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Abstract
Kernelization investigates exact preprocessing algorithms with performance guarantees. The
most prevalent type of parameters used in kernelization is the solution size for optimization
problems; however, also structural parameters have been successfully used to obtain polynomial
kernels for a wide range of problems. Many of these parameters can be defined as the size of a
smallest modulator of the given graph into a fixed graph class (i.e., a set of vertices whose deletion
puts the graph into the graph class). Such parameters admit the construction of polynomial
kernels even when the solution size is large or not applicable. This work follows up on the
research on meta-kernelization frameworks in terms of structural parameters.

We develop a class of parameters which are based on a more general view on modulators:
instead of size, the parameters employ a combination of rank-width and split decompositions
to measure structure inside the modulator. This allows us to lift kernelization results from
modulator-size to more general parameters, hence providing smaller kernels. We show (i) how
such large but well-structured modulators can be efficiently approximated, (ii) how they can be
used to obtain polynomial kernels for any graph problem expressible in Monadic Second Order
logic, and (iii) how they allow the extension of previous results in the area of structural meta-
kernelization.
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1 Introduction

Kernelization investigates exact preprocessing algorithms with performance guarantees. Sim-
ilarly as in parameterized complexity analysis, in kernelization we study parameterized
problems: decision problems where each instance I comes with a parameter k. A parameter-
ized problem is said to admit a kernel of size f : N→ N if every instance (I, k) can be reduced
in polynomial time to an equivalent instance (called the kernel) whose size and parameter
are bounded by f(k). For practical as well as theoretical reasons, we are mainly interested in
the existence of polynomial kernels, i.e., kernels whose size is polynomial in k. The study of
kernelization has recently been one of the main areas of research in parameterized complexity,
yielding many important new contributions to the theory.

The by far most prevalent type of parameter used in kernelization is the solution size.
Indeed, the existence of polynomial kernels and the exact bounds on their sizes have been
studied for a plethora of distinct problems under this parameter, and the rate of advancement

∗ The authors acknowledge support by the Austrian Science Fund (FWF, projects P26696 and W1255-N23).

© Eduard Eiben, Robert Ganian, and Stefan Szeider;
licensed under Creative Commons License CC-BY

10th International Symposium on Parameterized and Exact Computation (IPEC 2015).
Editors: Thore Husfeldt and Iyad Kanj; pp. 114–126

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.114
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


E. Eiben, R. Ganian, and S. Szeider 115

achieved in this direction over the past 10 years has been staggering. Important findings
were also obtained in the area of meta-kernelization [4, 12, 18], which is the study of general
kernelization techniques and frameworks used to establish polynomial kernels for a wide
range of distinct problems.

In parameterized complexity analysis, an alternative to parameterization by solution
size has traditionally been the use of structural parameters. But while parameters such as
treewidth and the more general rank-width allow the design of FPT algorithms for a range of
important problems, it is known that they cannot be used to obtain polynomial kernels for
problems of interest. Instead, the structural parameters used for kernelization often take
the form of the size of minimum modulators (a modulator of a graph is a set of vertices
whose deletion puts the graph into a fixed graph class). Examples of such parameters include
the size of a minimum vertex cover [11, 5] (modulators into the class of edgeless graphs)
or of a minimum feedback vertex set [6, 17] (modulators into the class of forests). While
such structural parameters are not as universal as the structural parameters used in the
context of fixed-parameter tractability, these results nonetheless allow efficient preprocessing
of instances where the solution size is large and for problems where solution size simply
cannot be used (such as 3-coloring).

This paper follows up on the recent line of research which studies meta-kernelization in
terms of structural parameters. Gajarský et al. [13] developed a meta-kernelization framework
parameterized by the size of a modulator to the class of graphs of bounded treedepth on sparse
graphs. Ganian et al. [15] independently developed a meta-kernelization framework using a
different parameter based on rank-width and modular decompositions (see Subsection 2.4 for
details). Our results build upon both of the aforementioned papers by fully subsuming the
meta-kernelization framework of [15] and lifting the meta-kernelization framework of [13] to
more general graph classes. The class of problems investigated in this paper are problems
which can be expressed using Monadic Second Order (MSO) logic (see Subsection 2.5).

