
Allocation of Divisible Goods Under Lexicographic
Preferences
Leonard J. Schulman1 and Vijay V. Vazirani2

1 Caltech, MC305-16, Pasadena CA 91125, USA, schulman@caltech.edu
2 College of Computing, Georgia Institute of Technology, Atlanta GA 30332, US,

vazirani@cc.gatech.edu

Abstract
We present a simple and natural non-pricing mechanism for allocating divisible goods among
strategic agents having lexicographic preferences. Our mechanism has favorable properties of
strategy-proofness (incentive compatibility). In addition (and even when extended to the case of
Leontief bundles) it enjoys Pareto efficiency, envy-freeness, and time efficiency.
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1 Introduction

The study of principled ways of allocating divisible goods among agents has long been a
central topic in mathematical economics. The method of choice that emerged from this
study, the Arrow-Debreu market model [1], provides a powerful approach based on pricing
and leads to the fundamental welfare theorems. However, these market-based methods have
limitations when agents are assumed to be strategic, e.g., these methods are not incentive
compatible. Issues of the latter kind have been studied within the area of mechanism design
for the last four decades, and have played a large role in the last decade in algorithmic game
theory [20].

In this paper our primary focus is on deriving a non-pricing mechanism for allocating
divisible goods, that satisfies incentive-compatibility, Pareto optimality and envy-freeness. A
natural approach to achieving Pareto optimality and envy-freeness is to start in a greedy
fashion by assigning agents their most favored goods, and gradually moving on to their less
favored choices. It is easy to come up with several ways of making this approach precise—two
are described in Section 6—and achieve Pareto optimality and envy-freeness. However,
it is not a priori clear that it is possible to also achieve incentive compatibility, without
which a mechanism is of doubtful merit in an environment of strategic agents. In the main
contribution of our paper we show that a third version of this approach, the Synchronized
Greedy (SG) mechanism, achieves all three properties.

The SG mechanism can be seen as generalizing a mechanism introduced by Crès and
Moulin [7], called Probabilistic Serial (PS), in the context of a job scheduling problem, and
studied further by Bogomolnaia and Moulin [5] for the allocation of indivisible goods1. The

1 These mechanisms for allocation of indivisible goods are randomized. Our focus on divisible goods is
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preference model assumed by [5] was first order stochastic dominance, which we will shorten
to sd-preference. They showed that in this model, PS is efficient, envy-proof and weakly
incentive compatible. Furthermore, they showed that in this model, no mechanism satisfies
all three properties, i.e., efficiency, envy-proofness and incentive compatibility. In view of the
second result, we need to relax the model in order to obtain a mechanism satisfying all three
properties; we do so by resorting to the lexicographic preference relation and assuming that
the goods are divisible.

Lexicographic preferences date back to the work of Hausner [11] and are of interest to
economists for the following reasons. They yield a total order on the set of all allocations
(unlike sd-preferences, say, which only form a partial order) and they can be seen as a
strong-preferences limit of von Neumann-Morgenstern utilities. A preference relation that is
complete, transitive and satisfies the continuity condition that preferences between allocations
are preserved under limits is known to be representable by a utility function [18]. Of these,
lexicographic preferences forgo continuity. What favorable properties can be achieved in
the area of goods allocation using only non-pricing mechanisms is a difficult question. The
present paper can be regarded as carving out a certain special case, namely the limit in
which agents have very strong preferences among the goods, and providing strong positive
guarantees in this case. In this limit there is an additional motivation to use non-pricing
mechanisms, because very strong preferences might cause a pricing mechanism to do little
more than ensure that the wealthiest agents get what they want. By focusing on non-pricing
mechanisms, we can study what game-theoretic properties an allocation mechanism can
achieve, without depending on what resources the agents possess or care to invest in the
game.

There are many every-day examples where something like our model comes up—naturally,
not in market economy transactions, but in other societal mechanisms for allocation. An
important class is allocation of public resources, e.g., placement lotteries in public schools,
see Kojima [16] for further examples and references. (Note also that this kind of example
employs a standard reduction of the indivisible goods case to the divisible goods case by
randomization.)

The recent paper of Saban and Sethuraman [22] builds on our work and solves several
open problems stated in an earlier version of this paper [24]; these results are described
at the end of Section 1.2. The broader challenge of the utility-functions version of the
allocation problem remains largely open. The simplicity of the SG mechanism is perhaps
encouraging toward the existence of allocation mechanisms maintaining favorable (maybe
weaker) game-theoretic properties in this setting. Finally, we note that independent of
our work, Cho [6] has also studied the use of lexicographic preferences in the context of
probabilistically assigning indivisible objects to agents.

Parameters of the problem

In the allocation problem there are m distinct divisible goods which need to be allocated
among n agents. Good j (1 ≤ j ≤ m) is available in the amount qj > 0, and agent i
(1 ≤ i ≤ n) is to receive a specified ri > 0 combined quantity of all goods; the parameters
satisfy

∑
j qj ≥

∑
i ri, i.e., the total supply is at least as large as the total demand. If this

inequality fails, our mechanism may still be run after rescaling expectations so that each

just as general, since an allocation of divisible goods can be used without further modification as a
randomized allocation of indivisible goods in the same quantities.
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agent i is to receive the quantity r′i = ri(
∑
qj)/(

∑
r`). So in the sequel we may assume∑

j qj ≥
∑
i ri.

