwins]
= p1 Pr[Fwins|E1] + p2 Pr[Fwins|E2] + p3 Pr[Fwins|E3] + p4 Pr[Fwins|E4]
≤ Pr[Fwins|E1] + Pr[Fwins|E2] + Pr[Fwins|E3] + Pr[Fwins|E4]
≤ Pr[F ′wins|E1] + Pr[F ′wins|E2] · t+ Pr[F ′wins|E3] · t+ Pr[F ′wins|E4] · t2

≤ t2 ·
(

Pr[F ′wins|E1] + Pr[F ′wins|E2] + Pr[F ′wins|E3] + Pr[F ′wins|E4]
)

= 4t2 · Pr[F ′wins]

where the third line comes from the fact that F ′ has probability 1, 1
t ,

1
t and 1

t2 respectively
to correctly respond to F ’s queries. In other words, with probability 1/4t2 the view of F is
identical to a real interaction. Therefore for any polynomial p it holds that

p(t)
4t2 · ε < Pr[F ′wins]

and in particular for p(t) = 4t2 it holds that ε < Pr[F ′wins] which contradicts the fact that
G′ is a (c, ε)−

(2
1
)
QRG. Hence we see that a

(2
1
)
QRG implies a

(2
1
)
QRGv. J
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