The parameters for our kernelization results are also based on modulators. However,
instead of parameterizing by the size of the modulator, we instead measure the structure
of the modulator through a combination of rank-width and split decompositions. Due
to its technical nature, we postpone the definition of our parameter, the well-structure
number, to Section 3; for now, let us roughly describe it as the number of sets one can
partition a modulator into so that each set induces a graph with bounded rank-width and
a simple neighborhood. We call modulators which satisfy our conditions well-structured.
A less restricted variant of the well-structure number has recently been used to obtain
meta-theorems for FPT algorithms on graphs of unbounded rank-width [10].

After formally introducing the parameter, in Section 4 we showcase its applications on the
special case of generalizing the vertex cover number by considering well-structured modulators
to edgeless graphs. While it is known that there exist MSO-definable problems which do not
admit a polynomial kernel parameterized by the vertex cover number on general graphs, on
graphs of bounded expansion this is no longer the case (as follows for instance from [13]). On
the class of graphs of bounded expansion, we prove that every MSO-definable problem admits
a linear kernel parameterized by the well-structure number for edgeless graphs. As a corollary
of our approach, we also show that every MSO-definable problem admits a linear kernel
parameterized by the well-structure number for the empty graph (without any restriction on
the expansion). We remark that the latter result represents a direct generalization of the
results in [15]. The proof is based on a combination of a refined version of the replacement
techniques developed in [10] together with the annotation framework used in [15].

Before we can proceed to wider applications of our parameter in kernelization, it is first
necessary to deal with the subproblem of finding a suitable well-structured modulator in
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116 Meta-kernelization using Well-structured Modulators

polynomial time. We resolve this question for well-structured modulators to a vast range of
graph classes. In particular, in Subsection 5.1 we obtain a 3-approximation algorithm for
finding well-structured modulators to acyclic graphs, and in the subsequent Subsection 5.2
we show how to approximate well-structured modulators to any graph class characterized by
a finite set of forbidden induced subgraphs within a constant factor.

Section 6 then contains our most general result, Theorem 11, which is the key for lifting
kernelization results from modulators to well-structured modulators. The theorem states that
whenever a modulator to a graph class H can be used to poly-kernelize some MSO-definable
problem, this problem also admits a polynomial kernel when parameterized by the well-
structure number for H as long as well-structured modulators to H can be approximated in
polynomial time. The remainder of Section 6 then deals with the applications of this theorem.
Since the class of graphs of treedepth bounded by some fixed integer can be characterized by
a finite set of forbidden induced subgraphs, we can use well-structured modulators to lift the
results of [13] from modulators to well-structured modulators for all MSO-definable decision
problems. Furthermore, by applying the protrusion machinery of [4, 18] we show that, in
the case of bounded degree graphs, parameterization by a modulator to acyclic graphs (i.e.,
a feedback vertex set) allows the computation of a linear kernel for any MSO-definable
decision problem. By our framework it then follows that such modulators can also be lifted
to well-structured modulators.

2 Preliminaries

The set of natural numbers (that is, positive integers) will be denoted by N. For i ∈ N we
write [i] to denote the set {1, . . . , i}. If ∼ is an equivalence relation over a set A, then for
a ∈ A we use [a]∼ to denote the equivalence class containing a.

2.1 Graphs
We will use standard graph theoretic terminology and notation (cf. [8]). All graphs in this
document are simple and undirected.

Given a graph G = (V (G), E(G)) and A ⊆ V (G), we denote by N(A) the set of neighbors
of A in V (G) \A; if A contains a single vertex v, we use N(v) instead of N({v}). We use V
and E as shorthand for V (G) and E(G), respectively, when the graph is clear from context.
G − A denotes the subgraph of G obtained by deleting A. For A ⊆ V (G) we use G[A] to
denote the subgraph of G induced by the set A.

2.2 Splits and Split-Modules
A split of a connected graph G = (V,E) is a vertex bipartition {A,B} of V such that every
vertex of A′ = N(B) has the same neighborhood in B′ = N(A). The sets A′ and B′ are
called frontiers of the split.