Preferences: the non-Leontief case
The non-Leontief case of our problem is this. An allocation of goods is a list of numbers
aij ≥ 0, with

∑
j aij = ri and

∑
i aij ≤ qj , indicating that agent i receives quantity aij of good

j. The vector ai∗ = (ai1, . . . , aim) is referred to as agent i’s (share of the) allocation. Each
agent i has a preference list, which is a permutation πi of the goods; (aiπi(1), . . . , aiπi(m)) is
agent i’s sorted allocation. Agent i’s preference among allocations is induced by lexicographic
order. That is to say, agent i lexicographic-prefers ai∗ to bi∗, written ai∗ >i bi∗, if the leftmost
nonzero coordinate of (aiπi(1), . . . , aiπi(m)) − (biπi(1), . . . , biπi(m)) is positive. Furthermore,
we will say that agent i prefers ai∗ to bi∗ in the stochastic domination order [5], or sd-prefers
ai∗ to bi∗, written ai∗ >sd

i bi∗, if

for all k = 1, . . . ,m :
k∑
`=1

aiπi(`) ≥
k∑
`=1

biπi(`),

with at least one of the inequalities being strict. The symbols ≥i and 6≥i will have the obvious
interpretations.

Since an agent’s preferences depend only on his own share of the allocation, we speak
interchangeably of an agent’s preference for an allocation or an allocation share. In particular,
ai∗ >i bi∗ may be written more simply as a >i b, and ai∗ >sd

i bi∗ may be written as a >sd
i b.

Preferences: Leontief Bundles
Some of our results hold in the more general setting of lexicographic preferences among
Leontief bundles, and some fail in that setting; details below. A Leontief bundle is specified
by a non-negative vector λ = (λ1, . . . , λm) ∈ Rm+ (where R+ = non-negative reals). The set
of goods j for which λj is positive is called the support of this bundle. (If the set is of size one,
we refer to this as a singleton bundle; in Economics this is sometimes also called the linear
case.) If q ∈ Rm+ then the bundle λ may be allocated from q in any quantity α ∈ R+ such that
αλj ≤ qj for all j. In an instance of our problem, a list of M Leontief bundles λ1, . . . , λM

is specified, including among them the m singleton bundles (hence always M ≥ m). It is
convenient, and in our context sacrifices no generality, to impose the convention that for
every bundle λk,

∑m
1 λkj = 1.

The case m = M , in which all bundles are singletons, is of course a special case of
the Leontief framework, but to distinguish it from the general situation we call it the
“non-Leontief” case.

The framework we are concerned with is that each agent i has a preference list specified
by a permutation πi of the bundles. A Leontief allocation is an n×M matrix ` in which `ik
represents the quantity of bundle k allocated to agent i. A Leontief allocation l imposes the
goods allocation A(l), an n×m matrix, by A(l)ij =

∑M
k=1 likλ

k
j . We further require that a

Leontief allocation satisfy the conditions
∑
j A(l)ij = ri (thanks to the convention above this

is equivalent to
∑
k lik = ri) and

∑
iA(l)ij ≤ qj . We speak of A(l)i∗ and li∗ as agent i’s share

of, respectively, the goods and the Leontief bundles. The vector (liπi(1), . . . , liπi(M)) is agent
i’s sorted Leontief share. Agent i’s preference among allocations is induced by lexicographic
order on his share of the allocation. That is to say, agent i lexicographic-prefers l to l′,
written l >i l′, if the leftmost nonzero coordinate of (liπi(1), . . . , liπi(M))− (l′iπi(1), . . . , l

′
iπi(M))

is positive. Thus, for any goods allocation a, there is a favored Leontief allocation, denoted

FSTTCS 2015
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Lπ(a), defined by providing each agent with the best Leontief share that can be assembled
from his share of the goods—to be explicit, this is obtained by starting with ai∗ as the
available goods vector, and then, for k from 1 to M , setting Lπ(a)iπi(k) to be the largest α
such that ((available goods vector)−αλk) ∈ RM+ , then subtracting αλk from the available
goods vector and iterating.

We say that agent i sd-prefers allocation a to b, written a >sd
i b, if

for all K = 1, . . . ,M :
K∑
k=1

Lπ(a)iπi(k) ≥
K∑
k=1

Lπ(b)iπi(k),

with at least one of the inequalities being strict.

The two orders
Observe that “lexicographic-prefers” is a complete preference relation without indifference
contours (since it is antisymmetric for distinct allocation shares), and that “sd-prefers” is an
incomplete preference relation; moreover the lexicographic order is a refinement of the sd
order, i.e., sd-prefers implies lexicographic-prefers. The phrase “agent i weakly X-prefers”
will be used to include the possibility that agent i’s share is identical in the two allocations.

1.1 Our results
The SG mechanism is deterministic, treats all agents symmetrically, and has the following
properties.

Properties w.r.t. sd preference
If all ri’s are equal, the allocation produced by the SG mechanism in response to truthful
bids is envy-free in the following sense: each agent weakly sd-prefers his allocation to
that of any other agent. This holds also in the Leontief case.

Properties w.r.t. lexicographic preference
(Since most of our paper deals with the relation “lexicographic-prefers”, we subsequently
abbreviate it to “prefers”.)

The allocation produced by the SG mechanism in response to truthful bids is Pareto
efficient. This holds also in the Leontief case.
Incentive compatibility for a single agent: In the non-Leontief case, the SG mechanism is
strategy-proof if minj qj ≥ maxi ri.
We give counterexamples (a) in the absence of this inequality, (b) for the Leontief case.
Generalizing the previous item, we have: Incentive compatibility for a coalition: The SG
mechanism is group strategy-proof against coalitions of ` agents if

min
j
qj ≥ max

S:|S|=`

∑
i∈S

ri

.
The running time to implement the SG mechanism is Õ(mn) in the non-Leontief case,
and Õ(n(m2 +M)) in the Leontief case.
Any Pareto efficient allocation can be produced using a suitable “variable speeds” extension
of the SG mechanism. This holds also in the Leontief case. (However, the variable speeds
extension does not possess the rest of the properties listed above.)