Let G = (V,E) be a graph. To simplify our exposition, we will use the notion of split-
modules instead of splits where suitable. A set A ⊆ V is called a split-module of G if there
exists a connected component G′ = (V ′, E′) of G such that {A, V ′ \ A} forms a split of
G′. Notice that if A is a split-module then A can be partitioned into A1 and A2 such that
N(A2) ⊆ A and for each v1, v2 ∈ A1 it holds that N(v1)∩ (V ′ \A) = N(v2)∩ (V ′ \A); A1 is
then called the frontier of A. For technical reasons, V and ∅ are also considered split-modules.
We say that two disjoint split-modules X,Y ⊆ V are adjacent if there exist x ∈ X and y ∈ Y
such that x and y are adjacent. We use λ(A) to denote the frontier of split-module A.
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Figure 1 A rank-decomposition of the cycle C5.

2.3 Rank-Width
For a graph G and U,W ⊆ V (G), let AG[U,W ] denote the U×W -submatrix of the adjacency
matrix over the two-element field GF(2), i.e., the entry au,w, u ∈ U and w ∈W , of AG[U,W ]
is 1 if and only if {u,w} is an edge of G. The cut-rank function ρG of a graph G is defined
as follows: For a bipartition (U,W ) of the vertex set V (G), ρG(U) = ρG(W ) equals the rank
of AG[U,W ] over GF(2).

A rank-decomposition of a graph G is a pair (T, µ) where T is a tree of maximum degree 3
and µ : V (G)→ {t : t is a leaf of T} is a bijective function. For an edge e of T , the connected
components of T − e induce a bipartition (X,Y ) of the set of leaves of T . The width of an
edge e of a rank-decomposition (T, µ) is ρG(µ−1(X)). The width of (T, µ) is the maximum
width over all edges of T . The rank-width of G, rw(G) in short, is the minimum width over
all rank-decompositions of G. We denote by Ri the class of all graphs of rank-width at most
i, and say that a graph class H is of unbounded rank-width if H 6⊆ Ri for any i ∈ N.

I Fact 1 ([16]). Let k ∈ N be a constant and n ≥ 2. For an n-vertex graph G, we can output
a rank-decomposition of width at most k or confirm that the rank-width of G is larger than k
in time O(n3).

More properties of rank-width can be found, for instance, in [21].

2.4 Fixed-Parameter Tractability and Kernels
We refer to the standard textbooks for basic notions in parameterized complexity such as
parameterized problem, kernelization and bikernelization [9]. The following fact links the
existence of bikernels to the existence of kernels.

I Fact 2 ([1]). Let P, Q be a pair of decidable parameterized problems such that Q is in NP
and P is NP-complete. If there is a bikernelization from P to Q producing a polynomial
bikernel, then P has a polynomial kernel.

Within this paper, we will also consider (and compare to) various structural parameters
which have been used to obtain polynomial kernels. We provide a brief overview of these
parameters below.

A modulator of a graph G to a graph class H is a vertex set X ⊆ V (G) such that
G −X ∈ H. We denote the cardinality of a minimum modulator to H in G by modH(G).
The vertex cover number of a graph G (vcn(G)) is a special case of modH(G), specifically
for H being the set of edgeless graphs. The vertex cover number has been used to obtain
polynomial kernels for problems such as Largest Induced Subgraph [11] or Long Cycle
along with other path and cycle problems [5]. Similarly, a feedback vertex set is a modulator
to the class of acyclic graphs, and the size of a minimum feedback vertex set has been used
to kernelize, for instance, Treewidth [6] or Vertex Cover [17].
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118 Meta-kernelization using Well-structured Modulators

For the final considered parameter, we will need the notion of module, which can be
defined as a split-module with the restriction that every vertex in the split-module lies in
its frontier. Then the rank-widthc cover number [15] of a graph G (rwcc(G)) is the smallest
number of modules the vertex set of G can be partitioned into such that each module
induces a subgraph of rank-width at most c. A wide range of problems, and in particular all
MSO-definable problems, have been shown admit linear kernels when parameterized by the
rank-widthc cover number [15].

2.5 Monadic Second Order Logic on Graphs
We assume that we have an infinite supply of individual variables, denoted by lowercase letters
x, y, z, and an infinite supply of set variables, denoted by uppercase letters X,Y, Z. Formulas
of monadic second-order logic (MSO) are constructed from atomic formulas E(x, y), X(x),
and x = y using the connectives ¬ (negation), ∧ (conjunction) and existential quantification
∃x over individual variables as well as existential quantification ∃X over set variables.
Individual variables range over vertices, and set variables range over sets of vertices. The
atomic formula E(x, y) expresses adjacency, x = y expresses equality, and X(x) expresses
that vertex x in the set X. From this, we define the semantics of monadic second-order logic
in the standard way (this logic is sometimes called MSO1).

Free and bound variables of a formula are defined in the usual way. A sentence is a
formula without free variables. We write ϕ(X1, . . . , Xn) to indicate that the set of free
variables of formula ϕ is {X1, . . . , Xn}. If G = (V,E) is a graph and S1, . . . , Sn ⊆ V we
write G |= ϕ(S1, . . . , Sn) to denote that ϕ holds in G if the variables Xi are interpreted by
the sets Si, for i ∈ [n]. The problem framework we are mainly interested in is formalized
below.

MSO Model Checking (MSO-MCϕ)
Instance: A graph G.
Question: Does G |= ϕ hold?

While MSO model checking problems already capture many important graph problems,
there are some well-known problems on graphs that cannot be captured in this way, such as
Vertex Cover, Dominating Set, and Clique. Many such problems can be formulated
in the form of MSO optimization problems. Let ϕ = ϕ(X) be an MSO formula with one free
set variable X and ♦ ∈ {≤,≥}.

MSO-Opt♦ϕ
Instance: A graph G and an integer r ∈ N.
Question: Is there a set S ⊆ V (G) such that G |= ϕ(S) and |S| ♦ r?

It is known that MSO formulas can be checked efficiently as long as the graph has bounded
rank-width.

I Fact 3 ([14]). Let ϕ and ψ = ψ(X) be fixed MSO formulas and let c be a constant.
Then MSO-MCϕ and MSO-Opt♦ϕ can be solved in O(n3) time on the class of graphs of
rank-width at most c, where n is the order of the input graph. Moreover, if G has rank-width
at most c and and S ⊆ V (G), it is possible to check whether G |= ψ(S) in O(n3) time.

We review MSO types roughly following the presentation in [19]. The quantifier rank
of an MSO formula ϕ is defined as the nesting depth of quantifiers in ϕ. For non-negative
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Figure 2 A graph with a (2, 1)-well-structured modulator to forests (in the two shaded areas).

integers q and l, let MSOq,l consist of all MSO formulas of quantifier rank at most q with
free set variables in {X1, . . . , Xl}.

Let ϕ = ϕ(X1, . . . , Xl) and ψ = ψ(X1, . . . , Xl) be MSO formulas. We say ϕ and ψ are
equivalent, written ϕ ≡ ψ, if for all graphs G and U1, . . . , Ul ⊆ V (G), G |= ϕ(U1, . . . , Ul)
if and only if G |= ψ(U1, . . . , Ul). Given a set F of formulas, let F/≡ denote the set of
equivalence classes of F with respect to ≡. A system of representatives of F/≡ is a set
R ⊆ F such that R ∩ C 6= ∅ for each equivalence class C ∈ F/≡. The following statement
has a straightforward proof using normal forms (see [19, Proposition 7.5] for details).

I Fact 4 ([15]). Let q and l be fixed non-negative integers. The set MSOq,l/≡ is finite, and
one can compute a system of representatives of MSOq,l/≡.

We will assume that for any pair of non-negative integers q and l the system of representatives
of MSOq,l/≡ given by Fact 4 is fixed.

3 (k, c)-Well-Structured Modulators

I Definition 1. Let H be a graph class and let G be a graph. A set ~X of pairwise-disjoint
split-modules of G is called a (k, c)-well-structured modulator to H if
1. | ~X| ≤ k, and
2.
⋃
Xi∈ ~X Xi is a modulator to H, and

3. rw(G[Xi]) ≤ c for each Xi ∈ ~X.

For the sake of brevity and when clear from context, we will sometimes identify ~X with⋃
Xi∈ ~X Xi (for instance G− ~X is shorthand for G−

⋃
Xi∈ ~X Xi). To allow a concise description

of our parameters, for any hereditary graph class H we let the well-structure number (wsnHc
in short) denote the minimum k such that G has a (k, c)-well-structured modulator to H.