The incentive compatibility properties are the main results of this paper.
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1.2 Literature
There has been considerable work on the strategy-proof allocation of divisible goods in Arrow-
Debreu economies, starting with the seminal work of Hurwicz [12], e.g., see [8, 14, 23, 25, 26,
28]. Most of these results are negative, among the recent ones being Zhou’s result showing
that in a 2-agent, n-good pure exchange economy, there can be no allocation mechanism
that is efficient, non-dictatorial (i.e., both agents must receive non-zero allocations) and
strategy-proof [28].

The paper that is most closely related to our work is that of Bogomolnaia and Moulin [5].
In their setting there are n agents and n indivisible goods, each agent having a total
preference ordering over the goods; the desired outcome is a matching of goods with agents.
A straightforward mechanism for allocating one good to each agent is random priority (RP):
pick a uniformly random permutation of the agents and ask each agent in turn to select a
good among those left. It is easy to see that this mechanism is ex post efficient, i.e., the
allocation it produces can be represented as a probability distribution over Pareto efficient
deterministic allocations, and it is strategy-proof. However, it is not ex ante efficient. A
random allocation is said to ex ante efficient if for any profile of von Neumann-Morgenstern
utilities that are consistent with the preferences of agents, the expected utility vector is
Pareto efficient. It is easy to see that ex ante efficiency implies ex post efficiency.

Solving a conjecture of Gale [9], Zhou [27] showed that no strategy-proof mechanism
that elicits von Neumann-Morgenstern utilities and achieves Pareto efficiency can find a
“fair” solution even in the weak sense of equal treatment of equals. He further showed
that the solution found by RP may not be efficient if agents are endowed with utilities
that are consistent with their preferences. Hence, ex ante efficiency had to be sacrificed, if
strategy-proofness and fairness were desired.

In the face of these choices, the work of Bogomolnaia and Moulin gave the notion of
ordinal efficiency that is intermediate between ex post and ex ante efficiency; an allocation
a is ordinally efficient if there is no other allocation b such that every agent sd-prefers b to
a. They went on to show that the mechanism called probabilistic serial (PS), introduced in
Crès and Moulin [7], yields an ordinally efficient allocation. Further they show that PS is
envy-free and weakly strategy-proof, defined appropriately for the partial order “sd-prefers”.
Finally, Bogomolnaia and Moulin define an extension of PS by introducing different “eating
rates” and show that this set of mechanisms characterizes the set of all ordinally efficient
allocations.

Katta and Sethuraman [15] generalize the setting of Bogomolnaia and Moulin to the “full
domain”, i.e., agents may be indifferent between pairs of goods. Thus, each agent partitions
the goods by equality and defines a total order on the equivalence classes of her partition (the
agent is equally happy with any good received from an equivalence class). For this setting,
they give a randomized mechanism that is a generalization (different from ours) of PS and
achieves the same game-theoretic properties as PS.

A mechanism that probabilistically allocates indivisible goods can also be viewed as
one that fractionally allocates divisible goods. Under the latter interpretation, the SG
mechanism is equivalent to PS for the case that m = n and the quantity of each good and
the requirement of each agent is one unit. An important difference is that Bogomolnaia and
Moulin analyze PS under an incomplete preference relation (stochastic dominance) in which
“most” allocation shares are incomparable; whereas we analyze SG under a complete preference
relation (lexicographic) that is a refinement of stochastic dominance. The statement that
a mechanism’s allocation is Pareto efficient w.r.t. lexicographic preferences is considerably
stronger than the same statement w.r.t. stochastic dominance preferences, because each

FSTTCS 2015
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agent’s share is dominated by more alternative shares in the lexicographic order, than it is
in the sd order; so, fewer allocations are Pareto efficient in the lexicographic than in the
sd order. Our results should be viewed therefore as demonstrating that the PS mechanism
and its natural generalization, SG, have far stronger game-theoretic properties than even
envisioned in [5].

For somewhat related questions primarily regarding exchange economies, see Barberà and
Jackson [4], Nicolo [19], Ghodsi et al. [10], and Li and Xue [17]. Finally, we remark only that
the problem of allocating a single divisible good among multiple agents with known privileges
is considerably different; the principal issue studied in that problem is how to make the
division in a manner that is fair w.r.t. the given privileges. This is known as the bankruptcy
problem and has a long history, e.g., see [21, 2]. Despite an interesting resemblance between
the PS mechanism and some of the mechanisms used in the solutions of that problem [13],
the issues at stake in the bankruptcy literature are distinct from those in our paper and its
predecessors.

Saban and Sethuraman [22] solve some of the open problems stated in an earlier version
of this paper. They consider the special case that all ri = 1. First they show that our
condition minj qj ≥ maxi ri is tight in the sense that for any q1 < 1 there exists an n, a
finite list q2, . . . , qn, and agent preferences such that no mechanism is efficient, envy-free and
strategyproof. They also show that if q1 < 1, and list q2, . . . , qn and the agent preferences are
given, then SG achieves all three properties if and only if any mechanism achieves all three
properties. Finally for the generalized setting of Katta and Sethuraman, where agents can
be indifferent between objects, they show that no mechanism can satisfy all three properties.

Since the PS rule is not strategyproof, recent work has studied the situation where agents
are strategic. A Nash equilibrium for the PS rule is a preference profile for which no agent has
an incentive to report a different profile. [3] show that a pure Nash equilibrium is guaranteed
to exist; however determining whether a given preference profile is a Nash equilibrium is
coNP-complete.