We conclude this section with a brief discussion on the choice of the parameter. The
specific conditions restricting the contents of the modulator

⋃ ~X have been chosen as the
most general means which allow both (1) the efficient finding of a suitable well-structured
modulator, and (2) the efficient use of this well-structured modulator for kernelization. In
this sense, we do not claim that there is anything inherently special about rank-width or
split modules, other than being the most general notions which are currently known to allow
the achievement of these two goals.

In some of the applications of our results, we will consider graphs which have bounded
expansion or bounded degree. We remark that in these cases, our results could equivalently
be stated in terms of treewidth (instead of rank-width) and MSO2 logic (instead of MSO1
logic).?
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120 Meta-kernelization using Well-structured Modulators

4 A Case Study: Vertex Cover

In this section we show how well-structured modulators to edgeless graphs can be used
to obtain polynomial kernels for various problems. In particular, this special case can be
viewed as a generalization of the vertex cover number. We begin by comparing the resulting
parameter to known structural parameters. Let c ∈ N be fixed and E denote the class of
edgeless graphs. The class Z containing only the empty graph will also be of importance
later on in the section; we remark that while modZ represents a very weak parameter as it
is equal to the order of the graph, this is not the case for wsnZc . We begin by comparing
well-structured modulators to edgeless graphs with similar parameters used in kernelization.

I Proposition 2. Let E be graph class of edgeless graphs. Then:
1. rwcc(G) ≥ wsnEc (G) for any graph G. Furthermore, for every i ∈ N there exists a graph

Gi such that rwcc(Gi) ≥ 2i and wsnEc = 2.
2. vcn(G) ≥ wsnE1 (G) for any graph G. Furthermore, for every i ∈ N there exists a graph

Gi such that vcn(G) ≥ i and wsnE1 = 1.

It will be useful to observe that the above Proposition 2 also holds when restricted to the
class of graphs of bounded expansion and bounded degree, and even when the graph class E
is replaced by Z.

As we have established that already wsnE1 ≤ vcn(G), it is important to mention that an
additional structural restriction on the graph is necessary to allow the polynomial kernelization
of MSO-Opt problems in general (as is made explicit in the following Fact 5).

I Fact 5 ([7]). Clique parameterized by the vertex cover number does not admit a polynomial
kernel, unless NP ⊆ coNP/poly.

However, it turns out that restricting the inputs to graphs of bounded expansion completely
changes the situation: under this condition, it is not only the case that all all MSO-MC and
MSO-Opt problems admit a linear kernel when parameterized by the vertex cover number,
but also when parameterized by the more general parameter wsnEc . To prove these claims,
we begin by stating the following result.

I Fact 6 ([13]). Let K be a graph class with bounded expansion. Suppose that for G ∈ K
and S ∈ V (G), C1, . . . , Cs are sets of connected components of G− S such that for all pairs
C,C ′ ∈ ∪iCi it holds that C,C ′ ∈ Cj for some j if and only if NS(C) = NS(C ′). Let
δ ≥ 0 be a constant bound on the diameter of these components, i.e., for all C ∈ ∪iCi,
diam(G[V (C)]) ≤ δ. Then there can be only at most O(|S|) such sets Ci.

This allows us to establish a key link between wsnEc and wsnZc on graphs of bounded
expansion.

I Lemma 3. Let K be a graph class with bounded expansion. Then there exists a constant d
such that for every G ∈ K it holds that wsnZc (G) ≤ d · (wsnEc (G)).

Proof. Let k = wsnEc (G) and let ~H be a (k, c)-well-structured modulator to E . Let S be
a set of vertices containing exactly one vertex from the frontier of every split-module in
~H. The graph G′ = G − ( ~H − S) is a graph with bounded expansion and S is its vertex
cover. Clearly, the diameter of every connected component of G′ \ S is at most 1 (every
connected component is a singleton). Therefore, by Fact 6 there exists a constant d′ such
that there are at most d′ · |S| = d′ · wsnEc (G) sets of vertices C1, . . . , Cs in G′ − S such that
for all pairs v, v′ ∈ ∪iCi it holds that v, v′ ∈ Cj for some j if and only if NS(v) = NS(v′).
Clearly each such Ci is a split-module in G′, and hence also in G. Furthermore, each such Ci
has rank-width at most 1. Hence wsnZc (G) ≤ wsnEc (G) + d′ · wsnEc (G). J
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The above lemma allows us to shift our attention from modulators to E to a partition
of the vertex set into split-modules of bounded rank-width. The rest of this section is then
dedicated to proving our results for well-structured modulators to Z. Our proof strategy for
this special case of well-structured modulators closely follows the replacement techniques
used to obtain the kernelization results for the rank-width cover number [15], with the
distinction that many of the tools and techniques had to be generalized to cover splits instead
of modules.