2 The Synchronized Greedy Mechanism

The mechanism is simple. Each agent i submits a preference list σi. The submitted list may
or may not, of course, agree with his true preference list πi.

(A simple case to consider is that of M = m = n and all qj = ri = 1. Because of
the restriction that each preference list must include all m singleton bundles, each agent’s
preference list in this case is a permutation of the m goods. Despite being quite special, this
case, or the slightly more general case in which M = m ≤ n and all ri are equal, is already
interesting to analyze and is well motivated by the examples, mentioned earlier, involving
sharing of tasks or of scarce public resources.)

The mechanism simulates the following physical process. Consider each good j as a
“liquid”, and each agent as a receptacle of capacity ri. The mechanism starts out at time
0 by (for all i in parallel) pouring bundle λσi(1) into receptacle i at rate ri units of liquid
per unit time. Each good j is therefore being drained at rate

∑
i riλ

σi(1)
j . (Note that since∑

j λj = 1, the total liquid being added to receptacle i per unit time is ri, as desired.)
This continues until one of the goods, say j, is exhausted. For all agents who were

currently being allocated bundles with j in their support, their favorite Leontief bundle has
now been exhausted. (We say that a Leontief bundle has been exhausted at a given time if any
of the goods in its support has been exhausted, and otherwise that the bundle is available.)
All such agents, i, are immediately allocated the next available bundle on their preference list,
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and the pouring of bundles continues. The algorithm continues in this way, allocating to an
agent from the next available bundle whenever the current bundle has been exhausted. Since
the singleton bundles are included in all preference lists, all agents continuously receive goods
at rate ri until time 1, at which time they simultaneously complete their full allocation.

Observe that the Leontief allocation l constructed by SG satisfies l = Lπ(A(l)) because
the bundles are provided to each agent greedily based on the availability of goods.

This continuous process can easily be converted into a discrete algorithm with the run
time cited earlier: maintain a priority queue of goods, keyed by termination times. Each time
a good is exhausted, each agent is assigned its next unexhausted bundle, and an updated
termination time for each good is computed using the coefficients of the active bundles.

Observe that if an agent prefers bundle λ to bundle λ′, and support(λ) ⊆ support(λ′),
then λ′ may be removed from the agent’s preference list. It cannot be allocated to the agent
by SG nor can it be part of any Pareto efficient allocation to the agent.

3 Properties of the Synchronized Greedy Mechanism

3.1 Pareto Efficiency
Let lσ be the allocation created by the SG mechanism in response to bids σ declared by the
agents. As before π denotes the truthful bids.

I Theorem 1. The allocation produced by the SG mechanism in response to truthful bids is
Pareto efficient w.r.t. lexicographic preference. That is to say, for all l 6= lπ, ∃i l <i lπ.

Proof. For agent i and for K ≥ 1 let tiK = 1
ri

∑K
k=1 l

π
iπi(k). If agent i receives a positive

quantity of his K’th-most-favored bundle, then tiK is the time when that bundle is exhausted
in SG. If the agent receives nothing from the bundle then the bundle is exhausted in SG no
later than tiK .

Suppose for contradiction the existence of l s.t. ∀i l ≥i lπ, and for some i, l >i lπ. Let
t be minimum s.t. ∃i,K s.t. t = tiK < 1

ri

∑K
k=1 liπi(k). Note, if ti′K′ < t then ti′K′ =

1
ri′

∑K′

k=1 li′π′i(k).
For every one of the bundles b ∈ {πi(1), . . . , πi(K)} there is a good j(b) that appears

positively in b and which is exhausted by time t. Since tiK < 1
ri

∑K
k=1 liπi(k) while tiK′ =

1
ri

∑K′

k=1 liπi(k) for all K ′ < K, some agent i′ 6= i receives strictly less of good j(πi(K)) in l
than in lπ. Since j(πi(K)) is exhausted in SG by time t, this means that there is some K ′′

such that 1
ri′

∑K′′

k=1 li′πi′ (k) <
1
ri′

∑K′′

k=1 l
π
i′πi′ (k) ≤ t. This contradicts the minimality of t. J

3.2 Strategy-Proofness
A mechanism is said to be strategy-proof if for every agent and for every list of bids by the
remaining agents, the agent cannot obtain a strictly improved allocation by lying.

I Theorem 2. In the non-Leontief case, the SG mechanism is strategy-proof if min qj ≥
max ri.

Proof. Without loss of generality focus on agent 1. For the remainder of this proof π2, . . . , πn
are arbitrary bids by the agents 2, . . . , n, but π1 is agent 1’s truthful bid. We need to show
that for any bid σ1 (and write σ = (σ1, π2, . . . , πn)), aσ1∗ ≤1 a

π
1∗. The theorem is trivial if

aσ = aπ.
The theorem is also trivial if agent 1, bidding truthfully, receives only his top choice. So

we may suppose that agent 1 does not receive the entire allocation of any one good.
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Figure 1 The mechanism with truthful vs. lying bids of Agent 1.

We may also suppose that if aσ1j = 0 and aσ1j′ > 0, then σ−1
1 (j) > σ−1

1 (j′). (Define σ−1
1 (j)

to be the s such that σ1(s) = j. Define π−1
1 (j) analogously.) In other words, all the requests

in σ1 that come up empty may as well be deferred to the end.
Let G(j) = {j′ : π−1

1 (j′) ≤ π−1
1 (j) and aπ1j′ > 0}. These are the goods that agent 1

weakly prefers to good j and receives a positive quantity of in the allocation aπ.
Say that agent 1 sacrifices good j in σ if:

1. aπ1j > 0,
2. σ−1

1 (j) > |G(j)|, and
3. π−1

1 (j) < π−1
1 (j′) if j′ also satisfies (1),(2).