I Theorem 4. Let K be a graph class of bounded expansion, E be the class of edgeless graphs
and Z be the class of empty graphs. For every MSO sentence ϕ the problem MSO-MCϕ

admits a linear kernel parameterized by wsnZc . Furthermore, the problem MSO-MCϕ admits
a linear kernel parameterized by wsnEc on K.

Sketch of Proof. By Lemma 3 it is sufficient to show that MSO-MCφ admits a linear kernel
parameterized by wsnZc . Let G be a graph, k = wsnZc (G), and q be the nesting depth of
quantifiers in φ. By Fact 7 (given in the following section) we can find the set ~X of equivalence
classes of ∼Gc in polynomial time. Clearly, the set ~X is a (k, c)-well-structured modulator to
the empty graph. We proceed by using replacement techniques to construct an equivalent
graph (G′, ~X ′) such that each X ′i ∈ ~X ′ has size bounded by a constant. Since | ~X ′| ≤ k and⋃ ~X ′ = V (G′), it follows that G′ is an instance of MSO-MCϕ of size O(k). J

Next, we combine the approaches used in [15] and [10] to handle MSO-Opt♦ϕ problems by
using our more general parameters. Similarly as in [15], we use a more involved replacement
procedure which explicitly keeps track of the original cardinalities of sets and results in an
annotated version of MSO-Opt♦ϕ . However, some parts of the framework (in particular the
replacement procedure) had to be reworked using the techniques developed in [10], since we
now use split-modules instead of simple modules.

I Theorem 5. Let E be a class of edgeless graphs and Z be the class containing the empty
graph. For every MSO formula ϕ the problem MSO-Opt≤ϕ admits a linear bikernel parameter-
ized by wsnEc on any class of graphs of bounded expansion, and a linear bikernel parameterized
by wsnZc .

5 Finding (k, c)-Well-Structured Modulators

For the following considerations, we fix c and assume that the graph G has rank-width at
least c + 2 (this is important for Fact 7). This assumption is sound, since the considered
problems can be solved in polynomial time on graphs of bounded rank-width. Recall that
given a split-module A in G, we use λ(A) to denote the frontier of A. This section will
show how to efficiently approximate well-structured modulators to various graph classes; in
particular, we give algorithms for the class of forests and then for any graph class which can
be characterized by a finite set of forbidden induced subgraphs.

The following Fact 7 linking rank-width and split-modules will be crucial for approximating
our well-structured modulators.

I Definition 6. Let G be a graph and c ∈ N. We define a relation ∼Gc on V (G) by letting
v ∼Gc w if and only if there is a split-module M of G with v, w ∈M and rw(G[M ]) ≤ c. We
drop the superscript from ∼Gc if the graph G is clear from context.

I Fact 7 ([10]). Let c ∈ N be fixed and G be a graph of rank-width at least c + 2. The
relation ∼Gc is an equivalence, and any graph G has its vertex set uniquely partitioned by
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122 Meta-kernelization using Well-structured Modulators

the equivalence classes of ∼c into inclusion-maximal split-modules of rank-width at most c.
Furthermore, for a, b ∈ V (G) it is possible to test a ∼c b in O(n3) time.

5.1 Finding (k, c)-Well-Structured Modulators to Forests
Our starting point is the following lemma, which shows that long cycles which hit a non-
singleton frontier imply the existence of short cycles.

I Lemma 7. Let C be a cycle in G such that C intersects at least three distinct equivalence
classes of ∼c, one of which has a frontier of cardinality at least 2. Let Z be the set of
equivalence classes of ∼c which intersect C. Then there exists a cycle C ′ such that the set Z ′
of equivalence classes it intersects is a subset of Z and has cardinality at most 3.

We will use the following observation to proceed when Lemma 7 cannot be applied.