That is to say, j is the most-preferred good which agent 1 receives a positive quantity of in
π, but requests later in σ than in π.

For a collection of bids ρ let T ρj be the time at which good j is exhausted if the mechanism
is run with bids ρ.

Agent 1 must sacrifice some good, call it B, since otherwise the allocation will not change.
See Figure 1. We will show that agent 1 receives strictly less of B in σ than in π, and that
this is not compensated for by getting more of more-preferred goods.

I Lemma 3. If D is a good and TπD < TπB, then TσD ≤ TπD.

Proof. Supposing the contrary, let D be a counterexample minimizing TπD. Since TπD < TπB ,
D 6= B. Now let i be any agent (who may or may not be agent 1) for whom aπiD > 0. Due to
the minimality of D, each of the goods j which i prefers in π to D, has Tσj ≤ Tπj . Therefore
i requests D at a time in σ that is at least as soon as the time i requests it in π.

Since this holds for all i who received a positive allocation ofD in π, the lemma follows. J

Let NB be the set of agents i 6= 1 for whom aπiB > 0. The condition on ri’s and qj ’s ensures
that this set is nonempty.

Due to the lemma, for each agent in NB , the request time for B in σ is weakly earlier than
it is in π. Now let C be the good such that π−1

1 (C) is maximal subject to π−1
1 (C) < π−1

1 (B)
and aπ1C > 0. Due to the lemma, all goods j′ such that π−1

1 (j′) ≤ π−1
1 (C) have Tσj′ ≤ Tπj′ .

Next we show:

I Proposition 4. If π−1
1 (j′) ≤ π−1

1 (C), then aσ1j′ = aπ1j′ .
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Figure 2 Failure of strategy-proofness without the hypothesis of Theorem 2.

Proof. Supposing the contrary, let π−1
1 (j′) be minimal such that π−1

1 (j′) ≤ π−1
1 (C) and

aσ1j′ 6= aπ1j′ . There are two possibilities to consider.
(a) aσ1j′ < aπ1j′ . This is not possible because then aσ1∗ <1 a

π
1∗.

(b) aσ1j′ > aπ1j′ . Note:

I Lemma 5. Let j1, j2 be such that π−1
1 (j1) ≤ π−1

1 (B), π−1
1 (j2) ≤ π−1

1 (B), aπ1j1
> 0, and

π−1
1 (j1) < π−1

1 (j2). Then σ−1
1 (j1) < σ−1

1 (j2).

Proof. Consider the least j1 that is part of a pair j1, j2 violating the lemma. Then j1 satisfies
conditions (1),(2) above, contradicting that B is the good sacrificed by agent 1. J

It follows that Tσj′ ≥
∑
j′′:π−1

1 (j′′)≤π−1
1 (j′) a

σ
1j′′ . Due to the minimality of j′, this means

that if aσ1j′ > aπ1j′ , then Tσj′ > Tπj′ , contradicting our earlier conclusion. This completes
demonstration of the Proposition. J

A consequence of the Proposition is that TσC = TπC .
Since agent 1 sacrifices B, his request time for B in σ is strictly greater than his request

time for B in π.
Recall that NB is nonempty. At time TπB, the agents of NB have received as least as

much of B in σ as they have in π, and the latter is positive. On the other hand, at the same
time TπB , agent 1 has received strictly less of B in σ than he has in π. In order for agent 1 to
receive at least as much of B in σ as in π, he would have to receive all of B that is allocated
after time TπB ; however, that is not possible, because the set of agents receiving B after TπB
includes NB . Thus aσ1∗ <1 a

π
1∗. J

3.3 Necessity of a Hypothesis on {ri}, {qj}s
We next provide an example in which strategy-proofness fails in the absence of the condition
max ri ≤ min qj . For convenience now let r1 ≥ . . . ≥ rn and q1 ≤ . . . ≤ qm.

I Example 6. Let n = 2 and m = 3. Let r1 = r2 = 3/2; label the goods A,B,C, let
qA = qB = qC = 1, and let the preference lists be π1 = (A,B,C), π2 = (B,C,A). If agent 1
bids truthfully he receives the sorted allocation (1, 0, 1/2). If instead he bids (B,A,C) (while
agent 2 bids truthfully), he receives the improved sorted allocation (1, 1/2, 0). See Figure 2.

This example does not limit the theorem sharply, because it uses r1 = (3/2)q1 rather
than r1 arbitrarily close to q1. Jeremy Hurwitz has pointed out that one may construct
similar examples whenever r1 ≥ q1/(1− q2/

∑
qj); this would appear to be a tight bound.
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Figure 3 Failure of strategy-proofness in the Leontief case.

3.4 Failure of strategy-proofness for the Leontief case

Theorem 2 has no equivalent for general Leontief bundles. Consider the following four-agent
system with r1 = r2 = r3 = r4 = 1 and three goods in supply qA = qB = 1, qC = 2.
Agent 1’s desired Leontief bundles are in the preference order (A,B,C) (this agent is
interested only in singleton bundles); agent 2 and 3’s desired Leontief bundles are in the
order ( 1

2A+ 1
2B,C,A,B); agent 4’s Leontief bundles are in the order (B,C,A).

Under truthful bidding agent 1 receives the sorted goods allocation (1/2, 0, 1/2). By
bidding instead (B,A,C), agent 1 receives the improved sorted goods allocation (2/3, 1/3, 0).
See Figure 3.

3.5 Group Strategy-Proofness

A mechanism is group strategy-proof against a family F of subsets of agents if for every
“coalition” S ∈ F and for any list of bids by the agents outside of S, the agents of S cannot
obtain an improved allocation by lying, where by “improved allocation” we mean that no
agent of S obtains a worse allocation and at least one obtains a strictly better allocation.

We now provide the following generalization of Theorem 2:

I Theorem 7. In the non-Leontief case, the SG mechanism is group strategy-proof against
the family of subsets S for which minj qj ≥

∑
i∈S ri.

I Corollary 8. In the non-Leontief case, the SG mechanism is group strategy-proof against
coalitions of ` agents if minj qj ≥ maxS:|S|=`

∑
i∈S ri.
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The proof of Theorem 7 follows a structure similar to that of Theorem 2 but the argument
is complicated by the fact that different agents in S can sacrifice different goods, and some
of the agents may actually be better off due to their untruthful bids (as they may benefit
from the interactions among the several lies). The proof needs to effectively “chase through”
an unbounded iteration of good transfers relative to aπ, and show that some agent in the
coalition is worse off than in π. Fortunately, this can be done without explicitly pursuing the
iteration.

Proof. Let S be a minimal counterexample. That is,
(a) minj qj ≥

∑
i∈S ri;

(b) With πi representing in this proof the truthful preferences for i ∈ S and arbitrary
preferences for i /∈ S, there are bids σi for i ∈ S such that every i ∈ S “is a willing
participant in the coalition S”, namely (with σ` = π` for ` /∈ S) aσi∗ ≥i aπi∗;

(c) For some i ∈ S, aσi∗ >i aπi∗;
(d) No strict subset of S satisfies (a),(b),(c).

Note by minimality that in σ, every agent i ∈ S bids untruthfully (differently from π)
and this has an effect, namely, if i reverts to bidding according to π then the allocation is
different than in σ.

If aπiπi(1) = ri for all i ∈ S, that is, with truthful bids these agents receive only their top
choices, then none of them can be strictly rewarded by submitting a different bid.

Otherwise (i.e., if aπiπi(1) < ri for some i ∈ S), then thanks to the hypothesis, under the
truthful bids π, every good has a positive allocation outside S.

We may simplify the argument slightly by supposing that for each agent i ∈ S, if aσij = 0
and aσij′ > 0, then σ−1

i (j) > σ−1
i (j′). In other words, all the requests that come up empty

may as well be deferred to the end.
Let G(i, j) = {j′ : π−1

i (j′) ≤ π−1
i (j) and aπij′ > 0}.

Say that agent i sacrifices good j in σ if:
1. aπij > 0,
2. σ−1

i (j) > |G(i, j)|, and
3. π−1

i (j) < π−1
i (j′) if j′ also satisfies (1),(2).

Some good must be sacrificed by some agent, since otherwise the allocation will not change.
(However, while every agent in S is untruthful, not every i ∈ S necessarily sacrifices a good;
setting σi(j) > πi(j) might have an effect even if aπij = 0 because of increased availability of
j due to bidding changes of other agents.)

Of all the sacrificed goods let B be one for which TπB is minimal.

I Lemma 9. If D is a good and TπD < TπB, then TσD ≤ TπD.

Proof. Supposing the contrary, let D be a counterexample minimizing TπD. By the minimality
of B, D cannot be a sacrificed good.

Now let i be any agent (inside or outside of S) for whom aπiD > 0. Due to the minimality
of D, each of the goods j which i truthfully prefers to D, has Tσj ≤ Tπj . Therefore i requests
D at a time in σ that is at least as soon as the time i requests it in π.

Since this holds for all i who received a positive allocation ofD in π, the lemma follows. J

Let OB ⊆ S be the set of agents who sacrifice B, and let NB be the set of agents i for
whom aπiB > 0 but who do not sacrifice B. Due to the lemma, for each agent in NB, the
request time for B in σ is weakly earlier than it is in π. Now consider an agent i ∈ OB . Let
C be the good such that π−1

i (C) is maximal subject to π−1
i (C) < π−1

i (B) and aπiC > 0. Due
to the lemma, all goods j′ such that π−1

i (j′) ≤ π−1
i (C) have Tσj′ ≤ Tπj′ . Next we show:

FSTTCS 2015



554 Allocation of Divisible Goods Under Lexicographic Preferences

I Proposition 10. If π−1
i (j′) ≤ π−1

i (C), then aσij′ = aπij′ .

Proof. Supposing the contrary, let π−1
i (j′) be minimal such that π−1

i (j′) ≤ π−1
i (C) and

aσij′ 6= aπij′ . There are two possibilities to consider.
(a) aσij′ < aπij′ . This is not possible because i is a willing participant in the coalition.
(b) aσij′ > aπij′ . Note:

I Lemma 11. Let j1, j2 be such that π−1
i (j1) ≤ π−1

i (B), π−1
i (j2) ≤ π−1

i (B), aπij1
> 0, and

π−1
i (j1) < π−1

i (j2). Then σ−1
i (j1) < σ−1

i (j2).