I Observation 1. Assume that for each equivalence class B of ∼c it holds that G[B] is
acyclic, and that no cycle intersects B if |λ(B)| ≥ 2. Then for every cycle C in G and every
vertex a ∈ C, it holds that a is in the frontier of some equivalence class of ∼c.

Fact 8 below is the last ingredient needed for the algorithm.

I Fact 8 ([3]). Feedback Vertex Set can be 2-approximated in polynomial time.

I Theorem 8. Let c ∈ N and F be the class of forests. There exists a polynomial algorithm
which takes as input a graph G of rank-width at least c + 2 and computes a set ~X of
split-modules such that ~X is a (k, c)-well-structured modulator to F and k ≤ 3 · wsnFc .

Sketch of Proof. The algorithm proceeds in three steps.
1. By deciding a ∼c b for each pair of vertices in G as per Fact 7, we compute the equivalence

classes of ∼c.
2. For each set of up to three equivalence classes {A1, A2, A3} of ∼c, we check if G[A1∪A2∪

A3] is acyclic; if it’s not, then we add A1, A2 and A3 to ~X and set G := G−(A1∪A2∪A3).
3. We use Fact 8 to 2-approximate a feedback vertex set S of G in polynomial time; let S′

contain every equivalence class of ∼c which intersects S. We then set ~X := ~X ∪ S′, and
output ~X. J

5.2 Finding (k, c)-Well-Structured Modulators via Obstructions
Here we will show how to efficiently find a sufficiently small (k, c)-well-structured modulator
to any graph class which can be characterized by a finite set of forbidden induced subgraphs.
Let us fix a graph class H characterized by a set R of forbidden induced subgraphs, and let
r be the maximum order of a graph in R. Our first step is to reduce our problem to the
classical Hitting Set problem, the definition of which is recalled below.

d-Hitting Set
Instance: A ground set S and a collection C of subsets of S, each of cardinality at
most d.
Notation: A hitting set is a subset of S which intersects each set in C.
Task: Find a minimum-cardinality hitting set.

Given a graph G (of rank-width at least c+2), we construct an instanceWG of r-Hitting
Set as follows. The ground set of W contains each equivalence class A ⊆ V (G) of ∼c.
For each induced subgraph R ⊆ G isomorphic to an element of R, we add the set CR of
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equivalence classes of ∼c which intersect R into C. This completes the construction of WG;
we let hit(WG) denote the cardinality of a solution of WG.

I Lemma 9. For any graph G of rank-width at least c+ 2, the instance WG is unique and
can be constructed in polynomial time. Every hitting set Y in WG is a (|Y |, c)-well-structured
modulator to H in G. Moreover, wsnHc = hit(WG).

The final ingredient we need for our approximation algorithm is the following result.

I Fact 9 (Folklore). There exists a polynomial-time algorithm which takes as input an
instance W of r-Hitting Set and outputs a hitting set Y of cardinality at most r · hit(W ).

I Theorem 10. Let c ∈ N and H be a class of graphs characterized by a finite set of forbidden
induced subgraphs of order at most r. There exists a polynomial algorithm which takes as
input a graph G of rank-width at least c+ 2 and computes a (k, c)-well-structured modulator
to H such that k ≤ r · wsnHc .

Proof. We proceed in two steps: first, we compute the r-Hitting Set instance WG, and
then we use Fact 9 to compute an r-approximate solution Y of WG in polynomial time. We
then set ~X := Y and output. Correctness follows from Lemma 9. J

6 Applications of (k, c)-Well-Structured Modulators

We now proceed by outlining the general applications of our results. Our algorithmic
framework is captured by the following Theorem 11.

I Theorem 11. Let p, q be polynomial functions. For every MSO sentence φ and every graph
class H such that
1. MSO-MCφ admits a (bi)kernel of size p(modH(G)), and
2. there exists a polynomial algorithm which finds a (q(wsnHc ), c)-well-structured modulator

to H.
Then MSO-MCφ admits a (bi)kernel of size p(q(wsnHc (G))).

Let us briefly discuss the limitations of the above theorem. The condition that MSO-MCφ

admits a polynomial (bi)kernel parameterized by modH(G) is clearly necessary for the rest
of the theorem to hold, since wsnH(G) ≤ modH(G). One might wonder whether a weaker
necessary condition could be used instead; specifically, would it be sufficient to require that
MSO-MCφ is polynomial-time tractable in H? This turns out not to be the case, as follows
from the following fact.