Proof. Identical to the proof of Lemma 5 with agent i in place of agent 1. J

It follows that Tσj′ ≥
∑
j′′:π−1

i
(j′′)≤π−1

i
(j′) a

σ
ij′′ . Due to the minimality of j′, this means that if

aσij′ > aπij′ , then Tσj′ > Tπj′ , contradicting our earlier conclusion. This completes demonstration
of the Proposition. J

A consequence of the Proposition is that TσC = TπC .
Since agent i sacrifices B, his request time for B in σ is strictly greater than his request

time for B in π.
Since we are in the case that every good has a positive allocation outside S, NB is

nonempty. At time TπB, the agents of NB have received as least as much of B in σ as they
have in π, and the latter is positive. On the other hand, at the same time TπB , the agents of
OB have received strictly less of B in σ than they have in π. In order for the agents of OB
to receive collectively at least as much of B in σ as in π, they would have to receive all of
B that is allocated after time TπB; however, that is not possible, because the set of agents
receiving B after TπB includes NB . Therefore there is some i ∈ OB for whom aσiB < aπiB . This
contradicts the requirement that i be a willing participant in the coalition S. J

I Example 12. Example 6, in which strategy-proofness failed absent the hypothesis of
Theorem 2, can be extended in a straightforward manner to one in which the group strategy-
proof property fails to hold absent the hypothesis of Corollary 8. Again use m = 3, but
instead of two agents, use n = 2` agents, the first half having the same preference order
(A,B,C) as agent 1 in the earlier example, and the second half having the same preference
order (B,C,A) as agent 2 in the earlier example. If all agents bid truthfully, then the first `
agents each receive the sorted allocation (1, 0, 1/2); however if they lie and bid (B,A,C),
while the remainder bid truthfully, then each lying agent receives the improved sorted
allocation (1, 1/2, 0).

4 Characterizing All Pareto Efficient Allocations

Bogomolnaia and Moulin [5] extended their mechanism by allowing players to receive goods
at time-varying rates. Specifically, for each agent i there is a speed function ηi mapping the
time interval [0, 1] into the nonnegative reals, such that for all i,

∫ 1
0 ηi(t) dt = ri. Subject to

these speeds, goods flow to agents in order of the preference lists they bid, just as before.
They showed that this extension characterizes all ordinally efficient allocations.

In this section, we obtain an analogous characterization of all Pareto efficient allocations
by a similar extension of our mechanism. Specifically, we prove that for any Pareto efficient
allocation of bundles, there exist speeds such that the extended SG mechanism produces
that allocation. We prove this after first noting that the extended SG mechanism always
results in Pareto efficient allocations.
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In this section when ηi (1 ≤ i ≤ n) are fixed, we let aπ (with the η’s implicit) be the
goods allocation produced by the extended SG mechanism with these speeds and truthful
bids. We let lπ = Lπ(aπ) be the corresponding allocation of bundles.

4.1 Pareto Efficiency
I Theorem 13. Let ηi, 1 ≤ i ≤ n, be any speed functions. Then the allocation lπ is Pareto
efficient.

Proof. The argument is the same as for Theorem 1 with the proviso that the definition
tiK = 1

ri

∑K
k=1 l

π
iπi(k) is replaced by tiK = inf{y :

∫ y
0 ηi(t) dt ≥

∑K
k=1 l

π
iπi(k)}. J

4.2 Characterizing All Pareto Efficient Allocations
If the last result mirrored the First Welfare Theorem, the next mirrors the Second Welfare
Theorem:

I Theorem 14. Let π be the collection of agent preference lists over bundles, and let l be a
Pareto efficient allocation. There exist speed functions ηi, 1 ≤ i ≤ n, such that l = lπ.

Proof. As before the bundles are (λk)Mk=1, where for each k,
∑m
j=1 λ

k
j = 1, and λkj ≥ 0 for

all j.
Construction of the speeds ηi is simple. Let a “partial bundle allocation” be a list l̂ik,

each l̂ik ≥ 0, such that for every i,
∑
k,j l̂ikλ

k
j ≤ ri, and for every j,

∑
i,k l̂ikλ

k
j ≤ qj .

Initialize t = 0 and initialize each agent i with the empty partial allocation l̂ik = 0 for all
i, k.

Initialize cj to be the quantity of good j that is allocated in l. (Necessarily cj ≤ qj and∑
cj =

∑
ri. If

∑
qj >

∑
ri then for some j, cj < qj .)

Then repeat the following until t = 1.
Find an agent i for whom there is an ` such that l̂iπi(`) < liπi(`), and such that for all

`′ < `, the bundle πi(`′) has been exhausted (that is to say, there is a good j such that
λ
πi(`′)
j > 0 and cj = 0.) To see that there is such an i, suppose the contrary, and consider all

the agents for whom
∑
k,j l̂ikλ

k
j < ri. For each of them there is a favorite bundle which has

not yet been exhausted. Evidently none of these agents is to be allocated in l any additional
quantity of this favorite bundle. However since these favorite bundles have not yet been
exhausted, we can allocate to every player a slight additional positive amount of his favorite
unexhausted bundle, without exhausting any additional goods. Any extension of this new
partial bundle allocation to a full bundle allocation, strictly Pareto dominates l, contrary to
assumption.

Now set δ = (liπi(`) − l̂iπi(`))/
∑
ri. For t < t′ < t+ δ, make the settings ηi(t′) =

∑
ri

and, for i′ 6= i, ηi′(t′) = 0. Then increment l̂iπi(`) by δ
∑
ri, and decrement each cj by the

corresponding amount, namely, decrement cj by λπi(`)
j δ

∑
ri. Finally, increment t by δ.

This process terminates in finitely many iterations because in each iteration some agent
completes its allocation of some bundle. J

Examination of the above proof reveals:

I Corollary 15. There is a polynomial time algorithm for checking whether a given allocation
is Pareto efficient.
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4.3 No Incentive Compatibility for the Variable Speeds Variant
We note that the synchrony imposed among agents by the SG mechanism is key to its
incentive compatibility and envy-freeness properties (indeed, the properties hold even if
the basic mechanism is extended with the same speed function for all agents). If different
agents have different speed functions under the extended SG mechanism, Theorems 2 and 7,
showing incentive compatibility, fail to hold. The argument breaks down as soon as it uses
termination times, in Lemma 3. Below is a counter-example for strategy-proofness; a similar
idea gives counter-examples for group strategy-proofness and envy-freeness.

I Example 16. Assume m = n = 4 and that all ri = qj = 1. Let the speed function for
agent 1 be 1 over the interval [0, 1]. The speeds of agents 2, 3, and 4 equal 1 over the interval
[0, 1/2], 0 over the interval (1/2, 5/6], and 3 over the interval (5/6, 1]. The preference orders
of agents 1 and 2 are (1, 2, 3, 4), and the preference orders of agents 3 and 4 are (2, 4, 3, 1). If
all agents bid truthfully, agent 1 receives the sorted allocation (1/2, 0, 1/2, 0). On the other
hand, if agent 1 bids (2, 1, 3, 4) while the rest bid truthfully, then agent 1 receives the better
sorted allocation (1/2, 1/3, 1/6, 0).

5 Envy-Freeness w.r.t. stochastic dominance preference

(This section is the only part of the paper where we use sd preference.)
Given a bundle allocation l, let l̄ denote the relative allocation, where l̄ij = lij/ri.

I Theorem 17. Under truthful bidding, every agent i weakly sd-prefers his relative allocation
l̄πi∗ to the relative allocation l̄πi′∗ of any other agent i′.

Proof. Fix any 1 ≤ k ≤M . We are to show that

1
ri

k∑
`=1

lπiπi(`) ≥
1
ri′

k∑
`=1

lπi′πi(`).

Let t be the time at which the last of the bundles πi(1), . . . , πi(k) is exhausted. So
tri =

∑k
`=1 l

π
iπi(`). No other agent can receive any of these bundles after time t, so

tri′ ≥
∑k
`=1 l

π
i′πi(`). J

6 Other Greedy Mechanisms

As stated in the Introduction, obtaining an efficient and envy-free non-pricing mechanism for
allocating divisible goods is easy, but additionally satisfying incentive compatibility is harder.
In this section we present two greedy mechanisms which satisfy the first two properties but
not the third. To simplify description of the mechanisms, assume that m = n and that all
ri = qj = 1; it is straightforward to generalize the mechanisms beyond this restriction, and
our counterexamples are possible even with it.

Mechanism 1: The mechanism proceeds iteratively. In round i, it considers the ith-favorite
goods of all agents who still have not been allocated a full unit of goods. Among such agents,
if the ith-favorite good of a set S of agents is good j, the remaining quantity of good j is
allocated equally among the agents in S, subject to no agent getting more than a total of
one unit of goods. (Some of good j may remain after the round.)
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Mechanism 2: The mechanism has a notion of time, similar to SG. Goods allocation starts
at time 0 and is completed at time 1. During this interval each agent receives goods at rate
1. The interval is punctuated by finitely many critical instants at which some of the agents
switch which good they are receiving. The first critical instant is 0 and the others are the
times at which some nonempty set of agents T finishes receiving their promised allocation
of a good. At such an instant, the mechanism identifies, for each of the agents in T , the
next-favorite good on their list that has not yet been fully promised to other agents. The
mechanism promises each agent in T some of that good, in the following fashion: let Tj be
the subset of T requesting good j and let u be the amount of good j that has not been
previously promised. Then each agent in Tj is promised an equal share of u subject to no
agent exceeding a total of one unit of goods. (The next critical instant affecting these agents
is of course easily computed.) The mechanism then proceeds to the next critical instant.

The proofs given above, for showing that the SG mechanism is efficient and envy-free,
extend easily to showing that Mechanisms 1 and 2 are also efficient and envy-free. Here,
however, are counterexamples to incentive compatibility:

I Example 18 (Mechanism 1). Let m = n = 4; name the goods A, . . . ,D. Agent 1’s
preference list is A,B,C,D; agents 2 and 3 have preferences A,C,B,D; and agent 4’s
favorite good is B. If the agents bid truthfully then in round 1, agent 4 is allocated all of
good B, while the first three agents are each allocated a third of good A. In the second
round agent 1 is left out while agents 2 and 3 are allocated half of good C. In round 3
no allocations are made, and in round 4 good D is allocated among the first three agents.
The allocation to agent 1 is therefore (A : 1/3, D : 2/3). If instead agent 1 submits the
preference list A,C,B,D then she is treated the same as agents 2 and 3, and her allocation
is (A : 1/3, C : 1/3, D : 1/3), which she prefers.

The counterexample for the second mechanism is more involved.

I Example 19 (Mechanism 2). Let m = n = 8; name the goods A, . . . ,H. We specify
only the essential components of the preference orders. The preference order of agent
1 is alphabetical, (A, . . . ,H). Agents 2, 3, 4 have the preference order (A,G,H, F, . . .).
Agents 5, 6, 7 have the preference order (B,C,E, F, . . .). Agent 8 has the preference order
(B,D, . . .). If all agents report their preferences truthfully, agent 1 gets the allocation
(A : 1/4, C : 1/4, D : 1/4, F : 1/4); if agent 1 lies and reports the order (A,C,E,D, . . .) she
gets the allocation (A : 1/4, C : 1/4, D : 1/4, E : 1/4), which she prefers.

7 Discussion

Our main open problem is the one mentioned in the Introduction, i.e., achieving approximate
versions of the properties of the SG mechanism but when agents’ preferences are representable
by utility functions.

Another natural open question concerns the existence of mechanisms to produce lex-
icographically most equitable allocations, having favorable algorithmic and game-theoretic
properties (esp., incentive compatibility). The SG mechanism is not very equitable: see the
full paper [24].
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