I Fact 10 ([10]). There exists an MSO sentence φ and a graph class H characterized by a
finite set of forbidden induced subgraphs such that MSO-MCφ is polynomial-time tractable
on H but NP-hard on the class of graphs with modH(G) ≤ 2.

Condition 2 is also necessary for our approach to work, as we need some (approximate)
well-structured modulator; luckily, Section 5 shows that a wide variety of studied graph
classes satisfy this condition. Finally, one can also rule out an extension of Theorem 11 to
MSO-Opt problems (which was possible in the special case considered in Section 4), as we
show below.

I Lemma 12. There exists an MSO formula ϕ and a graph class H characterized by a
finite obstruction set such that MSO-Opt≤ϕ admits a bikernel parameterized by modH but is
paraNP-hard parameterized by wsnH1 .
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Sketch of Proof. Consider the formula ϕ(S) = fvs(S)∨ deg(S), where fvs(S) expresses that
S is a feedback vertex set in G and deg(S) expresses that S is a modulator to graphs with
maximum degree 4. Let H be the class of graphs of maximum degree 4. J

6.1 Applications of Theorem 11
As our first general application, we consider the results of Gajarský et al. in [13]. Their main
result is summarized below.

I Fact 11 ([13]). Let Π be a problem with finite integer index, K a class of graphs of bounded
expansion, d ∈ N, and H be the class of graphs of treedepth at most d. Then there exist an
algorithm that takes as input (G, ξ) ∈ K ×N and in time O(|G|+ log ξ) outputs (G′, ξ′) such
that
1. (G, ξ) ∈ Π if and only if (G′, ξ′) ∈ Π;
2. G′ is an induced subgraph of G; and
3. |G′| = O(modH(G)).

The following fact provides a link between the notion of finite integer index used in the
above result and the MSO-MCϕ problems considered in this paper.

I Fact 12 ([2], see also [4]). For every MSO sentence ϕ, it holds that MSO-MCϕ is
finite-state and hence has finite integer index.

Finally, the following well-known fact is the last ingredient we need to apply our machinery.

I Fact 13 ([20], page 138). Let d ∈ N and H be the class of graph of treedepth at most d.
Then H can be characterized by finite set of forbidden induced subgraphs.

I Theorem 13. Let c, d ∈ N and H be the class of graphs of treedepth at most d. For every
MSO sentence ϕ, it holds that MSO-MCϕ admits a linear kernel parameterized by wsnHc on
any class of graphs of bounded expansion.

As our second general application, we consider well-structured modulators to the class of
forests. Lemma 14 shows that feedback vertex set may be used to kernelize any MSO-definable
decision problem on graphs of bounded degree.

I Lemma 14. Let F be the class of forests and d ∈ N. For every MSO sentence ϕ, it holds
that MSO-MCϕ admits a linear kernel parameterized by modF on any class of graphs of
degree at most d.

With Lemma 14, the proof of the theorem below is analogous to the proof of Theorem 13.

I Theorem 15. Let c ∈ N and F be the class of forests. For every MSO sentence ϕ, it holds
that MSO-MCϕ admits a linear kernel parameterized by wsnFc on any class of graphs of
bounded degree.

7 Conclusion

Our results show that measuring the structure of modulators can lead to an interesting and,
as of yet, relatively unexplored spectrum of structural parameters. Such parameters have
the potential of combining the best of decomposition-based techniques and modulator-based
techniques, and can be applied both in the context of kernelization (as demonstrated in this
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work) and FPT algorithms [10]. We believe that further work in the direction of modulators
will allow us to push the frontiers of tractability towards new, uncharted classes of inputs.

One possible direction for future research is the question of whether the class of MSO-
definable problems considered in Theorem 11 can be extended to other finite-state problems.
It would of course also be interesting to see more applications of Theorem 11 and new
methods for approximating well-structured modulators. Last but not least, we mention that
the split-modules used in the definition of our parameters could in principle be refined to
less restrictive notions (for instance cuts of constant cut-rank [21]); such a relaxed parameter
could still be used to obtain polynomial kernels, as long as there is a way of efficiently
approximating or computing such modulators.
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